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Abstract: While the world is still struggling to recover from the harm caused by the widespread
COVID-19 pandemic, the monkeypox virus now poses a new threat of becoming a pandemic.
Although it is not as dangerous or infectious as COVID-19, new cases of the disease are nevertheless
being reported daily from many countries. In this study, we have used public datasets provided by
the European Centre for Disease Prevention and Control for developing a prediction model for the
spread of the monkeypox outbreak to and throughout the USA, Germany, the UK, France and Canada.
We have used certain effective neural network models for this purpose. The novelty of this study is
that a neural network model for a time series monkeypox dataset is developed and compared with
LSTM and GRU models using an adaptive moment estimation (ADAM) optimizer. The Levenberg–
Marquardt (LM) learning technique is used to develop and validate a single hidden layer artificial
neural network (ANN) model. Different ANN model architectures with varying numbers of hidden
layer neurons were trained, and the K-fold cross-validation early stopping validation approach was
employed to identify the optimum structure with the best generalization potential. In the regression
analysis, our ANN model gives a good R-value of almost 99%, the LSTM model gives almost 98%
and the GRU model gives almost 98%. These three model fits demonstrated that there was a good
agreement between the experimental data and the forecasted values. The results of our experiments
show that the ANN model performs better than the other methods on the collected monkeypox
dataset in all five countries. To the best of the authors’ knowledge, this is the first report that has used
ANN, LSTM and GRU to predict a monkeypox outbreak in all five countries.

Keywords: Hessian matrix; Levenberg–Marquardt model; K-fold cross-validation; regression
analysis; machine learning; COVID-19; sigmoid function

1. Introduction

Almost all countries in the world were impacted by the COVID-19 pandemic that
started in December 2019 in Wuhan, China. The onset of monkeypox in 2022, as reported
by several nations, is another concern worldwide. The infectious condition known as mon-
keypox is brought on by the Zoonotic Ortho-poxvirus, a member of the Poxviridae family
and the genus Ortho-poxvirus. It is closely linked to both cowpox and smallpox [1,2]. It is
primarily transmitted by monkeys and rodents, although human-to-human transmission is
also very common [3,4]. In a Copenhagen, Denmark lab in 1958, the virus was found for
the first time in a monkey’s body [5,6]. During a stepped-up drive to eliminate smallpox
in 1970, the Democratic Republic of the Congo observed the first instance of monkeypox
in a person [7,8]. Monkeypox often affects a large number of people who live close to
tropical rainforests in central and western Africa. When a person comes into intimate touch
with another infected individual, animal or object, the virus itself spreads. Direct bodily
contact, animal bites, respiratory droplets or mucus from the eyes, nose or mouth can all
spread the disease [9–11]. Fever, bodily pains and exhaustion are a few of the warning
symptoms of a monkeypox infection in patients, with a red bump on the skin being the
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long-term result [12,13]. Although COVID-19 has been found to be more contagious than
monkeypox so far, the number of cases is still increasing. Only 50 cases of monkeypox
were reported in West and Central Africa in 1990 [14,15]. However, in 2020, there were
5000 instances. In the past, monkeypox was thought to exist solely in Africa, but, in 2022,
numerous additional non-African nations in Europe and the United States reported finding
cases of the virus [16,17]. As a result, people are gradually becoming more and more
anxious and afraid, which is frequently reflected in people’s opinions on social media.

The first monkeypox outbreak was found in the UK on 6 May 2022. At the time of
this writing, there are a total of 52,379 cases globally. The top five nations where it is more
extreme are the USA (19,355 cases), Germany (3480 cases), the UK (3419 cases), France
(3547) and Canada (1286) [18]. Despite the worldwide vaccination efforts, 17 people have
died due to the virus, demonstrating that it is not fatal but is very infectious and evolves
into other sub-variants. If not treated properly and controlled, the world may continue to
see more new instances and deaths.

The Centers for Disease Control and Prevention (CDC) stated that there is currently
no completely effective therapy for the monkeypox virus [19,20]. The CDC approved two
oral medications, Brin-cidofovir and Tecovirimat, which had mostly been used to treat the
smallpox virus but have now been utilized to treat the monkeypox virus in order to meet
the urgent demand [21]. Although vaccinations against the monkeypox virus are available
and have received FDA approval, they have not yet been used on humans in the United
States. The vaccinations for the smallpox virus are used to treat the monkeypox virus in
other nations [20].

Regression techniques using ANN methods are commonly used in order to predict
future patient issues related to a particular disease [22]. Using the aforementioned methods,
several research studies have been carried out to anticipate the range of devastation caused
by diseases such as breast cancer, cardiovascular disease and COVID-19. The primary
objective of this study is to forecast the confirmed cases of monkeypox in real-time. It also
examines the early surveillance and prediction of the monkeypox pandemic [23]. Such real-
time prediction systems could be very helpful for healthcare professionals and government
agencies in guiding early responses for the very successful and timely management of this
diseases. The decisions to control current possibilities can be made using these systems.

The actual number of monkeypox infection data indicates a set of observations that
have been chronologically ordered. Time-series prediction techniques originated in statis-
tics. Machine learning-based techniques, meta-predictors, structure-based techniques and
ANNs also exist for this purpose [14,15]. ANNs are frequently employed for time series
predictions [24]. One of the main benefits of an ANN approach is that it may be fed with
unprocessed data that can automatically identify the necessary representation [25]. The
ANN produces trustworthy outcomes based on a number of variables, including perfor-
mance, accuracy, latency, speed, convergence and size. The USA, Germany, the UK, France
and Canada are five of the nations with the highest number of monkeypox illnesses. No
extensive works have been done on the monkeypox outbreak to the best of our knowledge.

The main contribution of this paper is that we have developed a forecasting model of
the monkeypox time series dataset in the five countries mentioned above by employing
state-of-the-art ANN models such as the LSTM and GRU. This study uses the ANN with
an LM optimizer and the LSTM and GRU uses an ADAM optimizer. It further predicts the
number of monkeypox cases directly resulting from this disease using NNs. These NNs
used the existing datasets that contained all the available data related to the monkeypox
epidemic in countries such as the USA, Germany, the UK, France and Canada.

The comparative study of these five countries will help the healthcare authorities to
prepare for the necessary actions that need to be taken based on our model predictions.
A summary of monkeypox from 6 May 2022 to 24 August 2022 in the USA, Germany, the
UK, France and Canada has been considered.

The rest of the paper is organized as follows. The methods and materials are shown in
Section 2, followed by a description of the ANN, LSTM and GRU structures, along with the
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LM and ADAM optimizers. The results are presented and analyzed in Section 3. We come
to certain conclusions in Section 4.

Related Works

Many researchers, including data scientists, have expended a lot of efforts to forecast
the spread of this disease. By creating prediction models that emphasize the likely behaviors
of this virus, data scientists may significantly advance the knowledge by improving our
ability to forecast how the virus will spread. As a result, ANN models are thought of as
precise tools that may aid in creating prediction models. In fact, several neural networks
(NNs) have been developed in the past [26], as shown in Table 1.

Table 1. Summary of related work.

Study Year Technique Input Output Results

A COVID-19 time series
forecasting model based on

MLP ANN [27]
2021 MLP and ANN Daily confirmed cases Next 20 days More than 90%

Deep learning methods for
forecasting COVID-19

time-series data:
A comparative study [28]

2020 RNN, LSTM, Bi-LSTM
and GRUs algorithms

Daily confirmed and
recovered cases collected
from six countries namely
Italy, Spain, France, China,

USA and Australia.

Forecasting of the number of
new contaminated and

recovered cases

VAE achieved MAPE values of
5.90%, 2.19%, 1.88%, 0.128%,

0.236% and 2.04%, respectively

Artificial Neural Networks for
Prediction of COVID-19 in

Saudi Arabia [24]
2021 ANN and

MLPNN–PPA
Confirmed cases

and deaths

The number of infected
persons will increase in the

coming days

The number of recoveries will
be 2000 to 4000 per day.

Using Artificial Neural
Network with Prey Predator

Algorithm for Prediction of the
COVID-19: the Case of Brazil

and Mexico [29]

2021 ANN, PPA-BMLPNN
and PPA-MMLPNN

Confirmed cases,
recovered cases

and deaths

The number of infected
persons will increase in the

coming days

The average active cases of
COVID-19 in Brazil will go to

9 × 105, with 1.5 × 105

recovered cases per day, and
more than 6 × 105 as the

total deaths.
Application of artificial neural

networks to predict the
COVID-19 outbreak [30]

2020 ANN-LM Daily confirmed cases

The ANN-based model that
takes into account the

previous 14 days
outperforms the other ones

The previous fourteen days for
prediction are suggested to

predict daily confirmed cases.
Predictions for COVID-19 with
deep learning models of LSTM,

GRU and Bi-LSTM [31]
2020 ARIMA, SVR, LSTM

and Bi-LSTM
Daily confirmed cases

and deaths
Prediction of confirmed

cases and deaths

Bi-LSTM generates lowest
MAE and RMSE values of

0.0070 and 0.0077, respectively
Time series prediction for the
epidemic trends of COVID-19

using the improved LSTM
deep learning method: Case
studies in Russia, Peru and

Iran [32].

2020 LSTM Daily confirmed cases Next 30 days
The proposed method can

accurately analyze the trend of
the epidemic.

Artificial neural networks for
prediction of COVID-19 in

India by using
backpropagation [33]

2022 ANN-BP Daily confirmed cases

The ANN-based model that
takes into account the

previous 14 days
outperforms the other ones

The previous fourteen days for
prediction are suggested to

predict daily confirmed cases.

Monkeypox Present
ANN-LM,

LSTM-ADAM,
GRU-ADAM

Daily confirmed cases
The number of infected

persons will increase in the
coming days

ANN-LM model (99%)
perform better than LSTM and

GRU (98%).

2. Methods and Materials
2.1. Artificial Neural Network

The ANN is a simple imitation of the neuron structure of the human brain [34]. Basic
scalar messages, simple processing components, a high degree of interconnection and
adoptive interaction between the units are the things which make them a type of multi-
processor computer system [35]. Actually, the ANN provides a reasonably quick and
flexible way of modelling, so it is appropriate for a rainfall-runoff prediction [36]. Layers of
neurons make up an ANN. One or more hidden layers of neurons connect the input layer of
neurons to the output layer of neurons. The interconnecting link between the neuron layers
is made up of connection weights. This method changes its weights throughout the training
phase to reduce the errors between the projected result and the actual output using the Back
Propagation algorithm [37]. To get the best topology and weights, an ANN is trained using
experimental data (called training data) and then evaluated with more experimental data
(test-data). The accuracy of the model is checked using validation data. Bias refers to the
weight that is provided directly to one neuron without being coupled to the prior neuron
in specific circumstances. The most common type of ANN is the multilayer perceptron
(MLP). It also has one or more hidden layers in the feed forward neural network.
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A data structure that may operate like a neuron is constructed in ANNs with the use of
programming skills. A node is a kind of data structure [38,39]. The network connecting these
nodes is trained in this structure using a standard training technique like gradient descend.
The nodes have two active states (on or off) and one inactive state (off or 0) in this memory or
neural network, and each edge (synapse or link between nodes) has a weight. Negative
weights inactivate or inhibit the following linked node (if active), whereas positive weights
stimulate or activate the next inactive node [40–43]. The input dp reaches the neuron c from
the preceding neuron p in the ANN architecture. Tc is the total of the products of the inputs
and their weights from Equation (1) [44], and wpc is the weight of the input dp with regard
to cell c.

Tc = ∑ wpcdp (1)

The sigmoid function was chosen as the activation function and is applied to Tc. As
a result, Equation (2) [44] is used to compute dc:

dc = sigmoidc (Tc) (2)

Likewise, the weights of the dcn are wcn, which is the output of c to n, which are
computed. In a set, W is the sum of all the weights of the neural network, and kw(x) is the
neural network’s output for input x and output y. The key purpose is to figure out these
weights so that the error values between y and kw (x) are reduced. That is, the aim is to
reduce the cost function E(W) (Equation (3)) to the smallest possible value [44]:

E(w) =
1
2

n

∑
i=1

(yi − oi)
2

(3)

In this study, the ANN with LM optimizer [38], one of the most commonly used
varieties of ANN, was utilized to forecast the epidemic. ANN was trained on a dataset
using the LM algorithm. The optimum response was achieved by training the network with
selected inner neurons. To minimize the cost function value, the results were calculated
using the RMSE and correlation coefficient. The ANNs architecture is shown in Figure 1.
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2.2. Levenberg–Marquardt Algorithm (LM)

The LM approach applies another approximation to the Hessian matrix in order to
ensure that the estimated Hessian matrix JTJ is invertible [45].

H ≈ JT J + µ I (4)

Here, µ is called the combination coefficient and is always positive and I is the
identity matrix.

The components on the basic diagonal of the estimated Hessian matrix will be bigger
than zero, as shown in Equation (5). As a result of this approximation (Equation (5)), the
invertibility of matrix H can be guaranteed [46].

The update rule of the LM algorithm could be represented by merging
Equations (4) and (5) as follows.

Vk+1 = vk −
(

JT
k Jk + µI

)−1
Jkek (5)

Here, the weight vector is V and the error vector is ek.
The LM algorithm shifts between the two techniques throughout the training phase, us-

ing a mix of the steepest descent algorithm and the Gauss–Newton algorithm. Equation (5)
is the Gauss–Newton procedure, which is utilized when the combination coefficient is
very tiny [47] (almost 0). Equation (5) approximates Equation (4), and the steepest descent
approach is applied when the combination coefficient is extremely big. We explain the
stepwise procedure of the LM algorithm in Figure 2.
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2.3. Long Short-Term Memory (LSTM)

The LSTM networks are made up of different gates that store information about the
prior state. These data are either written, saved or retrieved from a cell that functions as
a memory. When the cell reads, writes and erases using the gates that open and close, it
determines whether to save the incoming information. They act depending on the signals
they receive, blocking or passing on information according to its strength and import
by filtering with their own weights. These weights are similar to those used to regulate
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the input and hidden states via the network’s training process [48]. This study proposes
a LSTM network with an input layer, a hidden layer and an output layer. Figure 3 depicts
an LSTM model with an input gate it, output gate ot, forget gate ft and cell state, ct.
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Memory blocks, which were designed to deal with disappearing gradients by remem-
bering network parameters for long periods of time, are the most basic components of
LSTM networks. Memory blocks in the LSTM architecture are analogous to digital systems’
differential storage structures [49]. The activation functions (sigmoid and tansig) used by
the gates in LSTM aids in the processing of information, and the output is either 0 or 1.
Because we need to transfer only positive values to the following gates in order to produce
a clear output, we employ sigmoid and tansig as activation functions [50]. The following
Equations (6)–(11) represent the three gates of the LSTM network:

ft = σ
(

xtW f + ht−1u f + b f

)
(6)

it = σ(xtWi + ht−1ui + bi) (7)

ot = σ(xtWo + ht−1uo + bo) (8)

Ct = tanh(xtWC + ht−1uC + bC) (9)

Ct = σ
(

ft + Ct−1 + it + Ct
)

(10)

ht = tanh(Ct) × ot (11)

Matrices Wq and uq contain the weights of the input and recurrent connections, where
the index can be the input gate i, output gate o, the forgetting gate f or the memory cell
c, depending on the activation being calculated. Ct is not just a cell of an LSTM unit, but
contains h cells of the LSTM units, while it, ot and ft represent the activations of, respectively,
the input, output and forget gates, at time step t, where:

it = input gate function;
ft = forget gate function;
ot = output gate function;
ht = hidden state function, also known as the output gate of the LSTM unit;
Ct = cell input activation state;
Ct = cell state vector;
ht−1 = the result from the prior time step;

where W, u and b are the weight matrices and bias vector parameters which need to be
learned during the training.
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2.4. Gated Recurrent Unit (GRU)

The GRU is one of the variants of the RNN which was introduced by Cho et al. [28].
The update gate and resets gate are the two gates that the GRU utilizes. These gates employ
activation functions similarly to the LSTM. The information from earlier time steps is
added to the input data for time step t before being delivered to the update gate. This gate
determines how much of this data flow needs to be sent on to the future and functions
similarly to how the input gate and forget gate combine in the LSTM network. The reset
gate determines how much of the previously computed state should be forgotten and stores
the necessary data. The update gate determines what to collect from the previous steps
and the current memory content to calculate the output of the current unit [49,51].

Figure 4 shows the internal architecture of a GRU unit cell. The mathematical
Equations (12)–(15) are used to calculate these respective gates:

zt = σ(xtWz + ht−1uz + bz) (12)

rt = σ(xtWr + ht−1ur + br) (13)

ht = tanh(rt × ht−1u + xtW + b) (14)

ht = (1− zt)× ht + zt × ht−1 (15)

where Wz, Wr and W denote the weight matrices for the corresponding connected input
vector. uz, ur and u represent the weight matrices of the previous time step and br, bz and
b are the bias. The σ denotes the logistic sigmoid function, rt denotes the reset gate, zt
denotes the update gate and ht denotes the candidate hidden layer.
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Deep learning networks are very sensitive to hyperparameters. The forecasted output
will oscillate at high frequencies when the hyperparameters are wrongly configured [52].
The number of hidden neurons in the recurrent layers, the number of dropouts and the
value of the learning rate are essential hyperparameters for GRU network models.

2.5. Adaptive Moment Estimation Optimization (ADAM)

Classification can be difficult when dealing with problems relating to the learning
process. Several approaches have been proposed to help us arrive at an optimal learning
level. The ADAM optimization algorithm is a deep learning extension of the stochastic
gradient descent algorithm, which has recently been used in a variety of applications on
the Internet of Things (IoT), text detection and so on [53].
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ADAM is a famous optimizer that combines a gradient descent with momentum and
the RMSprop optimizer [54]. The weights are updated using:

θt = θt−1 −
(

α/
√

v′t + ε

)
×m′t (16)

where v′t and m′t are the bias correction for the first and second moments, respectively:

m′t = mt/
(
1− βt

1
)

(17)

v′t = vt/
(
1− βt

2
)

(18)

mt = β1mt−1 + (1− β1)× gt (19)

vt = β2vt−1 + (1− β2)× g2
t (20)

In Equation (19), mt is the first moment that represents the running average of the
gradients, whereas in Equation (20), vt is the second moment that represents the running
average of the squared gradients.

2.6. Network Modelling Process

The NN modelling procedure was carried out in two stages, including training and
testing. The data must fall inside a narrow range to hasten the model convergence and
improve the forecast accuracy. The study’s input data were either in the tens of thousands
or single digits. As a result, the min–max approach (Equation (21)), which requires that all
input data points fall inside the range [0,1], was used using the following transformation.

Xi,j =
Xi − Xi,min

Xi,max − Xi,min
(21)

When “xi, j” refers to “xi”, the actual value of the input variable ‘i’ is normalized. The
minimum and maximum values of the input variable ‘i’ are, respectively, “xi, min” and

“xi, max”. Similar to this, Equation (21) was used to normalize the target values so that they
would fall inside the [0,1] operating range of the activation function.

The complete dataset was divided into two separate subsets after the data normaliza-
tion. The workflow of the research methodology is shown in Figure 5.
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(1) Training dataset: in order to reduce the error function, the model’s synaptic weights
were adjusted to correspond to the perfect number of hidden layer neurons. The
cross-validation method was used to further split the training dataset into “K” subsets
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in order to find the ideal number of iterations (or “epochs”) before the model training
should be terminated.

(2) Testing dataset: following the training phase, it was used to evaluate the model’s
accuracy and forecasting capability.

2.7. Data Preparation

This study used daily confirmed cases data from the USA, Germany, the UK, France
and Canada that are available from the “Global. Health” team website. First off, the
researchers used data from 6 May 2022—the first case reported—to 31 August 2022 [55]. It
was 2.5 MB in size and included 100 records, which is shown in Table 2. The following split
of the data for that time period was utilized to discover the right parameters for the models:
80% for training and 20% for testing. Testing was the next stage after training. Figure 6
presents the trend of the daily confirmed cases of monkeypox for the five nations, which
include the aforementioned countries.

Table 2. Data description.

Country Data Description Country-Code WHO Region

United States 18 May 2022 to 24 August 2022 USA Region of the Americas (AMR)
Germany 19 May 2022 to 24 August 2022 DE European of Region (EUR)

United Kingdom 6 May 2022 to 24 August 2022 UK European of Region (EUR)
France 19 May 2022 to 24 August 2022 FR European of Region (EUR)

Canada 19 May 2022 to 24 August 2022 CA Region of the Americas (AMR)
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2.8. Netwok Model Evaluation

NN model training is an iterative procedure through which the model learns the
input–output behavior. The LM learning method (Equations (4) and (5)) was utilized
during the training stage. Two statistical indices were used to evaluate the performance
of the model: the coefficient of determination (R2), which is a measure of the model’s
goodness-of-fit, and the root mean squared error (RMSE), which represents the square root
of the average squared differences between the target value and the model output value.
These two statistical indices are defined by Equations (22) and (23), respectively. The better
the model fits the data, the R2 is nearer to unity and the RMSE value is lower (nearer to
zero). In other words, when R2 equals 1.0 and RMSE equals 0, the model completely fits
the data.
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R2 = 1−

n
∑

i=1

(
Yi

ˆ−Yi
)2

n
∑

i=1

(
Yi −Yi

)2
(22)

RMSE =

√√√√ n

∑
i=1

(Yi
ˆ−Yi)

2

n
(23)

where Yˆ represents the predicted values and Y represents the actual values, and Y repre-
sents the mean of the all the values and n denotes the number of values.

2.9. K-Fold Cross-Validation

The issue of when to end the training stage of an ANN model is a major conun-
drum since an overtrained model may perform poorly on an unknown dataset because
it has learned the noise instead of the signals. One of the most popular techniques to
prevent the model from overtraining is the stop-training criteria based on the k-fold
cross-validation [56,57]. The k-fold cross-validation begins with the data being divided into
K groups at random, after which the subsequent processes are carried out for each group.

(1) Each fold in the “K” disjoint fold partition of the training dataset has the same number
of samples.

(2) In each of the “K” iterations, the model has trained on the first (K-1) folds.
(3) The trained model is subsequently assessed on the final fold (also known as the

validation fold) in order to calculate its RMSE.
(4) The number of epochs versus the average RMSE is displayed on the validation folds.

The averaged RMSE typically falls during the early training phase and continues to
rise after the network starts over-fitting the data. The RMSE should cease declining while
the number of epochs rises, so that the training phase can be terminated.

2.10. Network Model Testing

After the model training stage was finished, the trained model was evaluated against
the test dataset (which was hidden throughout the training phase) to determine the model’s
capacity for prediction. It should be noted that the output values are anti-normalized to
their true values once the model training and testing phases are finished.

3. Results and Discussion

We analyzed the prediction performance of the three neural network models (ANN,
LSTM and GRU) on data from five countries, namely the USA, Germany, the UK, France
and Canada. The model performances are trained on data from 6 May to 9 August 2022
and evaluated using the test data from 10 August to 31 August 2021. The prediction
performance of the models on the test data for all the models is shown in Figure 7.

Before beginning the hybrid modelling process, firstly a perceptron ANN with a single
hidden layer and two hidden layers are developed [58,59]. For a sophisticated nonlinear
issue, one or two hidden layers will be sufficient to train the ANN [60,61]. In addition, the
Levenberg–Marquardt (LM) algorithm is used for the network training. The LM method
has been shown to be one of the best and most flexible training algorithms, and as it
avoids computing the Hessian Matrix, it could be viewed as the fastest backpropagation
technique [15,58,62]. The standard approach described in the literature [63,64] is used to
figure out the appropriate number of hidden neurons. In this regard, 1 to 24 ANN models
(that means different hidden layers) are developed as shown in Table 3. Each model is
categorized according to R2 and the RMSE as a result of choosing the best option. A higher
number is preferred for R2. As a result, under this ranking method, the model with the
highest R2 obtains the highest score (i.e., the maximum score is 24). On the other hand,
a smaller RMSE number will be suitable. Therefore, the model with the lowest RMSE
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value receives the highest ranking. Moreover, for each model, the overall rank is calculated
by adding the two statistics for the training, validation and test stages, independently.
Accordingly, in Table 3 the overall ranks attributable to the simulated models are calculated.
As can be regarded, model no. 20 with 20 neurons has acquired the maximum total score.
It can be claimed that the R2 (RMSE) in this model reaches its maximum (minimum) in the
training stage. From this point on, the R2 will decrease as the number of neurons increases.
Subsequently, based on the overall score, this model is picked as the optimal simulation.
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In Table 3, we have developed the ANN with a single hidden layer. Based on the
highest score, the best architecture of the neural network has been decided for the USA
dataset. As per Table 3, we have developed the ANN with two hidden layers (in Table 4) and
the models are presented based on the top five highest score. As a result, in Tables 3 and 4,
the best architecture of the neural network has been decided for the USA dataset. For
Germany, the UK, France and Canada, we present the top five highest score models in
Tables 5–8, respectively.

Tables 3–8 were compared, and we found that single hidden layers performed better
than two hidden layers. Therefore, based on the ranking and overall score, the perfect ANN
structure was determined for each country using ANN-LM models, i.e., for the USA 5-20-1
(5 neurons in the input layer, 20 neurons in the Hidden layer and 1 neuron in the output
layer), for Germany (5-24-1), for the UK (5-18-1), for France (5-5-1) and for Canada (5-16-1).

After acquiring the ANN model’s ideal structure for all the countries’, i.e., 5-20-1
(the USA), 5-24-1 (Germany), 5-18-1 (the UK), 5-5-1 (France) and 5-16-1 (Canada) topol-
ogy, it was then determined whether the model had been successfully trained or whether
an undertraining or overtraining had taken place. A poor training performance is caused
by undertraining, and the generalizability of the model might sometimes suffer from over-
training. In other words, the number of epochs at which the training phase is interrupted
affects the model’s performance and capacity to generalize. A five-fold cross-validation
procedure was used on the training dataset to determine when it is optimal to cease the
ANN model’s training. The training MSE curve and the validation MSE curve, both calcu-
lated by the five-fold cross-validation, are shown in Figure 7a as functions of the number of
training iterations.
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Table 3. Selecting the optimal ANN model with respect to single hidden layer and neurons for the USA dataset.

Items Neurons
No. of

Hidden Layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 1 1 0.99944 0.00664 0.995686 0.019571 0.850461 0.12549 6 6 12 11 14 16 65
2 2 1 0.99959 0.00571 0.996186 0.018451 0.853831 0.124226 8 7 16 15 23 20 89
3 3 1 0.99875 0.00993 0.996379 0.017769 0.84821 0.125533 3 3 21 20 7 14 68
4 4 1 0.99976 0.00429 0.996808 0.016497 0.849201 0.123598 17 17 24 24 10 21 113
5 5 1 0.99958 0.00570 0.996302 0.018165 0.851358 0.125562 7 8 18 19 17 13 82
6 6 1 0.99966 0.00519 0.99552 0.019826 0.850677 0.124633 11 11 7 8 15 18 70
7 7 1 0.99843 0.01092 0.996327 0.01819 0.856681 0.123359 2 2 19 18 24 24 89
8 8 1 0.99964 0.00529 0.995946 0.018947 0.852853 0.124228 10 10 13 14 20 19 86
9 9 1 0.99960 0.00558 0.996128 0.01833 0.847895 0.125273 9 9 15 17 6 17 73

10 10 1 0.99979 0.00407 0.995653 0.019472 0.847847 0.125773 18 18 11 12 5 11 75
11 11 1 0.99987 0.00317 0.996481 0.01761 0.848805 0.125995 23 23 22 22 9 10 109
12 12 1 0.99935 0.00718 0.995547 0.019842 0.853296 0.12359 4 4 8 7 22 22 67
13 13 1 0.99981 0.00389 0.994944 0.021484 0.84724 0.129037 22 22 6 6 4 6 66
14 14 1 0.99979 0.00403 0.996191 0.018423 0.850882 0.125673 20 20 17 16 16 12 101
15 15 1 0.9993 0.00699 0.995982 0.019144 0.852618 0.126268 5 5 14 13 19 8 64
16 16 1 0.99979 0.00406 0.996796 0.016956 0.850439 0.126403 19 19 23 23 13 7 104
17 17 1 0.99971 0.00474 0.992316 0.027267 0.852996 0.129848 15 15 2 2 21 4 59
18 18 1 0.99972 0.00472 0.995592 0.019731 0.848797 0.126132 16 16 9 9 8 9 67
19 19 1 0.99970 0.00481 0.99563 0.019641 0.849848 0.125492 13 13 10 10 12 15 73
20 20 1 0.99980 0.00394 0.996354 0.01764 0.849419 0.123588 21 21 20 21 11 23 117
21 21 1 0.99987 0.00314 0.993076 0.024351 0.83232 0.131779 24 24 4 4 1 2 59
22 22 1 0.99971 0.00475 0.994395 0.022199 0.841461 0.129095 14 14 5 5 3 5 46
23 23 1 0.99828 0.01138 0.987112 0.035651 0.852588 0.13128 1 1 1 1 18 3 25
24 24 1 0.99967 0.00508 0.99283 0.025737 0.840422 0.133195 12 12 3 3 2 1 33

Table 4. Selecting the optimal ANN model with respect to two hidden layer and neurons for the USA dataset.

Items Neurons
No. of

Hidden Layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 5 2 0.99958 0.0057 0.996302 0.018165 0.851358 0.125562 7 8 18 19 17 13 82
2 11 2 0.99987 0.00317 0.996481 0.01761 0.848805 0.125995 23 23 22 22 9 10 109
3 12 2 0.99935 0.00718 0.995547 0.019842 0.853296 0.12359 4 4 8 7 22 22 67
4 16 2 0.99979 0.00406 0.996796 0.016956 0.850439 0.126403 19 19 23 23 13 7 104
5 19 2 0.9997 0.00481 0.99563 0.019641 0.849848 0.125492 13 13 10 10 12 15 73
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Table 5. Selecting the optimal ANN model with respect to hidden layers and neurons for the Germany dataset.

Items Neurons
No. of

Hidden Layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 7 1 0.99981 0.00506 0.998549 0.012344 0.960484 0.065853 18 18 12 12 16 16 92
2 15 1 0.99972 0.00604 0.998841 0.011029 0.959775 0.066482 9 9 16 17 12 10 73
3 20 1 0.99977 0.00554 0.998526 0.012422 0.961158 0.065168 11 11 11 11 19 19 82
4 22 1 0.99983 0.00476 0.997861 0.014981 0.962513 0.064003 21 21 2 2 22 23 91
5 24 1 0.99993 0.00305 0.999307 0.008547 0.961561 0.06505 24 24 24 24 20 20 136
6 5 2 0.99971 0.00633 0.998842 0.011072 0.960826 0.065823 7 7 17 16 17 17 81
7 10 2 0.99982 0.00487 0.999036 0.010025 0.960202 0.065854 20 20 23 23 15 15 116
8 11 2 0.99979 0.00532 0.99891 0.010686 0.959587 0.066564 16 16 19 19 9 9 88
9 12 2 0.99988 0.00395 0.998736 0.011531 0.962649 0.06398 23 23 14 15 23 24 122

10 21 2 0.99980 0.00509 0.998238 0.013561 0.959688 0.066353 17 17 7 7 11 13 72

Table 6. Selecting the optimal ANN model with respect to hidden layers and neurons for the UK dataset.

Items Neurons
No. of

Hidden layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 4 1 0.99616 0.0174 0.997668 0.011402 0.631966 0.223179 12 12 15 15 13 15 82
2 7 1 0.99613 0.01742 0.998503 0.009161 0.632303 0.222859 10 11 22 22 14 16 95
3 15 1 0.9964 0.01678 0.998149 0.010213 0.634408 0.221676 18 19 20 20 18 20 115
4 18 1 0.99707 0.01515 0.998546 0.00899 0.631227 0.222802 22 23 24 24 12 17 122
5 20 1 0.9971 0.01516 0.996542 0.014373 0.635039 0.227021 23 22 6 4 19 2 76
6 6 2 0.99596 0.01784 0.997928 0.010815 0.629863 0.225646 8 8 18 18 8 4 64
7 9 2 0.99614 0.01742 0.998515 0.009107 0.630533 0.224038 11 10 23 23 11 10 88
8 14 2 0.99647 0.01658 0.997121 0.012745 0.637717 0.218903 20 20 14 13 22 24 113
9 16 2 0.99639 0.01693 0.997793 0.011191 0.635548 0.222772 17 17 16 16 20 18 104

10 22 2 0.99629 0.01723 0.997893 0.011138 0.638272 0.223483 16 13 17 17 24 13 100
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Table 7. Selecting the optimal ANN model with respect to hidden layers and neurons for the France dataset.

Items Neurons
No. of

Hidden layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 3 1 0.99437 0.02372 0.997974 0.016372 0.949289 0.08408 10 8 20 20 20 21 99
2 5 1 0.99479 0.02259 0.998057 0.01597 0.948348 0.084555 15 15 22 22 18 17 109
3 6 1 0.99435 0.02356 0.997897 0.016645 0.946519 0.086316 9 10 16 16 15 14 80
4 14 1 0.99442 0.02325 0.99691 0.019969 0.947747 0.084289 11 11 9 10 16 19 76
5 21 1 0.9952 0.02176 0.993804 0.02864 0.955583 0.078299 18 19 2 2 23 23 87
6 7 2 0.99465 0.02308 0.997937 0.016588 0.949004 0.084624 13 14 17 18 19 16 97
7 9 2 0.99452 0.02319 0.998034 0.016004 0.944522 0.087533 12 12 21 21 12 11 89
8 16 2 0.99525 0.02161 0.996716 0.020902 0.945894 0.087204 19 20 8 7 14 13 81
9 18 2 0.99604 0.01973 0.997475 0.018082 0.942191 0.089217 23 24 14 14 7 8 90

10 20 2 0.996 0.01982 0.997155 0.019208 0.94329 0.08837 22 22 11 11 10 10 86

Table 8. Selecting the optimal ANN model with respect to hidden layers and neurons for the Canada dataset.

Items Neurons
No. of

Hidden Layers
Train Validation Test Train-Rank Validation-Rank Test-Rank Overall

ScoreR2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 2 1 0.99754 0.01453 0.999267 0.010368 0.923376 0.110758 9 9 18 18 23 23 100
2 6 1 0.99743 0.01477 0.99944 0.009105 0.920556 0.113625 4 4 24 24 12 9 77
3 10 1 0.99756 0.01446 0.999316 0.010048 0.923644 0.110944 10 11 20 20 24 22 107
4 16 1 0.99818 0.01248 0.999352 0.009834 0.921499 0.113232 19 19 23 23 19 13 116
5 24 1 0.99844 0.01156 0.998198 0.016301 0.92087 0.112905 23 23 2 2 16 16 82
6 7 2 0.9976 0.01435 0.99933 0.009967 0.920149 0.113964 12 13 22 22 9 8 86
7 8 2 0.99781 0.0137 0.99915 0.011158 0.920551 0.112932 14 14 14 14 11 15 82
8 20 2 0.99789 0.01341 0.99915 0.011127 0.920659 0.112564 17 17 15 15 14 18 96
9 21 2 0.9984 0.01172 0.998421 0.015152 0.922865 0.110642 22 22 3 3 21 24 95

10 23 2 0.99848 0.01228 0.999123 0.011263 0.922201 0.110967 24 20 13 13 20 21 111
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3.1. Observing the Monkeypox Outbreak Using the ANN-LM Models in the Five Countries

The training performance of an ANN with an LM optimizer is shown in Figure 7a for
all five countries. It is clear that at iteration four, the MSE drops drastically to its lowest
level, after which the error essentially stays the same. With the best achievement being
0.00001 at iteration 14, the training continues until iteration 50. It is demonstrated that
while the adjustment procedure is extremely slow, the LM optimizer always converges
extremely quickly by observing all the training processes of an ANN with LM.

Regression plots are used to validate the network’s performance, that show the net-
work’s output in terms of targets for training, validation, testing and overall datasets. The
entire validation dataset is used by the ANN for training as well. Generally, in a regression
plot, if the R-value is nearly 1, that means that the model is perfect (Figure 8a). As the
R-value is 0.999 or above in each country, we can see that the fit is quite good (R-value)
for the USA, Germany, the UK, France and Canada (0.99915, 0.99978, 0.99793, 0.99778 and
0.99917). Only the ANN-LM algorithm gives the best R-value of almost 0.99999 on the
monkeypox outbreak.
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The error histogram is the histogram of the errors between the target values and
predicted values after training a neural network. These can be negative as these error
values indicate how predicted values differ from the target values. For the ANN-LM model,
Figure 9a shows the training data as blue bars, testing data as red bars and validation data
as green bars. The graphs are created using the error range (maximum negative error to
maximum positive error), which is divided into 20 bins. The histogram makes it possible to
spot outliers, which are data points where the fit is noticeably worse than the majority of
the data. For the USA, Germany, the UK, France and Canada, Figure 9a shows that more
errors in this instance are between −0.00111 and 0.00111, −0.0012 and 0.0012, −0.00383
and 0.00383, −0.0006 and 0.0006 and −0.00112 and 0.00112, respectively. However, there
is one learning point (zero line) with 0.003851, 0.001147, 0.000899, 0.008544 and 0.00274
errors, respectively. In this case, we can see that the ANN-LM method gives better results
on a monkeypox outbreak.

In Figure 10a, the predicted and actual monkeypox incidence time trends are compared
for the model’s performance and accuracy. Plots that compared the observed (target) values
to the model-calculated (output) values against time allowed us to observe how the network,
outputs and targets responded to the inputs. Additionally, displayed are the errors that
were discovered during the process. The ANN-LM model is capable of representing and
simulating the desired output, and it provides a good representation of the overall trend of
a monkeypox incidence. In addition, the majority of the estimation errors with respect to
the time were between −0.02 and 0.02 for all five countries. The results indicate that our
model selection was reasonably good.
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3.2. Observing the Monkeypox Outbreak Using the LSTM-ADAM Models in the Five Countries

The training performance of an LSTM with an ADAM optimizer is shown in Figure 7b
for all five countries in same figure. It is clear that at iteration 10, the MSE drops dramatically
to its lowest level, after which the error essentially stays the same. With the best achieve-
ment being 0.1 at iteration 20, training continues until Iteration 50. It is demonstrated that
while the adjustment procedure is extremely slow, the ADAM optimizer always converges
extremely quickly by observing all the training processes of an LSTM with ADAM.

As the R-values are (0.99889, 0.99965, 0.99651, 0.99767 and 0.99895), we can see that
the fit is quite good (Figure 8b) for all five countries. The LSTM-ADAM model gives the
better R-value of almost 0.9888 on the monkeypox outbreak.

For the five countries, Figure 9b shows that more errors are between −0.00377 and
0.00377, −0.00073 and 0.00073, −0.00199 and 0.00199, −0.00675 and 0.00675 and −0.00324
and 0.00324, respectively. However, there is one learning point (zero line) with a 0.002506,
0.002086, 0.003127, 0.002399 and 0.000954 error, respectively. In this case, we can see that
the LSTM-ADAM method provides better results on a monkeypox outbreak.

In Figure 10b, the predicted and actual monkeypox incidence time trends are com-
pared for the model’s performance and accuracy. The LSTM-ADAM model is capable of
representing and simulating the desired output, and it provides a good representation of
the overall trend of a monkeypox incidence. In addition, the majority of the estimation
errors with respect to time were between −0.05 and 0.05 for all five countries. We conclude
that our model selection was reasonable.

3.3. Observing the Monkeypox Outbreak Using the GRU-ADAM Models in the Five Countries

The training performance of GRU with an ADAM optimizer is shown in Figure 7c for
all five countries. It is clear that at iteration 15, the MSE drops dramatically to its lowest
level, after which the error essentially stays the same. With the best achievement being
0.1 at iteration 25, training continues until iteration 50. It is demonstrated that while the
adjustment procedure is extremely slow, the ADAM optimizer always converges extremely
quickly by observing all the training processes of GRU with ADAM.

As the R-values are (0.99846, 0.99967, 0.99352, 0.99755 and 0.99904), we can see that
the fit is quite good (Figure 8c) for all five countries. The GRU-ADAM model gives the
better R-value of almost 0.9888 on the monkeypox outbreak.

For the GRU-ADAM model, Figure 9c shows that more errors in this instance are
between −0.0019 and 0.0019, −0.00175 and 0.00175, −0.0041 and 0.0041, −0.00588 and
0.00588 and −0.00106 and 0.00106, respectively. However, there is one learning point (zero
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line) with a 0.005381, 0.00077, 0.001159, 0.003276 and 0.003471 error, respectively. In this case,
we can see that the GRU-ADAM method provides better results on a monkeypox outbreak.

In Figure 10c, the predicted and actual monkeypox incidence time trends are com-
pared for the model’s performance and accuracy. The GRU-ADAM model is capable of
representing and simulating the desired output, and it provides a good representation of
the overall trend of a monkeypox incidence. In addition, the majority of the estimation
errors with respect to the time were between −0.05 and 0.05 for all five countries. We
conclude that our model selection was reasonable as a result.

4. Conclusions

The monkeypox epidemic has significantly impacted the lives of many people in
several nations. This epidemic is becoming worse in certain places. There is currently no
treatment for this infection, and there is little chance of accurately forecasting how severe it
could be. So, in order to forecast this disease, we designed a neural network model using
a time series monkeypox dataset and compared it with the LSTM and GRU models. We
used the time series datasets, gathered from the five nations (the USA, Germany, the UK,
France and Canada) impacted mostly by monkeypox. The LM learning technique was
used to develop and validate a single hidden layer ANN model. Different ANN model
architectures with varying numbers of hidden layer neurons were trained, and the K-fold
cross-validation early stopping validation approach was employed to identify the optimum
structure with the best generalization potential. In the regression analysis, the ANN-LM
model gives a good R-value of almost 99%, the LSTM model gives almost 98% and the
GRU model gives almost 98%. These three model fittings demonstrated that there was
a good agreement between the experimental data and the forecasted values. The results of
our experiments show that the ANN model performed better than the other methods on
the collected monkeypox dataset in all five countries.
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