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Abstract: Quantifying the effects of control measures during the emergence and recurrence of SARS-
CoV-2 poses a challenge to understanding the dynamic responses in terms of effectiveness and the
population’s reaction. This study aims to estimate and compare the non-pharmaceutical interventions
applied in the first and second outbreaks of COVID-19 in Thailand. We formulated a dynamic model
of transmission and control. For each outbreak, the time interval was divided into subintervals
characterized by epidemic events. We used daily case report data to estimate the transmission rates,
the quarantine rate, and its efficiency by the maximum likelihood method. The duration-specific
control reproduction numbers were calculated. The model predicts that the reproduction number
dropped by about 91% after the nationwide lockdown in the first wave. In the second wave, after a
high number of cases had been reported, the reproduction number decreased to about 80% in the next
phase, but the spread continued. The estimated value was below the threshold in the last phase. For
both waves, successful control was mainly induced by decreased transmission rate, while the explicit
quarantine measure showed less effectiveness. The relatively weak control measure estimated by the
model may have implications for economic impact and the adaptation of people.

Keywords: COVID-19; mathematical modeling; control measure; Thailand

1. Introduction

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was
first detected in Wuhan, China in December 2019 [1]. The disease was subsequently
declared as a pandemic on March 11, 2020, with the name COVID-19 [2]. The deployment of
vaccines is expected to withstand the current global pandemic, though nonpharmaceutical
interventions are still required for emergencies and uncertainty due to the virus mutations.
Several underlying factors are linked, such as the differences in resources, timely responses,
economic impact, and social interaction [3,4]. In addition to cross-sectional descriptive
study [5], the mathematical model can enlarge the capability to quantify the effects of
control measures during the emergence and resurgence of the epidemics.

Thailand accomplished containing the spread of COVID-19 during the first six months
of the pandemic. Unfortunately, after no significant domestic infections for almost five
months, the country has suffered from multiple infected clusters nationwide since the end
of the year 2020 and following another outbreak after the Songkran festival, 12–15 April
2021. The subsequent outbreak was considered as the third wave, which rapidly emerged
while the recent second wave had been suppressed around the end of February. Little is
known about why the aspect of the new outbreak is different from when the first wave hit
in terms of time span, the number of infected people, and the spatial propagation [6].

Several modeling approaches have been used to simulate the temporal dynamics of
COVID-19 and assess the effectiveness of public health control measures in Thailand. Most
of the existing models, however, emphasize the first wave, while the transmission dynamics
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of the second wave and the evaluation of control strategy have been less discussed [3,7,8].
Two difficulties behind this potentially involve insufficient data about the origin of the
second wave and the aspect of report rate.

In this study, we aimed to examine how the degree of countermeasures to the second
wave and their performance change compared with the first wave by using a mathematical
model. The control reproduction number is usually used as an indicator for the strength
of transmission under control measures. To gain better insight into the effect of control
measures, we derive the control reproduction number analytically and analyze the influence
of control measures on its component. We examine whether the result could lead us to a
better description, scenario or possibly an improvement. To capture the dynamic responses,
the parameters are estimated for each time window and used to interpret and compare
the performance of public health countermeasure between two outbreaks. As far as the
insufficient data about the origin of the second wave is concerned, we fill such gaps by
estimating the number of primary cases for the second wave using a simple deterministic
epidemic model. As the number of reported cases may be deceptive if one merely fits it
directly with the model, we assumed that the actual incidence is underestimated by some
factor. The effectiveness of control measures was estimated for each outbreak based on the
parameter values obtained from the best fit between the model and daily report data.

2. Materials and Methods
2.1. Review of COVID-19 in Thailand

Thailand was the first country to find the first infection outside China. The first con-
firmed case detected on 12 January 2020 was a 61-year-old Chinese woman from Wuhan,
followed by the first local transmission reported on 22 January 2020. Even though sparse,
the infections since then were continually reported. The government and the Ministry of
Public Health started responding by heightening arrival passenger screening at interna-
tional airports and any border crossing, including international flight cancellations. The
large outbreak virtually began in early March, triggered by the superspreading events at
a boxing stadium and drinking venues [9]. The Center for COVID-19 Situation Adminis-
tration (CCSA) in conjunction with the Department of Disease Control was subsequently
established to coordinate the government’s response and communicate to the public about
the COVID-19 epidemic. An immediate nationwide lockdown followed by curfew on
3 April 2020 was enforced. As a result, the number of new cases continued to fall and
subsequently surmounted the first wave around June–July 2020.

On 17 December 2020, there was a confirmed case detected outside the quarantine
facilities in Samut Sakhon province for the first time since the end of the first wave; the
province has the second highest number of migrant workers in the country. This case had a
history of selling seafood at a market.

On 20 December 2020, 535 new locally transmitted cases were reported, which was
the largest number of COVID-19 cases reported in Thailand at that time. The burst of new
cases overleaped from the two previous days, which were 16 and 34 cases, respectively,
due to the extensive contact tracing and active case findings associated with the outbreak
in Samut Sakhon. The outbreak area was confined for investigation until no further reports
from the area of the outbreak on 24 December. However, the cases linked to this outbreak
continuously were detected in surrounding Samut Sakhon, Bangkok, and other provinces.

Until now, the origin of the outbreak in Samut Sakon is not clear, even though the
disease investigation might trace back to the first of December 2020. From 24 December
2020 to January 2021, new clusters of cases in Rayong, Chonburi, and other provinces were
serially detected. It is remarked that the control measures released by the CCSA aim at spe-
cific areas, and the degree varies across the risk zones rather than large-scale strict measures
as in the first wave. The risk areas were defined according to case detection and ranked
by different levels of control measures. On 2 January 2021, the CCSA divided risk areas
where temporal and partial lockdown measures were applied only to maximum control
areas comprising 28 provinces. To cope with the second wave, the central control measures
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had been adapted to ensure a balance between disease control and the economy and to
empower local authorities to determine province-specific COVID-19 response measures to
suit their situation.

It is remarked that in late January 2021, several provinces had started to ease lockdown
restrictions, including the reopening of businesses, even though the number of new cases
had not significantly dropped. The observed trend of infections seem to incline downwardly
during the middle of February 2021. It was believed that the situation would be more stable
from late February to early March, the time that the vaccination program had launched,
but there was a sudden spike of a third outbreak in early April.

2.2. Data and Timeframe

Daily confirmed cases from January 2020 to February 2021 were collected from COVID-
19 Situation Reports by the Emergency Operation Center, Department of Disease Control
of Thailand. We defined the first outbreak starting from 12 January 2020 to 31 May 2020
and the second outbreak starting from 1 December 2020 to 28 February 2021. Hence, two
subsets of data were separately analyzed following the two periods.

The termination of the first wave is approximately from the end of June to the be-
ginning of July 2020, the period of no case report for several consecutive weeks. We note
that the end of February does not imply the end of the outbreak, despite the epidemic
curve in the descending phase. Since we concentrate on nonpharmaceutical intervention,
the termination point was selected at the beginning of the vaccine operation. For two
datasets, the reported cases were counted only for infections within the country, whereas
the imported cases that were reported from government state quarantine were excluded.

2.3. Mathematical Model

We constructed a deterministic epidemic model to capture the epidemic curves and the
performance of control measures. The model’s purpose is to provide the best fit between
data and model results. To this end, we adapted the SEIR model by classifying the infectious
state into symptomatic (IS) and asymptomatic (IA) states with the quarantine. We assumed
that the number of total population (N) is constant, and the exposed class (E) is not capable
of infecting the others. The recovery state (R) does not imply an actual number of recovery,
rather, it combines all patients who were isolated, recovered, and died. Figure 1 displays
flowing between compartments where the description of model parameters is informed in
Table 1. The differential equations of the model was shown in Appendix A.

Figure 1. SEIR model with quarantines.
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Table 1. List of model parameters.

Symbol Definition Value References

βs symptomatic transmission rate estimate
c ratio of transmissibility between asymptomatic and symptomatic case 0.418 [10]
σ outflow rate of exposed state 1/5.2 day−1 [7]
α asymptomatic ratio 0.3 [11]
ξ effectiveness of quarantine estimate
γs recovery rate of symptomatic infection 0.10526 day−1 [7]
γa recovery rate of asymptomatic infection 0.2 day−1 [7]
d the rate at which an infection is detected during quarantine estimate
q quarantine rate estimate
ε outflow rate of quarantine 1/14 day−1 [7]

We assumed that the total number of quarantined people at time t is

Q(t) = QS(t) + QE(t) + QA(t).

The variable Qi, i ∈ {S, E, A} represents the number of quarantined people in disease
state i, where S stands for the susceptible state, E denotes the exposed state, and A denotes
the asymptomatic state. In this model, the quarantine has wide implications. An individual
can be quarantined either under the control of public health authorities while contact tracing
or by self-quarantine at home. Thus, quarantined, susceptible individuals may be caused by
the effect of movement restriction such as closing public places, including workplaces and
schools. An exposed individual can have a negative test result during quarantine. Since
the quarantine period for two weeks is probably longer than the incubation period, once it
elapses, the exposed individual is going to end up either asymptomatic or symptomatic.
We assumed that the effectiveness of isolation is perfect, so symptomatic infections are not
quarantined but will undergo isolation, which eventually results in recovery or death.

We assumed that the asymptomatic infection will not be isolated but may be quaran-
tined. Indeed, they may be occasionally tested, and hence isolated. We ignored this fact,
since the rate of tests, in general, was very low in Thailand at that time. Once they are
quarantined, they can be tested or depart after two weeks. Since the quarantine period is
assumed to be longer than the average infectious period, they are moved into the recovery
class in any case.

2.4. The Reproduction Number

We calculated the so-called control reproduction number, Rc, or in short reproduction
number, defined as an average of secondary cases through the infectious period initiated by
a single case subject to the control measure. By using the next generation method, we find

Rc = ψsψe(αRaψa + (1− α)Rs), (1)

where

ψs = 1− ξq
q + ε

,

ψe = 1− dq
(ε + d)(σ + q)

,

ψa =
γa

q + γa

(
1 + (1− ξ)

q
ε + d

)
describe the effect of quarantines, and Ra = cβs/γa and Rs = βs/γs describe the transmis-
sion potentials of asymptomatic and symptomatic infections in isolation, respectively.



Trop. Med. Infect. Dis. 2022, 7, 303 5 of 16

We now explain the effects of quarantine as follows. In the absence of quarantine of
susceptible individuals, the susceptibility is unity since the whole population is counted.
In the presence of quarantine, the susceptibility is given by ψs, where the reduction is

ξq
q + ε

.

The parameter ψe describes the ratio between incidence and the outflow rate of exposed
class (see Appendix B). In the absence of case detection, i.e., d = 0, we see that ψe = 1. It is
clear that all exposed individuals who left the quarantine state became either symptomatic
or asymptomatic cases. Thus, quarantine of exposed class in this case is almost unaffected
but delays the new infections. On the other hand, if d > 0, we have, ψe < 1, its expression
equals one mimus a fraction

dq
(ε + d)(σ + q)

,

which implies that ψe can be viewed as the percentage reduction in the infectivity due to the
quarantine of exposed class. Thus, a strict test among quarantine individuals is necessary.

The parameter ψa describes the mean infectivity of asymptomatic infections. It is a
product of the probability that an asymptomatic individual will not be quarantined and
the fraction of active asymptomatic individuals. For the latter, the effect of quarantine
depends not only on the percentage of detection among quarantine but the effectiveness
of quarantine itself, i.e., ξ. This is because the more fractions of quarantine that escape,
the more force of infection induced by the asymptomatic cases. The model suggests that
increasing quarantine rates can reduce the infectivity of asymptomatic transmission if

ξ > 1− ε + d
γa

.

Conversely, we have ψa > 1. In the cases that ψa < 1, the infectivity is reduced by
1− ψa.

2.5. Parameter Estimations

We used the maximum likelihood method for fitting the incidence function to the daily
reported cases [12]. The parameters to be estimated are the transmission rate of a symp-
tomatic patient, βs, quarantine rate, q, and its efficacy ξ, respectively. These parameters
characterize the contact pattern, transmission risk, and effectiveness of control measures,
which vary across populations. The test rates were separately estimated from the data by
averaging over focusing time period. The rest was extracted from previous studies.

We used Poisson distributions to construct the likelihood function and assumed that
the observed incidence is independently distributed with mean m(t). The model was
solved numerically to calculate m(t) and the likelihood function. To be more specific, we
denote xi as the number of new cases observed at time ti, and~θ is a vector of parameters to
be estimated. The log-likelihood function for Poisson distribution is given by

L(~θ) =
n−1

∑
i=0
−m(ti) + xi ln m(ti), (2)

where m(ti) are calculated from the incidence function, which depends on~θ. Thus,

θ̂ = arg max
~θ
L(~θ), (3)
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gives a solution to the maximum likelihood estimation problem. To calculate the incidence
function associated with daily reported cases, we let θ be the fraction of new infections that
have been reported. By means of the model, the incidence function can be estimated by

m(t) = θ(1− α)(σE(t) + εQE) + d(QE(t) + QA(t)). (4)

The first term indicates the new infections that have symptoms, while the second term
indicates the new infections found in quarantine.

In the first wave, the outbreak event is composed of three phases. The first phase starts
from 12 January 2020 to 5 March 2020. The beginning of the superspreading event on 6
March 2020 is defined as the beginning of the second phase. The third phase begins on 26
March 2020, the day that the government announced a state emergency decree to control
COVID-19, resulting in the nationwide enforcement of travel restrictions or lockdown.
Soon after the nationwide curfew was announced, we note that the determination of each
phase is similar to the description in Triukose et al. [8], especially, the first phase coincides.
Our second phase, however, covers the second phase of Triukose et al. and somewhat
of their third phase. The beginning of our third phase is the same as defined in Mahikul
et al. [7]. This different viewpoint depends on the extent of detail consideration and the
size of data required for model fitting.

Similarly, the second wave is composed of three phases. The origin of the second wave
is not known. According to the large number of new cases reported on 20 December 2020,
we estimated that the early infection of the cluster had possibly started in early December.
The beginning phase of the second wave is thus defined from the first of December to 20
December. As the partial lockdown had been applied, several new clusters took place
across the regions. We thus choose the day that the highest number of reported cases
was seen as the endpoint (26 January 2021). The final phase of the second wave ends on
28 February, the day that the vaccination program launched.

In the first wave, the initial setting was a single symptomatic infectious individual
imported from China. The model was run through the third phase, by which the initial
condition was calculated at the end of the previous phase.

To estimate the number of primary cases in the second wave, we employed the
cumulative number of cases from 1 December 2020 to 20 December 2020, which is 559 cases.
Simultaneously, we also estimated the transmission rate within this period by assuming
that the other parameters were fixed as analogous to the initial phase of the first wave. We
thus estimated parameters by minimizing the difference (error) between the cumulative
number of reported cases calculated by the model and 599. The sensitivity of initial guess
on the estimation was considered.

3. Results
3.1. The First Wave

Table 2 shows the estimated values of parameters and percentage of reduction in each
factor. The first three parameters were estimated by maximum likelihood method and the
test rate was estimated separately from test data. We used these values to simulate the
daily case report, which was assumed to be twenty percent of estimated incidence. The
result shown in Figure 2 determines the trend of data in each phase.

In Table 2, the estimated value of the transmission rate lifted in the second phase
and dropped in the last phase; meanwhile, the estimated value of the quarantine rate
moves from phase to phase in the opposite direction. Prominently, the estimated value of
effectiveness of quarantine is highest in the last phase, i.e., about 0.56. The changing pattern
of these values asserts what had happened and implies the efficiency of lockdown measures.



Trop. Med. Infect. Dis. 2022, 7, 303 7 of 16

Table 2. Estimation of parameters, the reproduction numbers, and percentage of reduction for the
first wave.

Parameter Phase I Phase II Phase III

βs 0.379 0.804 0.084
q 0.015 0.001 0.015
ξ 0.011 0.001 0.514
d 2.60×10−6 2.10 ×10−5 7.20 ×10−5

Ra 0.7921 1.6804 0.1756
Rs 3.6006 7.6382 0.7980
Rc 2.7821 5.8553 0.5579

Percentage of reduction

Susceptibility 0.1909 0.0014 8.9207
Infectivity by latency 0.0003 0.0002 0.0073
Infectivity by infectious −12.3426 −0.8937 −2.5076
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Figure 2. Fitting daily reported cases over a six-month period of the first wave. Small bars represent
the data and solid lines present the models. The vertical dashed line indicates the boundary between
phase I and II, while the peak indicates the beginning of phase III. Inset shows minor epidemics in
phase I.

In the first phase, the control reproduction number is approximately 2.6, while the
basic reproduction number can be calculated as R0 = αRa + (1− α)Rs ≈ 2.76 that was
close to the minimum of early estimation, i.e., 2.23–5.9 in [13], but on average 2.47–2.89
in [7]. This showed that the response to the early epidemic yielded a little positive effect
by reducing by about 5.8% of the basic reproduction number. Nevertheless, the observed
epidemic was minor and rarely dispersed (see the inset of Figure 2). As mentioned earlier,
in addition to the local contact investigation and the stringent level of screening measures
for travelers who arrived, quarantine measures had not been formally and systematically
practiced. Most of the self-quarantine is probably linked to the psychological impact of
news, resulting in the wide alertness of the population. It is also observed that such
quarantine most affects susceptible groups (reducing by 0.19%). Strikingly, the reduction
in infectivity of asymptomatic infection is negative. This means that the quality of the
quarantine can lead to the reverse effect. This is because the estimated effectiveness, ξ, is
lower than the critical condition, hence the reverse effect occurs.

The parameters estimated in the next phase captured the superspreading events related
to drinking venues and a boxing stadium. The magnitude of the estimated reproduction
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number is about two times increased from the early phase. The model predicted that the
quarantine rate and its efficacy dropped more than ninety percent from the previous period.

After the nationwide lockdown had started, the observed number of new cases
dropped downward with no rebound. Accordingly, the estimated reproduction num-
ber decreased by about 91% from the previous phase; its value is less than one. The
quarantine rate is approximately similar to the initial phase, but the effect is much better.
The model describes that the strict measure had a significant impact on the transmission
chain by mitigating the transmissibility and reducing both susceptibility and infectivity.
As in the first phase, the strict lockdown measure has the most impact on susceptibility.
Nevertheless, the reduction in all factors lifted up with respect to the first phase.

3.2. The Second Wave

We find that the estimated asymptomatic and symptomatic primary cases were about
1 and 12, respectively, and the estimated transmission rate of symptomatic case is about 1.25
(see Appendix C). Table 3 shows the values of estimated parameters and the percentage
of reduction in each factor. We used these values to simulate the daily case report, which
was assumed to be twenty percent of estimated incidence. The result shown in Figure 3
determines the trend of data in each phase. Unlike the first wave, the data show several
peaks of case reports between defined phases. This is due to the very low rate of testing in
the general population; the report was mainly subject to immediate active case finding of
emerging clusters. Technically, this creates a difficulty in numerical optimization.

The estimation result shows that the strength of the epidemic in the second wave is
much higher than that of the first wave. The estimated number of primary cases and the
transmission rate are evident. The control reproduction number was about 3.5 times higher
compared with the first phase of the first wave and about 1.6 times higher compared with
the second phase of the first wave. As a consequence, the reduction in all components is
relatively low since we assumed that the level of quarantine measure is similar to the initial
phase of the first wave.

In the second phase, the control measure with population reaction approximately
reduces the control reproduction number by about eighty percent. The model shows that
this reduction may not be induced by the quarantine but by the transmissibility. The travel
restriction might indirectly affect the contact rate, while the face masking, social distancing,
and hygiene practices reduce the transmission probability. As seen in the table, the effect
of quarantine in this phase is very low. The reverse effect was also shown. Although the
reduction in transmission rates is significant, it is not sufficient to depress the reproduction
number below unity. The trend of incidence was slowly increased, approaching the peak by
spending 37 days. This period covers Christmas to the New Year festival, which is believed
to be a factor of unsuccessful quarantine.

Table 3. Estimation of parameters, the reproduction numbers, and percentage of reduction for the
second wave.

Parameter Phase I Phase II Phase III

βs 1.25 0.2412 0.0943
q 0.015 0.0151 0.0016
ξ 0.011 0.012 0.0122
d 7.51×10−5 2.99×10−4 2.41×10−4

Ra 2.6125 0.5041 0.1971
Rs 11.8754 2.2915 0.8959
Rc 9.1748 1.7696 0.6869

Percentage of reduction

Susceptibility 0.1909 0.2094 0.0267
Infectivity by latency 0.0076 0.0303 0.0028
Infectivity by infectious −12.3230 −12.3193 −1.3941
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Figure 3. Curve fitting for daily case reports in the second wave. Small bars represent the data and
solid lines present the models.

In the last phase, the transmission rate dropped by 60% from the previous phase
and by 93% from the initial phase. The estimated effectiveness of quarantine appears
little improved. Since the most reduction came from the reduced transmission rate, the
effect of quarantine in this phase is comparatively low. However, the predicted control
reproduction number is less than one, signaling a somewhat effective control measure. The
model showed the monotonically decreasing trend of incidence.

3.3. Comparing Dynamics of the Scale of Quarantine between Two Waves

Another way to characterize the impact of countermeasures is speculating the num-
ber of quarantined individuals through the course of outbreaks. Figure 4 illustrates the
predicted trend of the quarantined people during each wave according to the estimated pa-
rameters. For both waves, the number of quarantined, susceptible individuals continually
increased during the first phase. The infected individuals had been quarantined a bit after
the quarantine of susceptible groups; they are also shown in the smaller scale. The observed
dynamic patterns between two waves are distinct when the first phase elapsed. The trend
of susceptible individuals declined for the first wave but continually increased for the
second wave. This is clear since the countermeasure had been started in the second wave,
whereas it had not for the first wave. In the first wave, the turnover of susceptible people to
be more quarantined was shown after the announcement of the nationwide lockdown; the
number tends towards constant until the end of the epidemic. On the other hand, during
the last phase, the quarantine of susceptible people seems to be relaxed in the second wave.
The quarantine of infected classes for both waves have the same patterns, excepting for the
position and scale of the peaks. Such different patterns between two waves indicate the
dynamic difference of responses in terms of the degree of caution in the general population
and the effectiveness of control measures.
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Figure 4. Dynamics of the quarantined people during the epidemic calculated by models. Left and
right figures present the number of susceptible, exposed, and asymptomatic individuals that were
quarantined in the first wave and in the second wave, respectively. Both figures are plotted with
two different scales on the y-axis (colors), where the left (blue) represents the number of susceptible
people in quarantine and the right (red) represents the number of infected people in quarantine.

3.4. Probably Improving the Effectiveness of Control Measures

In this section, we seek to find the probable improvement of the quarantine measure
based on model results. We learned that, for both waves, the model of quarantine measure
either by self-quarantine or by contact tracing shows to be less effective. Rather, the main
factors influencing achieved containment were the transmission rates, which are practically
difficult to control with the requirement to counterbalance economic impact. This is evident
in the second phase of the second wave since the CCSA aimed to define zones and confine
the travel-only risk areas rather than mandate a nationwide lockdown. This results in the
delay of the epidemic peak, so the more stringent effort required flattening the curve. In
accordance with the adjusted policy, testing rate, d, and the effectiveness of case finding
quarantine, ξ, are essential to foster the quarantine measure. It is worth noting that these
two parameters are independent of the level of lockdown. Thus, the recommended strategy
should be placed on increasing these two parameter values.

Three possible scenarios are considered as follows: (i) increase ξ alone, (ii) increase d
alone, and (iii) increase both ξ and d together. From Equation (1), the first scenario decreases
ψs and ψa, the second one deceases ψe and ψa, and the last one decreases all influential
factors. Since the quarantine of asymptomatic cases had a reverse effect on reducing the
infectivity, the goal is to determine to which extent the control measure improves as the
reverse effect vanished. More precisely, we are interested in the improved control measure
at the point (d∗, ξ∗), such that

ξ∗ = 1− ε + d∗

γa
. (5)

With this condition, ψa = 1. For generalization, the range of variation can be expanded
beyond this condition, yet we specified it to avoid unnecessary complexity. Since we
concentrated on the second phase of the second wave, the estimated values of (d, ξ) in that
phase are given as a baseline. For the first and second scenarios, only a single parameter
is determined from Equation (5). For the last scenario, the point (d∗, ξ∗) is determined by
an intersection between the line in Equation (5) and its perpendicular passing through the
baseline point in the dξ−plane. We measured the efficiency of the new control measure
by calculating the relative change in the control reproduction number with respect to the
control effort

Efficiency index =

(
n

∑
i

p(new)
i

p(prev)
i

− n

)−1(
R(new)

c

R(prev)
c

− 1

)
, (6)
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where pi denotes the parameter of interest and n is the number of parameters. The first
term of the above expression defines the control effort.

The results shown in Table 4 reveal the three ways of countermeasure improvement
subject to a common constraint. By the efficiency index, increasing the effectiveness
of quarantine alone gives the best improvement and the highest reduction in Rc with
relatively minimal control effort. Conversely, increasing the testing rate alone yields the
lowest reduction in Rc with relatively maximal control effort. The last scenario seems to
compromise between the two scenarios. It is noteworthy that, in the last case, the required
control effort is comparable to the second case, the change in ξ is small, but the change in d
is quite large. The idea is, however, flexible, since one can pick the proper testing rate and
then calculate ξ from Equation (5). Furthermore, the efficiency is used to evaluate the new
control strategy, which is easy to implement.

Table 4. Improvement of quarantine measure by increasing testing rate and the effectiveness of
quarantine based on the parameters estimated in the second phase of the second wave.

Parameter Scenario I Scenario II Scenario III

ξ∗ 0.6414 0.0120 0.0362
d∗ 0.0003 0.1262 0.1213

Rc 1.5583 1.6702 1.6642

Reduced Susceptibility 11.1924 0.2094 0.6318
Reduced Infectivity by latency (%) 0.0303 4.6486 4.5825
Reduced Infectivity by infectious (%) 0.0000 0.0000 0.0000

Control effort 52.4471 421.6849 407.4834
Relative change in Rc 0.1212 0.0582 0.0615
Efficiency index 0.0023 0.0001 0.0002

4. Discussion

The dynamic model of the spread of COVID-19 in this study may be comparable to
several models emphasized on the effects of quarantine measures. Apart from simplicity,
some prominent features of our model that are different from such models should be
noticed. First, the dynamic of quarantine for susceptible, exposed, and asymptomatic
groups was assumed to be linear, while its effectiveness affects both total susceptibility and
the force of infection. This is different from [14,15], such that the quarantine is focused only
on the infectious group, and there is no effect on susceptibility, respectively. Second, we
assumed that there is no transition between quarantine groups, whereas it was assumed to
be possible in [16,17].

Decomposing time into several windows has pros and cons. Single estimation per
outbreak may lead to an inappropriate overall description and of course cannot capture
dynamic responses during epidemic events. In a retrospective study, the selection of time
windows depends on available information and the purpose. Our selection in the first
wave slightly differs from previous works [7,8], yet the results are qualitatively similar.
However, due to the discreteness, it cannot capture continuous patterns of response which
reflect cause and effect between phases in case of insufficient information. For instance,
the presence of abruptly reported cases in the second wave makes the influence of control
measures quite obscure. The daily case reports present several peaks within the selected
time window. This is actually required subdividing. Nevertheless, the selection of time
window is restricted to the sufficient data size used in numerical optimization.

As mentioned earlier, the quarantine rate in this study has specified meaning. Every
state was assumed to be quarantined with the same rate to keep the estimation algorithm
stable, and the number of parameters to be estimated in the first step should be minimal.
To be more realistic, the rate can be distinguished by disease state. Thus, the fluctuation
of quarantined people here is driven by the dynamic of each disease state. The estimated
quarantined rate can be viewed as an average of all states. The change in its estimated
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value of each phase reflects the qualitative difference in the strength of control measures,
psychological impact, and degree of compliance of people.

To our knowledge, our study is the first to model the second wave in Thailand.
The model predicts high virulence at the initial stage of the epidemic among the worker
community in Samut Sakorn province. According to public health report, the epidemic
probably started approximately 20 days before the day of large cases being reported. The
variation of that duration might alter the predicted results. The longer period possibly
decreases the estimated primary cases or the transmission rates but should not significantly
alter the aspect of the predicted incidence curve and the following estimated reproduction
number. The moderately inclined reproduction number in subsequent periods indicates
the change in government policy from countrywide lockdown to local confinement with
contact tracing. The so-called bubble and sealed measure was instantly applied after the cluster
had been detected. Seemingly, this control measure shows a defect, since the high number
of cases was subsequently reported. It is remarked that the observed dissemination of the
new clusters may be caused by the limitation of the active case finding in the previous
cluster, which possibly does not cover all the cases, including somewhat relaxing travel
restrictions. Another possibility is that the time that the first cluster was reported might
not indeed be the early phase. In terms of modeling, this may create an elusive pattern that
does not reflect the actual transmission. This is why the estimated report rates seem to be
underestimated.

The modeling approach in this study has at least three technical limitations. First, the
useful analytic formula is the trade-off simplicity. The pre-symptomatic state is one of the
missing model components, which is known as playing an additional role in transmission.
Incorporating this compartment might alter the parameter estimation, especially weighing
the role of asymptomatic infections resulting in reducing the overestimated asymptomatic
ratio. Nevertheless, the maximum likelihood estimation can become unstable when the
number of parameters increases, since the testing, quarantine, and isolation must be further
accounted for at that stage. Second, we specified the Poisson distribution as a statistical
model for every estimation. An opportunity to improve the performance of parameter
estimation is the test of statistical dispersion [18]. For example, when actual overdispersion
is detected in some phase of the epidemic, one may replace Poisson with a negative binomial
model that allows for the variance to be greater than the mean. Third, the present dynamic
model has difficulty interpreting the impact of specific control measures. It allows only
evaluating the impact of overall control measures through the reduction in transmission
rates, susceptibility, and infectivity. For instance, a reduction in transmission rates could
be induced by either face masks or social distancing. Moreover, the meaning of social
distancing, movement restriction, and quarantine can be interchangeable. The quarantine
of susceptible persons can take all three meanings. Connecting specific measures to model
parameters is challenging to empower evaluation.

The estimated parameters reveal several pieces of information that are unable to be
extracted solely by data. We observed that the effect of a quarantine measure on both
outbreaks is weak. Although the predicted control reproduction number in the final phase
is less than one, the weakened consistency in terms of the policy and population reaction
may create a potential risk for the new cluster from this point, excepting if the vaccination
is sufficiently covered.

5. Conclusions

In this study, we reviewed the epidemiology of COVID-19 from the beginning episode
to the starting of the vaccination program in Thailand. We used data as clues together
with a mathematical model to examine and compare the effectiveness of control measures
applied to two epidemic waves. By dividing the period into a set of subintervals, the
reproduction number and contributing parameters were treated as time dependent. The
reproduction number was analytically derived, after which its components were used to
capture the effect of the control measures. The results show that the epidemic in the first
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wave had successfully been controlled by stringent and inclusive measures. In the second
wave, we estimated the number of primary cases and the transmission rates by using the
cumulative number of reported cases. The result reveals thirteen primary cases with only
one asymptomatic infection, and the transmission rate of about 1.25 yields the minimum
error. They were subsequently used throughout the calculations. From the day that the
highest number of cases was reported at the first time, the control measure fails in complete
elimination within a suitable period, as in the first wave. Although the factors influencing
this are currently debated, we hypothesized that the more relaxed policy should be induced
by economic impact and attitude change in society. Under this circumstance, the model
results indicate that the effectiveness of quarantine measures should be improved along
with increasing testing. We hypothetically recommend the improved strategies that might
be appropriate for the change in policy.

Thailand has been experiencing an acute outbreak while the vaccination has been
simultaneously operating. As the economic factor is counterbalanced, the stringent non-
pharmaceutical measures become temporary or unable to deal with the spread. Never-
theless, the more precise evaluation of control measures is still required for improving
management, not only for SARS-CoV-2 but for possible new emerging diseases.
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Appendix A. Mathematical Model

The dynamical equations that describe the model can be expressed as

dS
dt

= −λ(t)(S + (1− ξ)QS)− qS + εQS,

dE
dt

= λ(t)(S + (1− ξ)QS)− (q + σ)E,

dIA
dt

= σαE + εαQE − (γa + q)IA,

dIS
dt

= (1− α)(σE + εQE)− γs IS, (A1)

dQS
dt

= qS− εQS,

dQE
dt

= qE− (ε + d)QE,

dQA
dt

= qIA − (ε + d)QA.

The force of infection reads

λ(t) =
βs

N
(c(IA + (1− ξ)QA) + IS). (A2)

Appendix B. Interpretation of Components of the Reproduction Number

To derive the reduction in susceptibility, we computed S and QS at disease-free
equilibrium, i.e.,

S∗

N
=

ε

ε + q
,

and Q∗ = N − S∗. The susceptibility under quarantine is now (S∗ + (1− ξ)Q∗)/N. Thus,
the difference of susceptibility between quarantine and without quarantine is

1−
(

S∗

N
+ (1− ξ)

Q∗

N

)
=

ξq
ε + q

.

To derive the reduction in infectivity due to case detection in the quarantine of exposed
individuals, we consider the ratio between the rate of new infections after an exposure
period and the rate of outflow from exposed class, i.e.,

Rate of new infections after exposed period
Rate of outflow from exposed class

=
σE + εQE
(q + σ)E

.

It is easy to see that this ratio becomes unity if there is no detection, i.e, d = 0.
Otherwise, the rate of outflow from quarantine must be dropped. The difference between
these two cases gives the percentage of reduced infectivity. Since we are concentrated on
the steady state, the number of exposed individuals in quarantine can be approximated by

Q∗E =
qE∗

ε + d
.

Substituting into the above formula, we have

Percentage of reduced infectivity =
dq

(q + σ)(ε + d)
.
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Appendix C. Estimation of the Number of Primary Cases and Transmissibility in the
Second Wave

The number of primary cases and their transmissibility were estimated. We fixed the
remaining parameters such as the quarantine rate and its effectiveness by using the same
values estimated in the early phase of the epidemic. We also fixed the duration since the
primary cases are introduced to the first peak, which accounted for the day that the highest
number of cases were reported, i.e., 20 days from the first of December. We observed that
the initial guess of the number of primary cases in the optimization may alter the estimation
results, while the initial guess of the transmission rate of symptomatic cases has little effect.
We performed the estimation several times by randomly choosing them and calculated the
error matrix, which was illustrated in Figure A1. The result shows that the minimum error
is 2.5× 10−5, obtained at the starting point (2,12). At this point, we obtained the estimated
asymptomatic and symptomatic primary cases as one and twelve cases, respectively (see
Figure A2).
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Figure A1. Variation of the starting point for optimization algorithm on the absolute errors of
predicted cumulative number of reported cases at the end of the first phase.
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Figure A2. Errors were plotted with respect to the optimization results. The minimum point for
asymptomatic case is one, whereas the minimum point for the symptomatic cases is twelve.
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