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Abstract: The geographic boundaries of arboviruses continue to expand, posing a major health threat
to millions of people around the world. This expansion is related to the availability of effective
vectors and suitable habitats. Armigeres subalbatus (Coquillett, 1898), a common and neglected
species, is of increasing interest given its potential vector capacity for Zika virus. However, potential
distribution patterns and the underlying driving factors of Ar. subalbatus remain unknown. In the
current study, detailed maps of their potential distributions were developed under both the current
as well as future climate change scenarios (SSP126 and SSP585) based on CMIP6 data, employing the
MaxEnt model. The results showed that the distribution of the Ar. subalbatus was mainly affected
by temperature. Mean diurnal range was the strongest predictor in shaping the distribution of
Ar. subalbatus, with an 85.2% contribution rate. By the 2050s and 2070s, Ar. subalbatus will have a
broader potential distribution across China. There are two suitable expansion types under climate
change in the 2050s and 2070s. The first type is continuous distribution expansion, and the second
type is sporadic distribution expansion. Our comprehensive analysis of Ar. subalbatus’s suitable
distribution areas shifts under climate change and provides useful and insightful information for
developing management strategies for future arboviruses.

Keywords: Maxent; future potential distribution; Armigeres subalbatus; arboviruses vector; climate change

1. Introduction

Mosquitoes are a major public health concern, because a number of their species can
play a pivotal role in the transmission of a variety of pathogens. The wide geographical
distribution and dispersal dynamics of mosquitoes partly shapes the entomological risk of
vector-borne disease transmission internationally [1,2]. Climate changes can significantly
influence the distribution and dispersal of mosquitoes [3,4]. Due to climate change, many
species of mosquito have successfully expanded and established populations in many
parts of the world due to their strong ability to colonize different microhabitats [5]. In fact,
climate change is increasing the introduction of mosquitoes to occupy the suitable areas
where they were previously absent [6]. Therefore, the change in mosquito distribution
dynamics under the influence of climate change will bring new challenges to controlling
the transmission of mosquito-borne diseases.
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Current knowledge suggests that climate change and mosquito-borne diseases have
a well-studied relationship [7]. As the climate changes, more areas may become suitable
habitats for vectors in the future [8], and mosquito vectors will introduce diseases to
people living in non-endemic or low-transmission areas [9]. Therefore, mosquitoes and the
arboviruses they transmit will increase dramatically [10-13]. This brings huge challenges
to the monitoring and early warning of the emergence and spread of arboviruses.

Zika virus (ZIKV) is a pathogen primarily transmitted by the bite of an infected female
mosquito from the Aedes genus that poses a serious threat to global health in tropical
and subtropical regions [14,15]. Previous experimental infection and transmission studies
have proved that Ae. aegypti and Ae. albopictus are potential vectors of ZIKV [16-20].
Some research has shown that ZIKV may be transmitted by more than one vector [15,21].
The public health community now recognizes the potential threat posed by these two
widespread invasive species (Ae. aegypti and Ae. albopictus) [22]. However, continued focus
on a few important mosquito species as a major threat ignores other potential vectors in the
expansion of arboviruses’ (arthropod-borne viruses) transmission, which could increase
the risk of vector-borne disease outbreaks.

Armigeres subalbatus (Coquillett, 1898) has been confirmed as a new potential trans-
mission vector of ZIKV recently [18,23-25]. These studies confirm that some important
potential vectors may have remained unexamined and long-neglected. Ar. subalbatus
is a common mosquito species in China [26] that has the potential to transmit several
pathogens (such as filariasis and Japanese encephalitis virus) [27,28]. However, there has
been no systematic research on Ar. subalbatus, resulting in many vacancies in its important
ecological characteristic data (such as distribution data) that can be used to evaluate public
health security. A few studies have proven that most of the neglected vectors are spreading
geographically, creating a significant threat of mosquito-borne virus transmission [4,22].
Therefore, before formulating specific prevention and control strategies, future distribution
forecasts based on current mosquito distribution data to assess their transmission risk are
becoming particularly important and urgent.

In China, Ar. subalbatus is found primarily in the south of the Yangtze River [26].
However, the specific distribution data has not been obtained and studied. Moreover, the
potential range of Ar. subalbatus has not yet been investigated, and it is uncertain how
climate variables may affect its distribution pattern. This knowledge is crucial for the
prevention and management of this significant pest [29]. Recently, species distribution
modeling (SDM) was introduced to describe the ecological needs of a given species using
environmental factors associated with occurrence data [30-34]. Further, SDM has been
intensively used as the best tool with which to assess, quantify, and visualize the potential
impacts of climate change on mosquitoes” geographic expansion [35]. Many previous stud-
ies have shown the importance of modeling the distribution of vectors for risk assessments
of vector-borne diseases [36-38]. The results of these studies can be used to guide the
implementation of controlling programs for vector-borne diseases.

Knowing the current distribution of Ar. subalbatus and its possible shift in response
to climate changes in the future is essential for comprehensive public health planning.
Hence, we generated prediction models of Ar. Subalbatus’ potential distribution in China
under both present-day and future climate conditions (the 2050s and 2070s) using species
distribution modeling.

2. Materials and Methods
2.1. Species Occurrence Data

Ar. subalbatus is a common mosquito species in the integrated regions between rural and
urban areas of Asian countries [39]. The occurrence records of Ar. subalbatus were obtained
from three frequently used sources: (1) published literature searched in Web of Science
(https:/ /www.webofscience.com/wos/alldb/basic-search, accessed on 1 August 2022) and
CNKI (the Chinese National Knowledge Infrastructure, https:/ /www.cnki.net/, accessed on
3 August 2022); (2) databases, including the GBIF (Global Biodiversity Information Facility,
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http:/ /www.gbif.org, accessed on 3 August 2022) databases; and (3) field surveys during
2019 and 2021 in several provinces of China (including Shaanxi, Henan, and Guangdong).
Initially, we received 531 presence records with exact coordinates (Figure 1).
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Figure 1. Overview of the observed occurrence records used for predictions. (a) The observed
occurrence records of Ar. subalbatus in China; (b) longitudinal distribution curve of Ar. subalbatus
habitat in China; (c) latitudinal distribution curve of Ar. subalbatus habitat in China.

The occurrence data obtained from web databases frequently contains sampling bias
and has heterogeneous sampling intensities [40]. This will increase the over-representation
of specific locations within a research area, resulting in a significant spatial bias in the occur-
rence data obtained [41,42]. Because those spatial relationships often lead to environmental
bias, the difference between occurrence collecting and background sampling may result in
erroneous models [43]. Thus, the function “Trim duplicate occurrences” of the ENMTOOLS
software was then used to clean the occurrence records and reduce the potential spatial
deviation caused by sampling bias [44]. The ENMTools tool can automatically match the
size of the environmental factor grid used for analysis and delete redundant data in the
same grid, thereby mitigating data sampling bias [44]. Afterwards, a data set with one
record that occurred within each grid cell (5 x 5 km) can be obtained for follow-up analysis.

2.2. Environmental Predictor Variables

Two climate data sets were applied to summarize current and future climate con-
ditions as environmental layers and cropped to the geographic area of China with a
5 x 5 km spatial resolution (2.5 arc-minutes). The data sets downloaded from Paleo-
Clim (http://www.paleoclim.org/, accessed on 10 August 2022) for the Anthropocene
v1.2b period (over the period 1979-2013) were regarded as the current environmen-
tal condition layer [45]. The other data sets downloaded from WorldClim version 2.1
(www.worldclim.org, accessed on 10 August 2022) were applied as the future periods’
environmental layers under different climate change scenarios [46]. Both datasets contain
19 bioclimatic variables that reflect monthly temperature and precipitation data obtained
from climate stations across the world.

Predicting the future potential distribution of Ar. subalbatus, six different climate
change scenarios were considered by combining the three global climate models (GCMs)
(BCC-CSM2-MR, CNRM-CM6-1, and MIROC-6) with the two Shared Socio-Economic
Pathways (SSPs) (SSP 126, green; SSP 585, high) [47]. Under each SSP, we used climate
data from two periods (2041-2060, 2050s, and 2060-2080, 2070s) to project future habitat
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distribution changes. All operations were performed in QGIS v3.26.1 (https://www.qgis.
org/en/site/, accessed on 23 July 2022).

Multicollinearity and dimensionality among bioclimatic variables will probably cause
computational artefacts when analyzing species—environment relationships [48,49]. To
reduce the impact of multicollinearity and dimensionality on the accuracy of the model
fit, we process the bioclimatic variables as follows: (1) Due to known spatial distortions,
the modelization excludes the bioclimatic variables Bio8 (mean temperature of the wettest
quarter), Bio9 (mean temperature of the driest quarter), Biol8 (precipitation of the warmest
quarter), and Bio19 (precipitation of the coldest quarter) [50,51]. (2) The multicollinearity
and dimensionality between bioclimatic variables were reduced by performing the person
correlation coefficient (PCC) and principal component analysis (PCA) with the remaining
15 environmental variables, respectively. Referring to the results of the PCA, only one
bioclimatic variable was selected from a set of highly correlated variables (Ir| > 0.8),
which was biologically important for Ar. subalbatus distribution [52]. The “corrplot”
package and “factoextra” package in R were used to perform the PCC and PCA analysis.
(3) The variance inflation factors (VIF) analysis was carried out to remove the highly
correlated environmental variables, since their strong correlation reduced the accuracy of
the model [38,53,54]. It was considered that variables with VIF values (greater than 10) had
a multicollinearity issue [39]. The “USDM” package in R was used to analyze the VIF.

2.3. Species Distribution Modeling

The MaxEnt (maximum entropy algorithm), the most extensively used robust model
for predicting species distribution, was used to predict the Ar. subalbatus potential habitat
distribution under current and future climatic conditions. To improve the performance of
Maxent and avoid overfitting, the ENMeval 0.2.1 R (version 4.1.3) package was employed
to adjust the regularization multiplier (RM) and feature class (FC) parameters [55]. Model
performance was evaluated based on the Akaike information criterion corrected (AICc) for
small sample sizes.

The Maxent version 3.4.1 software [56] was used to develop the species distribution
modeling (SDM) of Ar. subalbatus in different future climate scenarios. The jackknife method
was utilized to determine the contribution of each bioclimatic variable. The distribution
data were randomly divided into two parts: the test set (25% of the distributed data) and
the training set (75% of the distributed data). The maximum number of iterations was set
to 5000, and the maximum number of background points was set to 20,000. The model was
repeated 10 times to obtain the average outputs.

The reliability of the models was evaluated according to four criteria, including values
of AUC (area under the receiver operating characteristic curve) [56], the continuous boyce
index (CBI) [57,58], AUCpypr [59], and the minimum training presence value (ORyrp) [60].
AUC values range from 0 to 1, with larger values indicating better model performance. The
CBI has a range of —1 to 1, signifying inferior performance to a random model [61] and
positive values indicating a good model performance. For models based on presence-only
test data, this index is the most suitable assessment metric [61]. The CBI was implemented
in the ecospat R package [62]. Based on the intuitive notion that overfit models should often
perform well on training data but badly on test data, the metric (AUCpjpp) was developed.
The larger the value of AUCpypr, the more serious the overfitting of the model we built [59].
Additionally, based on the minimum training presence value (ORytp), we estimated the
test point omission rate to determine whether the best model is overfitting. This statistic
ranged from 0 (not overfitted) to 1 (overfitted) and was threshold-dependent [60].

The probability (between 0 and 1) was applied to display the logical output of SDM,
which can be explained as the suitability levels of Ar. subalbatus in the corresponding grid
cell. The threshold of the MTSPS (Maximum Training Sensitivity Plus Specificity) was
selected to define suitable and unsuitable regions of Ar. subalbatus. Based on this, the
habitat suitability was divided into four degrees depending on the threshold value. The
distribution probability less than the threshold value was considered unsuitable. These
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distribution probability values greater than the threshold and less than 1 are considered
suitable, and they are equally divided into three levels (highly suitable areas, moderately
suitable areas, and lowly suitable areas). The grid cells with suitability greater than
0.2368 were defined as potential suitable areas (wherein 0.7456-1 for highly suitable areas,
0.4912-0.7456 for moderately suitable areas, and 0.2368-0.4912 for lowly suitable areas).

2.4. Evaluation of Changes in Potential Suitable Areas

To effectively evaluate the impacts of various periods (2050s and 2070s) and SSPs
(SSP126 and SSP585) on Ar. subalbatus, the means for the outputs of the four GCMs
under the same SSP during the same time periods were computed. Under present and
projected climatic scenarios, the distributions and geographic centroids of Ar. subalbatus
were compared using the software SDMtoolbox [63].

3. Results
3.1. Observed Distributions and Climate Factors Selected

In total, observed occurrence data (531 presence records) were cleaned and yielded
431 unique occurrence records for Ar. subalbatus. Occurrence points for Ar. subalbatus were
available from 26 provinces in China (Figure 1a). The northernmost area of Ar. subalbatus
was close to the Yanshan Mountains. The longitudinal distribution of the Ar. subalbatus
habitat ranged from 91°06'15” N to 121°51’15” N (Figure 1b). The latitudinal distribution
of the Ar. subalbatus habitat ranged from 16°53'45" E to 40°08'45" E (Figure 1c). PCC results
showed a high correlation between bioclimatic variables (Figure 2a). Biol2 was highly
correlated with Bio6, Bio7, Bio9, Biol1, Biol3, and Biol6. Bio5 was also found to be highly
correlated with Biol, Bio8, and Bio10. The distribution of the 431 records was presented
based on the first two main components (PCs), according to the PCA results (Figure 2b).
The first two PCs accounted for 76.7% of the variance. The representative variables in
PC1 were Bio2 and Bioll, and in PC2, they were were Bio5, Bio10, and Biol2 (Table 1).
The results of the PCA and PCC were applied to the VIF as upstream data. Finally, it was
decided to include Bio2, Bio3, Bio5, Biol2, Biol4, and Biol5 in the model based on the
results of the VIE.
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Table 1. Bioclimatic variables used in the model.

Bioclimatic Variable Description Included
Bio01 Annual mean temperature
Bio02 Mean diurnal temperature range Yes
Bio03 Isothermality Yes
Bio04 Temperature seasonality
Bio05 Max temperature of the warmest month Yes
Bio06 Min temperature of the coldest month
Bio07 Annual temperature range
Bio08 Mean temperature of the wettest quarter
Bio09 Mean temperature of the driest quarter
Biol0 Mean temperature of the warmest quarter
Bioll Mean temperature of the coldest quarter
Biol2 Annual precipitation Yes
Biol3 Precipitation of the wettest month
Biol4 Precipitation of the driest month Yes
Biol5 Precipitation seasonality Yes
Biol6 Precipitation of the wettest quarter
Biol7 Precipitation of the driest quarter
Biol8 Precipitation of the warmest quarter
Biol9 Precipitation of the coldest quarter

3.2. Model Performance

Employing the package ENMeval in R, the regularization multiplier and feature combi-
nation were calculated under the selected environmental variables [55]. The optimal FC for
Ar. subalbatus was linear-quadratic (LQ) features, and the optimal RM was 1. Model perfor-
mance was evaluated based on the Akaike information criterion corrected (AICc) for small
sample sizes (AAICc = 0). Our model was acceptable as a sufficient representation of the
Ar. subalbatus habitat’s suitability based on evaluation metrics (AUC = 0.9024 + 0.0085 SD
(Figure 3); mean CBI = 0.9100). Furthermore, the average ORpytp value (0.0153) and the
AUCpgr (0.0005) showed that our models were not overfitted.
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Figure 3. Receiver operating characteristic (ROC) curves and values of the area under the curves

(AUC) of the modelling.
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3.3. Current Distribution of Suitable Habitat

Currently, suitable habitats for Ar. subalbatus are predicted to exist in all provinces
except Qinghai in China (Figure 4). In addition to the most continuous suitable areas, there
were also discontinuous suitable areas scattered in several provinces. Small parts of six
provinces (Inner Mongolia, Liaoning, Jilin, Heilongjiang, Ningxia, and Tibet) were also
considered suitable habitats for Ar. subalbatus. The whole area of suitable habitats is spread
across 3,676,508 km?2, which accounts for about 38.27% of the national territory of China.

80.000°E 90.000°E 100.000°E 110.000°E 120.000°E 130.000°E
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Figure 4. Modeled habitat suitability of Ar. subalbatus under current climate conditions in China.

3.4. Important Bioclimatic Variables

The mean diurnal range (°C) (Bio2, 85.2%) and maximum temperature of the warmest
month (°C) (Bio5, 9.7%) contributed significantly to the model compared to other bioclimatic
variables (Figure 5). Precipitation seasonality (Bio15, 0.1%) was the least important factor.
Isothermality (°C) (Bio3, 1.2%), annual precipitation (mm) (Bio12, 3.5%), and precipitation
of the driest month (mm) (Bio14, 0.2%) were also substantial contributors to the model,
with a cumulative contribution of 4.9% from these three variables (Figure 5).

Jackknife of test gain for Ar.subalbatus

Bio2 [ | ] with only variable u

Bio3 4 with all variable =
without variable =

Bio5
Biol2r

|
I

Biol4r I .
I
-

Environmental variable

Biol5r

00 01 02 03 04 05 06 07 08 09 10 1.1 12 13
test gain

Figure 5. The key bioclimatic variables affecting the distribution of Ar. subalbatus. Bio 2: Mean
diurnal temperature range (°C); maximum temperature of warmest month (°C) (Bio5, 9.7%); Bio15:
precipitation seasonality; isothermality (°C) (Bio3, 1.2%), annual precipitation (mm) (Bio12, 3.5%),
and precipitation of driest month (mm) (Bio14, 0.2%).
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The impact of bioclimatic variables on the probability of Ar. subalbatus occurrence is
shown in Figure 6. The optimal range of Bio2 occurred between 3.867 °C and 18.306 °C. If
Bio3 < 17.972 °C, the probability of presence decreased with the increase in the temperature.
The impact of Bio5\Bio12\Bio14 on Ar. subalbatus increased at first and then showed a
decreasing trend. The optimum range of Biol5 occurred at 18.271 mm-163.191 mm.
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Figure 6. Response curves for representative variables. The vertical axis represents the probabil-
ity of presence for Ar. subalbatus, and the horizontal axis represents the variation range of the
corresponding variable.

3.5. Potential Suitable Areas for Ar. subalbatus under Future Climate Scenarios

Under future climatic scenarios, the potential suitable areas of Ar. subalbatus were
predicted to expand (Figure 7). Under the condition of SSP126, the potential suitable
areas of the moderately and highly suitable areas will increase with the change in the
time interval, and the area of the low-grade suitable area will decrease. Under the SSP585
condition, potential suitable areas changed in the other way. Low-grade suitable areas
expanded dramatically, whereas suitable areas with intermediate and low levels shrank.

The binary distribution model explains the variation in suitable habitats well
(Figure 8). The region of suitable habitats will significantly expand towards the northwest
from the current suitable areas. Nevertheless, Ar. subalbatus will still mostly exist in the
south of the Yanshan Mountains. Under SSP126 and SSP585 conductions, future suitable
habitats” expansion of Ar. subalbatus will take place in several provinces (Tibet, Xinjiang,
Qinghai, Ningxia, Inner Mongolia, Yunnan, Sichuan, Gansu, Shaanxi, Shanxi, Hebei, Jilin,
Heilongjiang, and Liaoning) within 2050s and 2070s. Qinghai will be the new suitable
habitat in the future (2050s and 2070s). Sporadic regions of northeastern and northwestern
China may develop into suitable habitats for Ar. subalbatus in all future climate scenarios.
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Figure 7. Habitat suitability of Ar. subalbatus under future climate change scenarios. (a) Potentially
suitable areas to distribution of Ar. subalbatus within a context of climate change for 2050s (2040-2060),
under the SSP126 scenario; (b) Potentially suitable areas to distribution of Ar. subalbatus within a
context of climate change for 2070s (2060-2080), under the SSP126 scenario; (c) Potentially suitable
areas to distribution of Ar. subalbatus within a context of climate change for 2050s (2040-2060), under
the SSP585 scenario; (d) Potentially suitable areas to distribution of Ar. subalbatus within a context of
climate change for 2070s (2060-2080), under the SSP585 scenario.

The area of potentially suitable habitats for Ar. subalbatus in the future was also
calculated according to the binary model (Table 2). Under different future climate scenarios,
the current suitable area of Ar. subalbatus will remain stable. The area of suitable habitats
for expansion (Figure 8) will increase over time (2050s and 2070s). According to the current
study, suitable habitats” area loss was negligible in comparison to its area increase. Under
S5SP585-2070s, the suitable area of Ar. subalbatus will expand to a maximum of about
372,929.9796 km?2, which is 10.14% of the current suitable area covered.

Table 2. Estimated gain, stability, and loss of suitable habitat area for Ar. subalbatus under future
climate change scenarios.

Area Change (%)
Time Period SSPS
Scenarios Range No Change Range Net
Expansion Contraction Change
2040-2060 SSP126 4.193% 78.385% 0.160% 4.033%
2040-2060 SSP585 7.755% 78.466% 0.079% 7.675%
2060-2080 SSP126 4.151% 78.388% 0.157% 3.994%
2060-2080 SSP585 10.144% 78.140% 0.404% 9.739%
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Figure 8. Changes to suitable habitats of Ar. subalbatus under future climate change predicted by the
binary model. (a) Changes to suitable habitats of Ar. subalbatus within 2050s (2040-2060), under the
SSP126 scenario; (b) Changes to suitable habitats of Ar. subalbatus within 2070s (2060-2080), under
the SSP126 scenario; (c) Changes to suitable habitats of Ar. subalbatus within 2050s (2040-2060), under
the SSP585 scenario; (d) Changes to suitable habitats of Ar. subalbatus within 2070s (2060-2080), under
SSP585 scenario.

3.6. Centroid Shift and Potential Suitable Areas

Jinshi (111°52/11.648" E, 29°35’32.732" N), a city in Hunan province, was the centroid
of Ar. subalbatus distribution under the current climatic conditions (Figure 9). The centroid
was predicted to move toward the northeast under SSP585 (the 2050s: 111°37'50.058” E,
30°11'57.017" N; the 2070s: 111°46’18.177" N). Under SSP126, the centroid may move
toward the northeast (the 2050s: 111°45/18.273" E, 29°49'32.371" N) and then east (the
2070s: 111°43'18.788" E, 29°49/32.371" N). The results suggested the expansion of suitable
habitats for Ar. subalbatus may be more toward the north.

Most current suitable areas of Ar. subalbatus were predicted to remain suitable, but
parts of Sichuan, Tibet, Gansu, Shaanxi, Shanxi, Hebei, Liaoning, and south Ningxia might
face unstable changes in suitability in the 2050s and recovery in the 2070s under two SSPs
(SSP 126 and SSP 585) (Figure 10). The stable area (1, 1, 1) did not change much under
different SSPs, and the non-suitable area (0, 0, 0) decreased by 91,431.79 km? (SSP126) and
3735.00787 km? (SSP585) (Table 3). The trend of change showed the same pattern, but the
degree of change was different in the two SSPs and periods. The suitable regions present in
parts of Sichuan, Yunnan, Gansu, Ningxia, Shaanxi, Shanxi, Hebei, and Liaoning provinces
were the primary areas in which the expected suitable areas expanded. In addition, Xinjiang,
Qinghai, Inner Mongolia, Jilin, and Heilongjiang were also predicted to be suitable areas for
Ar. subalbatus. The loss of suitable areas for Ar. subalbatus might occur primarily in Shaanxi,
Shanxi, Yunnan, Sichuan, and Henan. The suitable reduced area (1, 0, 0) was 5496.802 km?2
(SSP126) and 26,192.03 km? (SSP585). In addition, the suitable reduced area (1, 1, 0) was
2208.117 km? (SSP126) and 15,644.75 km? (SSP585). Furthermore, areas indicating areas of
momentary fluctuations among the three timespans (0, 1, 0) were 2208.117 km? (SSP 126)
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and 15,644.75 km? (SSP585), and areas (1, 0, 1) were 249.004 km? (SSP126) and 46.98122 km?

(SSP585) (Table 3).
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Figure 9. Changes of environmental suitability centroid for Ar. subalbatus within the years 2050s

(2040-2060) and 2070s (2060-2080), under the (a) SSP126 and (b) SSP585 scenario.
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Figure 10. Changes to suitable areas under the (a) SSP126 and (b) SSP585 scenario. Eight colors refer
to eight situations that occurred in specific locations. Green (1, 1, 1) area refers to a relatively stable
region that is suitable for Ar. subalbatus; yellow (1, 1, 0) and orange (1, 0, 0) areas refer to a threatened
region that will no longer be suitable in the 2050s or 2070s; blue (0, 1, 1) and dark-blue (0, 0, 1) areas
refer to a promising region in which conditions will become suitable from an unsuitable state in the
2050s or 2070s; grey (0, 0, 0) areas remain absent throughout the entire time period. Pink (1, 0, 1) and

dark-red (0, 1, 0) areas indicate areas of momentary fluctuations among the three timespans.
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Table 3. Changes to suitable areas under climate change: 0 refers to an absence of the species, and 1
refers to its presence.

Present or Absent in Different Periods Areas under Climate Scenarios (km?)
CURRENT 2045-2060 2060-2070 SSP126 SSP585
1 1 1 36,378.97 36,286.65
0 1 1 18,778.39 36,541.99
1 0 1 249.004 46.98122
0 0 1 17,030.69 15,327.62
1 1 0 2208.117 15,644.75
0 1 0 17,970.32 26,192.03
1 0 0 5496.802 26,192.03
0 0 0 91,431.79 3735.007

4. Discussion

Although Ar. subalbatus has been proven to be a vector of a variety of pathogens,
including several pathogens such as filariasis and the Japanese encephalitis virus [27,28], it
has not received enough attention, and systematic research has not been carried out [64].
Recent studies have revealed that Ar. subalbatus is a new potential vector for the trans-
mission of ZIKV, posing new challenges for the global prevention of ZIKV [18,23]. In fact,
the risk of potential arboviruses’ (not just Zika) transmission may expand if the neglected
vectors are still underrated. In this study, we predicted Ar. subalbatus will rapidly spread to
all the provinces of China in the future and generated habitat suitability maps based on the
MaxEnt model under current and future (the 2050s and 2070s) climatic conditions. Habitat
suitability maps generated here will help predict to how the distribution of Ar. Subalbatus
will change in the future and to focus attention on areas that can be prioritized for moni-
toring. Our research provided basic data on Ar. subalbatus for assessing the arboviruses’
epidemic risk.

The geographic range and abundance of insects were greatly affected by climate
change [52]. The distribution, dispersion, and adaptation of insects may all be directly
influenced by climatic variables including temperature, precipitation, and humidity [52,65].
We also proved that Ar. subalbatus distribution is significantly influenced by temperature
and precipitation. In this study, response curves were utilized to evaluate the impact of
various climatic factors on the probability that Ar. subalbatus would emerge. The results
showed that 96.1% of the variance was accounted for by temperature parameters (Bio3, Bio2,
and Bio5), whereas precipitation (Bio12, Biol4, and Bio15) contributed just 3.9%. Among
all climate factors, bio2 (mean diurnal range) played the most important role, contributing
85.2%, and its variation range is 3.867 °C-18.306 °C. In the range of Bio2, the suitable
probability declines as the value rises. In China, the north and west have higher mean
diurnal ranges (Bio2) than the south and west [66]. The highest value (above 18 °C) appears
in Xinjiang, Gansu, Qinghai, Tibet, etc. [66]. In fact, Ar. subalbatus is currently distributed
in all provinces in China except Xinjiang, western Gansu, Qinghai, most of Tibet, Inner
Mongolia, Liaoning, Heilongjiang, and Jilin. The distribution of Ar. subalbatus basically
shows characteristics similar to the mean diurnal ranges in China. The implications of the
mean diurnal range and vector distribution require further validation, but we may provide
a good start. Relatively little research has been performed on Ar. Subalbatus. In a previous
study [39], it was also found that two factors (temperature and relative humidity variation)
may be important for the phenology of adult Ar. subalbatus, as the species was only found
at temperatures above 14 °C and relative humidity above 65%. In addition, precipitation
provides larval habitat and positively affects the activity and number of Ar. Subalbatus by
impacting its egg hatching and diapause [39,67-69]. Our data showed that the contribution
of precipitation is 3.9%, which may be related to precipitation that can affect the number of
Av. subalbatus, but its distribution range is mainly affected by temperature (especially the
influence of Bio2).
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Under the climate change scenarios of SSP126 and SSP585 compared to present climatic
conditions, we can observe the expansion trend of suitable habitats for Ar. subalbatus in
the 2050s and 2070s. The predictions under the SSP585-2070s scenario showed the worst
results, followed by SSP585-2050s. Under SSP 585-2070s, the suitable area for Ar. subalbatus
will reach a maximum value of about 4,179,713 km?, which is 1.137 times the current area.
There are two types of new suitable habitats in different climatic conditions. The first
type is continuous distribution expansion, and the expansion trend of suitable habitats for
Ar. subalbatus is northward in Yunnan, Sichuan, Gansu, Ningxia, Shaanxi, Shanxi, Hebei,
and Liaoning. Under the SSP585 and SSP126, the expansion can extend to southern Liaoning
in mainland China. The second type (sporadic distribution expansion) showed that the new
potential suitable areas are scattered in Xinjiang, Inner Mongolia, Qinghai, Heilongjiang,
and Jilin for the first timespan, which do not border the current suitable habitat. The first
type of expansion demands strengthening the monitoring of the occurrence and breeding
of vectors. The second type deserves more complex monitoring and needs to pay attention
to tourism and trade in addition to the requirements of the first type, because the frequency
of Ar. subalbatus occurrence in new potential suitable areas will probably increase with
increasing global trade and travel [66]. Furthermore, under all future modeling scenarios
of this study, the distribution range of Ar. subalbatus may expand and provide more new
suitable habitats, which might potentially put a bigger human population at risk.

As with studies that predict the impact of climate change on other mosquito species,
Maxent models have some limitations and uncertainties in predicting future species distri-
butions [4,22,54,70,71]. The assumption used to predict suitable habitats is that the species
will not experience any dispersion limitations [22]. Additionally, the influence of biological
interactions is ignored. Therefore, our predictions were made under ideal conditions. The
models developed in our study emphasize that climate is a key driver of mosquito distribu-
tion, and our results established that temperature plays a major role in the distribution of
Ar. subalbatus. As these predictions were not based on field investigation, our results can
only be used as a reference for future mosquito monitoring. Decision-makers must fully
understand the uncertainty of model predictions and combine field investigations to create
the right strategy.
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