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Abstract: Crimean–Congo hemorrhagic fever virus (CCHFV) is widespread in Asia, Europe, and
Africa. In Senegal, sporadic cases of CCHFV have been reported since 1960. Bordering Mauritania in
northeastern Senegal, Agnam is an arid area in the region of Matam where CCHFV is endemic, which
harbors a pastoralist community. Given the drought conditions of Agnam, inhabitants are in constant
movement with their animals in search of pasture, which brings them into contact with pathogens
such as arboviruses. To identify CCHFV in this area, we established a One Health site in order to
analyze animal livestock, ticks and human samples collected over a one-year period by qRT-PCR and
ELISA. Our analysis showed one (1/364) patient carried anti-CCHFV IgM and thirty-seven carried
anti-CCHFV IgG (37/364). In livestock, anti-CCHFV IgG was detected in 13 (38.24%) of 34 sentinel
sheep. The risk of CCHFV infection increased significatively with age in humans (p-value = 0.00117)
and sheep (p-value = 1.18 × 10−11). Additional risk factors for CCHFV infection in sheep were dry
seasons (p-value = 0.004) and time of exposure (p-value = 0.007). Furthermore, we detected a total
of three samples with CCHFV RNA within Rhipicephalus evertsi evertsi and Rhipicephalus guilhoni
tick species. Our results highlighted the usefulness of a One Health survey of CCHFV in pastoral
communities at risk of arboviruses.

Keywords: CCHF; prevalence; human; sheep; tick

1. Introduction

Crimean–Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus mainly trans-
mitted by ixodid (hard-bodied) tick bites. CCHFV belongs to the Bunyavirales order and is
a member of the Orthonairovirus genus [1]. As with all Bunyavirus, the CCHFV genome is a
three-segment negative-strand RNA, composed of small (S), medium (M), and large (L)
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segments. The S segment encodes the nucleocapsid (N) protein and nonstructural proteins
(NSs), which are translated from overlapping open reading frames. The M segment encodes
for glycoproteins (Gn and Gc) and a nonstructural protein (NSm), while the L segment
encodes for the RNA-dependent RNA polymerase [2].

Tick bites remain the principal route of CCHFV transmission in humans and animals.
However, the infection in humans could occur also after the butchering of infected livestock
and in the healthcare setting during the care of infected patients [2]. Animals are asymp-
tomatic reservoirs of the virus, but infection in humans, after a few days of incubation,
can cause nonspecific febrile illness characterized by fever, myalgia, diarrhea, nausea, and
vomiting. In a few cases, symptoms have progressed to severe hemorrhagic disease. The
case fatality rates range from <5% to upwards of 30% [3]. Infection kinetics studies show
viral RNA can be detected in blood by RT-PCR for up to 18 days of the illness [4]. IgM
antibody response is detectable by day 7, and IgG antibody response is detectable by day
7–9 of illness. The highest of IgM and IgG antibody titers are usually attained from days
14 to 21 of infection. The increase of antibody response seems to coincide with the decline of
viremia, which is supported by the diminished viral RNA in surviving patients, suggesting
this antibody response plays a role in viral elimination. By 4–6 months after illness, the
IgM antibodies become undetectable, whereas the IgG titers remain detectable for at least
5 years post infection [4].

No specific treatment or vaccine is approved for CCHFV. However, ribavirin has been
proven to work if used in the first days of the onset of symptoms [5,6].

First reported in 1944 in the Crimea region of the Soviet Union, and later in 1956 in
the Belgian Congo, CCHFV has been reported in more than 30 countries in Africa, Europe,
and Asia [3,7]. The near global spread of CCHFV may have been facilitated by migratory
birds infested with CCHFV-infected ticks [8]. Hyalomma, Rhipicephalus, and Amblyomma
ticks have been proven competent to transmit the disease [9,10].

In West Africa, recurrent CCHFV outbreaks have been reported [11,12], with serologi-
cal and molecular evidence of CCHFV circulation reported in Senegal since 1960 [13]. Due
to their climate (mostly hot and dry), geographical positions (trans-frontal with endemic
countries such as Mali and Mauritania), and pastoral activity [14,15], the northern Senegal
regions have populations that are at high risk for a CCHFV outbreak. Additionally, the
most recent human CCHFV case was reported in Bokidiawe, located in Matam, a north
Senegal area [16]. To surveil and conduct research on arboviruses and viral hemorrhagic
fever in northern Senegal, the World Health Organization collaborating centre (WHOCC)
collaborated with the Virology Department and the Medical Zoology Department of Institut
Pasteur de Dakar (IPD) to establish a One Health site in Agnam (16◦00′18′′ N, 13◦41′35′′ W)
on the border of Mauritania. In this study, a CCHFV One Health survey on humans, sheep,
and ticks was conducted in Agnam, a north Senegal area at high risk of CCHFV emergence.
Through this survey, evidence of the circulation of CCHFV was found in humans, livestock,
and ticks.

2. Materials and Methods
2.1. Study Area

In February 2021, a One Health site was established in Agnam (16◦00′18′′ N, 13◦41′35′′W)
in northern Senegal, near the border of Mauritania. The rainy season in Agnam lasts four to
five months (June, July, August, September, and October), with the average rainfall at less
than 369 mm/year. Here, pastoralism is highly practiced, and our study areas included sheep
and tick sampling a mere 14.8 km from the health care center where human samples were
collected (Figure 1).
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Figure 1. Study Areas: Agnam Civol health care center (represented by the red dot) for human
sampling and Idite (represented by the black dot) for sheep and tick sampling. These areas are
14.8 km apart and are located in the Agnam district in the region of Matam (colored in green) in the
Northern Senegal.

2.2. Blood Sample Collection of Humans and Livestock

Venous blood had been taken from every patient with febrile syndrome in the Agnam
health care sentinel site since June 2021. Every patient enrolled in the survey provided
informed consent. Consent for minors was provided by a parent or guardian. For inclusion,
the patient needed to have a temperature above or equal to 38 degrees with two minor
symptoms (headache, myalgia, arthralgia, retro-orbital pain) or with one major sign of
hemorrhagic manifestation (purpura, epistaxis, gingivorrhagia, metrorrhagia). Clinical and
social/demographic data such as living address, age, travel history, and vaccination history
were collected. Blood samples were sent weekly to Institut Pasteur to diagnose arboviral
and viral hemorrhagic fever infection.

For the livestock survey, 34 sheep were selected from villages located in the study
area, in February 2021. These sheep were bled by jugular routes and tested for current and
previous signs of CCHFV infection by qRT-PCR and ELISA. After inclusion, seronegative
sheep were blood sampled every 14 days for 56 days, then monthly to monitor CCHFV
infection until March 2022.

2.3. Ticks Sampling

A sampling of ticks from animals was undertaken at the Agnam sites where the sheep
were sampled. Sheep were physically restrained and the whole body was visually examined
for ticks. If found, the ticks were pulled off manually, placed in a sterile tube, and trans-
ported to the laboratory in liquid nitrogen. In the laboratory, ticks were washed in sterile
water, ethanol, and an L15 medium containing antimicrobial agents (100 U/mL penicillin,
100 µg/mL streptomycin, and 1 µL/mL amphotericin B). Ticks were identified per species
by using taxonomic keys and pooled in groups of 1 to 28 by species, sex, collection date, and
site. The tick pools were homogenized by using sterile mortar and pestle with 0.5 mL–2 mL
ice-cold L15 medium (10% Fetal Bovine Serum, 100 U/mL penicillin, 100 µg/mL streptomycin,
and 1 µL/mL amphotericin B) under high containment. The homogenates were clarified
by centrifugation at 2500 rpm for 5 min at 4 ◦C. Then, supernatants were stored at −80 ◦C
until use.
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2.4. Serological Assay for CCHF

Human sera were screened for anti-CCHFV IgM by immunocapture ELISA [17]. For
this purpose, plates were coated by adding goat anti-human IgM in a carbonate-bicarbonate
buffer (0.015 M sodium carbonate, 0.035 M sodium bicarbonate, pH 9.6) and incubated at
4 ◦C overnight. After washing with washing buffer (PBS1x +Tween 0.05%), samples were
added and the plates were incubated at 37 ◦C for one hour. After incubation, plates were
washed, then mouse brain CCHFV antigen was added and plates were incubated at 37 ◦C
for one hour. Plates were washed and specific CCHFV hyperimmune mouse ascite was
added, then the plates were incubated at 37 ◦C for one hour. An anti-mouse IgG antibody
conjugated with horseradish peroxidase was added after washing, then the plates were
incubated at 37 ◦C for one hour. Tetramethylbenzidine (TMB) was added after washing,
then sulfuric acid was used for blocking the reaction. Optical densities (OD) were read
using a reader with 450/620 filters and the data were processed in Excel. The OD value
0.2 was used as a cutoff.

Anti-CCHFV IgG presence was tested in both animal and human sera. For this,
CCHFV recombinant glycoprotein Gn (Sinobiological) was diluted at 50 ng in PBS1x
(Sigma-Aldrich) and added in plates, then these plates were incubated overnight at 4 ◦C for
coating. After washing with washing buffer (PBS1x +Tween 0.05%), the antigen residues
were captured with blocking buffer (PBS1x +Tween 0.05% + 5% skimmed milk). After 1 h
of incubation at 37 ◦C, the plates were washed, 1/100 diluted sera were added, and the
plates were incubated. After washing, a specific antibody conjugated with horseradish
peroxidase (rabbit anti-sheep IgG (Biorad) diluted at 1/20,000 or a goat anti-human IgG
(KPL) diluted at 1/10,000), then the plates were incubated for 1 h at 37 ◦C. TMB was added
and then the reaction was blocked with sulfuric acid. Optical densities (OD) were read
using with 450/620 filters and the data were processed in Excel. The cutoff was determined
with a finite mixture model in R software.

2.5. qRT-PCR for CCHFV

RNA was extracted from human and sheep sera and tick supernatant using the
QIAamp RNA Viral Kit (Qiagen GmbH, Heiden, Germany) according to the manufacturer’s
recommendations. RNA was eluted in 60 µL of AVE buffer and stored at −80 ◦C until use.

CCHFV virus detection was performed using the AgPath-ID One-Step RT-PCR kit
Thermofisher© (Waltham, Massachusetts, USA) and primers and probe as previously
described [18]. A total of 5 µL of RNA was added to 20 µL of reaction mixture consisting of
12.5 µL of buffer, 4 µL of RNase free water, 1 µL of each primer, 0.5 µL of probe, and 1 µL
of enzymes. The qRT-PCR was performed on QuantStudio 5 (Applied Biosystems, Foster
City, CA, USA). The cycling conditions were 50.0 ◦C for 10 min, at 95.0 ◦C for 15 min, and
40 cycles of 15 s at 95.0 ◦C, and 1 min at 60 ◦C.

2.6. Statistical Analysis

Statistical analysis was performed on R software version 4.1.3 using chi-squared/Fisher’s
exact test for qualitative analysis, and logistic regression was used to evaluate the risk of
CCHFV infection. Statistical significance was defined as p < 0.05.

The force of infection was determined on R software for both humans and animals
using the single serosurvey method and the repeated serosurvey method, respectively, as
previously described [19].

3. Results
3.1. Human Survey

From June 2021 to March 2022, 364 human sera were collected from febrile patients with a
median temperature of 38.5 ◦C. Gender proportion was near equal for this population (46.7%
male and 53.3% female) (X2 = 0.6272, df = 1, p = 0.4284). The most reported signs and symptoms
were headache (96.97%) followed by myalgia (76.64%), arthralgia (18.68%), vomiting (4.12%),
hemorrhage (0.82%), and asthenia (0.27%). Patient ages were distributed between 2 months
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and 98 years, with a median age of 20 years. The most reported age ranges were 10–20 years
(14.63%), followed by 20–30 years (30.75%) (X2 = 103.39, df = 9, p < 2.2× 10−16), then 30–40 years
(22.39%). Most patients came from Agnam areas such as Agnam Civol (49.73%) and Agnam
Ouro Ciré (17.31%). Bélé and Fetediabe were the most sampled areas (4.39%) besides the Agnam
areas (X2 = 319.95, df = 13, p < 2.2× 10−16) (Table 1). The majority of febrile patients were sam-
pled in October (22.29%), then November (14.29%), December (12.09%), and January (10.99%)
(X2 = 29.684, df = 9, p-value = 0.0004964). No difference was noticed between the proportions of
patients sampled during the dry season (54.12%) and the rainy seasons (45.88%) (X2 = 0.67927,
df = 1, p-value = 0.4098) (Table 1).

Table 1. Social and demographical presentation of the human samples.

Criteria N (%)

Sex

M 170 (46.70%)
F 194 (53.30%)

Age range

[0–10] 49 (14.63%)
[10–20] 103 (30.75%)
[20–30] 75 (22.39%)
[30–40] 55 (16.42%)
[40–50] 31 (9.25%)
[50–60] 11 (3.28%)
[60–70] 9 (2.69%)
[70–80] 1 (0.30%)
[80–90] 0
[90–100] 1 (0.30%)

Location

Agnam Civol 181 (49.73%)
Agnam Godo 13 (3.57%)

Agnam Goly, Barga, Idite 1 (1.64%)
Agnam Ouro Ciré 63 (17.31%)

Agnam Ouro Mollo, Badiya, Karadji,
Ngouloum, Nodi, Orefonde, Thilogne 1 (1.92%)

Agnam Sinthou Cire 12 (3.30%)
Agnam Thiodaye 11 (3.02%)

Asnde Balla 5 (1.37%)
Bagonde 24 (6.59%)
Balanabé 4 (1.10%)

Bele, Fetediabe 8 (4.39%)
Yero Yabe 7 (1.92%)

Toulel Thiale 13 (3.57%)

Months

June 13 (3.57%)
July 5 (1.37%)

August 31 (8.52)
September 36 (9.89%)

October 81 (22.25%)
November 52 (14.29%)
December 44 (12.09)

January 40 (10.99%)
February 33 (9.06%)

March 29 (7.97%)

Seasons

Dry 197 (54.12%)
Rainy 167 (45.87%)
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Anti-CCHFV IgM detection assay reveals that one patient was positive, while thirty-
seven were positive for anti-CCHFV IgG, and all samples were negative by qRT-PCR.
The IgM positive patient, a 10-year-old child, sought consultation 3 days after the on-
set of symptoms. His clinical signs and symptoms included fever (39.4 ◦C), headache,
and joint pains. This IgM-positive patient was negative to an IgG test at this timepoint,
but became positive to the IgG test 20 days later. The patient ultimately recovered with-
out complications. The median age of the CCHFV seropositive (IgM+IgG) patients was
31 years, and though females out-represented males, no significant difference was noticed
[OR = 0.67 (0.32, 1.33) and p = 0.257]. The risk of CCHFV exposure increased by 1.03 years
in our sampling areas. Within our sampling groups, months, seasons, and location were
not risk factors for CCHFV exposure (Table 2). Globally, the seroprevalence was 10.44% in
this area.

Table 2. Risk factors for CCHFV in human populations.

N IgG (%) OR (CI, 95%) p-Value

Gender

Man 15 (39.73%)
0.67 (0.32, 1.33) 0.257Woman 23 (60.52%)

Age

NA 1.03 (1.01, 1.05) 0.00117

Season

Dry 25 (65.79%)
0.59 (0.27, 1.18) 0.149Rainy 13 (34.21%)

Months

June * 2021 4 (10.52%) 3.00 (6.00, 1.52) 0.172
July * 2021 0 4.31 (2.04, 6.01) 0.989

August * 2021 4 (10.52%) 3.00 (6.00, 1.52) 0.172
September * 2021 1 (2.63%) 1.92 (9.56, 1.39) 0.151

October * 2021 4 (10.52%) 3.50 (7.79, 1.57) 0.157
November 2021 2 (5.26) 2.70 (3.57, 1.47) 0.144
December 2021 2 (5.26) 3.21 (4.24, 1.76) 0.207

January 2022 10 (26.31) 2.25 (6.66, 8.97) 0.211
February 2022 5 (13.16) 1.20 (2.89, 5.32) 0.796

March 2022 5 (13.16) 1.40 (3.34, 6.25) 0.639

Location

Agnam Civol 18 (47.36%) 7.28 (2.56, 1.94) 0.533
Agnam Godo 1 (2.63%) 6.59 (3.45, 3.87) 0.702

Agnam Goly, Barga, Idite 2 (5.26%) 7.90 (2.98, 2.09) 0.154
Agnam Ouro Ciré 6 (15.79%) 8.32 (2.73, 2.31) 0.732

Agnam Ouro Mollo, Badiya,
Karadji, Ngouloum, Nodi,

Orefonde, Thilogne, Lidoube
1 (2.63%) 6.83 (NA, Inf) 0.998

Agnam Sinthou Cire 0 6.83 (1.56, 1.30) 0.993
Agnam Thiodaye 3 (7.89%) 2.96 (5.85, 1.21) 0.147

Asnde Balla 1 (2.63%) 1.97 (9.64, 1.49) 0.558
Bagonde 4 (10.52%) 1.58 (4.05, 5.18) 0.47
Balanabé 1 (2.63%) 1.63 (2.24, 2.27) 0.418

Bele, Fetediabe 0 6.83 (NA, 7.78) 0.994
Yero Yabe 0 6.83 (NA, 1.59) 0.995

Toulel Thiale 1 (2.63%) 6.83 (2.49, 5.83) 0.993
Legends: * indicate months of the rainy seasons.

The fitted proportions of seropositive patients by age are shown in Figure 2a. The
values of 85% sensitivity and specificity have been chosen to illustrate the method. We
found that imperfect specificity induces low seroprevalence and imperfect sensitivity
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suggested higher seroprevalence. Analysis estimated a force of infection at 7.6% per year
(CI: 4.9–11.1%) (Figure 2b).
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Figure 2. Representation of seropositivity by age and the force of infection. (a) Proportion of
seropositive patients by age. (b) Relation between force of infection, sensitivity, and specificity. The
grey zones represent the 95% credible intervals. As the credible intervals approach the 95% confidence
interval (vertical dashed line), the sensitivity and specificity approach 100%.

3.2. Sheep Survey

From February 2021 to March 2022, 453 sera were sampled from our 34 sentinel sheep.
At the beginning of the study, this population principally contained females (94.11%) aged
between 4 and 18 months with a median age of 8 months. During the survey, two sheep
deaths were recorded, but CCHFV infection was not detected by qRT-PCR and ELISA. The
global seroconversion rate was 38.24%, and almost all seroconversion occurred in the dry
season (Figure 3).

Risk factor analysis shows that adult sheep were more exposed than juveniles and the
risk increased by 1.26 months (age) for CCHFV exposure. Sheep were more exposed to
CCHFV during the dry season than during the rainy seasons. Furthermore, logistic analysis
shows that CCHFV exposure increased significantly in January, February, and March 2022.
Sex and tick infestation had no influence on CCHFV positivity during the survey (Table 3).
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Figure 3. Temporal distribution of anti-CCHFV antibody in livestock sheep. Legend: * on month
indicates the rainy seasons.

Table 3. Risk factors for CCHFV in livestock sheep.

N IgG (%) OR (CI, 95%) p-Value

Age

Juvenile 0
1.26 (1.18, 1.35) 1.18 × 10−11

Adult 13 (100%)

Seasons

Dry 12 (92.30%)
0.33 (0.15, 0.68) 0.004Rainy 1 (7.70%)

Months

February 2021 1 (7.70%) 0.48 (0.02, 5.30) 0.092
March 2021 1 (7.70%) 1 (0.11, 8.75) 0.071
April 2021 0 1 (0.11, 8.75) 1
May 2021 0 1 (0.11, 8.75) 1

June * 2021 0 1 (0.11, 8.75) 1
July * 2021 0 1 (0.11, 8.75) 1

August * 2021 0 1 (0.11, 8.75) 1
September * 2021 1 (7.70%) 1.54 (0.24, 12.36) 0.644
November 2021 3 (23.07%) 3.42 (0.72, 24.70) 0.15
December 2021 1 (7.70%) 4.14 (0.91, 29.43) 0.091

January 2022 2 (15.38%) 5.76 (1.33, 40.06) 0.034
February 2022 4 (30.76%) 8.72 (2.11, 59.74) 0.007

March 2022 0 8.72 (2.11, 59.74) 0.007

Sex

Male 2 (15.38%)
2.41 (0.91, 5.78) 0.057Female 11 (84.61%)

Ticks

Infested 9 (69.23%)
1.12 (0.64, 1.91) 0.680Not infested 4 (30.76%)

Legends: * indicate months of the rainy seasons.

Figure 4 shows the elicited distributions of the Anti-CCHFV IgG ELISA for the sen-
sitivity and specificity. The figure summarizes the beliefs of the three experts by linear
pooling [19] and represents the fitted beta and logistic-normal distributions that we used to
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generate the force of infection (Figure 5). We found that sensitivity presented high variance
compared to specificity and the distribution for specificity was near 100% (Figure 4).

Figure 4. IgG uncertainty in (a) specificity and (b) sensitivity.

Figure 5. Estimation of the force of infection.

The estimated force of infection is 32.14% per month with a credible interval of 10.1 to
55.59%, with sensitivity and specificity both varying (Figure 5).

3.3. Ticks

During the survey, a total of 2238 ticks of two genera and six species were sampled.
Hyalomma impeltatum was the most predominant species (79.71%), followed by Rhipicephalus
guilhoni (9.83%), R. muhsamae (4.83%), R. evertsi evertsi (3.44%), H. truncatum (1.65%), and H.
marginatum rufipes (0.54%) (Figure 6). CCHFV RNA were detected by qRT-PCR in three
(3) samples of ticks among all 808 pools, two of these were from a pool of R. evertsi evertsi
(Ct = 34.5 and Ct = 22.15) and the other was from R. guilhoni (Ct = 28.42).
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Figure 6. Prevalence of tick species.

4. Discussion

Among the humans tested in Agnam, one was positive for CCHFV anti-IgM. This
patient had contact with cattle, goats, and sheep, which classified him as high-risk. This is
the first documented presumptive acute CCHFV case detected in this area. Human overall
seroprevalence is 10.44%, similar to the 11.3% reported in Rosso (Senegal) [15], the 13.1%
reported in Senegal [14], and the 14% reported in Ijara (Kenya) [20]. Our study showed
that age influenced seropositivity. The risk for CCHFV infection in humans increased by
1.03 year, which echoed results found in Kenya [20]. We estimated the force of infection
(FOI) at 7.6% per year in Agnam. This estimation of FOI is lower than the 13.7% found
previously in a Colombo study [19].

In livestock sheep, 38.24% had seroconverted to CCHFV between February 2021 and
March 2022. Our results compare to the 35.3% in India [21], the 32.6% in Kosovo [22], and
the 32.8% in the Saint-Louis region of Senegal [23]. Our seroprevalence is higher than the
rate reported in Mauritania (16%) [24], and Niger (3%) [25]. As an explanation, unlike
our study, the samples of these studies were undertaken in many areas with different
epidemiological facets. We noted that 12 of the 13 cases of CCHFV seroconversion among
sentinel sheep occurred during the dry season. This result supports epidemiological reports
of higher infection rates of CCHFV in Senegal during the dry season [23]. This seasonal
increase could be due to the abundance of CCHFV population vectors during the dry
season [23]. Analysis shows that seropositivity increases by 1.26 months (age) and increases
with time of exposure in natural settings. In natural settings, naïve livestock need at least
6 months before seroconversion to CCHFV. Furthermore, the analysis of CCHFV immunity
(IgG) remains possible for at least 3 months. The FOI was 32.14% per month for our
livestock sheep, a value higher than the 13.3% found in a Medellin study [19]. It is possible
that our population has greater exposure to the disease.

CCHFV screening in ticks showed that three samples contained CCHFV RNA, with
two pools of R. evertesi evertesi and one of R. guilhoni tick species. CCHFV had been found
previously in Rhipicephalus species in Senegal [26] and Mauritania [27]. Additionally, in
Senegal, R. evertesi evertesi had been found to be a competent vector for CCHFV transmis-
sion [9]. Unlike Ghana [28], Sudan [29], and Kenya [30], CCHFV was not detected in ticks
of the Rhipicephalus genus, suggesting different evolutionary pressures may be associated
with regional vectors.

Future studies determining the genetic characterization of CCHFV viral RNA in ticks
will inform the disease epidemiology in areas of Agnam.

CCHFV circulation was demonstrated in humans, livestock, and ticks in areas of
Agnam. These results highlighted the importance of a One Health approach to prevent
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and respond to CCHFV outbreaks. Our findings indicate that in Agnam (Senegal, northern
area) the peak of transmission occurs in February and March. As such, vaccine candidate
trials for CCHFV or a livestock tick control campaign should be implemented before this
high-risk transmission period.
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