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Abstract: Chagas disease (CD) is a neglected tropical disease caused by Trypanosoma cruzi infection
that, despite being discovered over a century ago, remains a public health problem, mainly in de-
veloping countries. Since T. cruzi can infect a wide range of mammalian host cells, parasite–host
interactions may be critical to infection outcome. The intense immune stimulation that helps the
control of the parasite’s replication and dissemination may also be linked with the pathogenesis and
symptomatology worsening. Here, we discuss the findings that support the notion that excessive
immune system stimulation driven by parasite persistence might elicit a progressive loss and col-
lapse of immune functions. In this context, cellular stress and inflammatory responses elicited by
T. cruzi induce fibroblast and other immune cell senescence phenotypes that may compromise the
host’s capacity to control the magnitude of T. cruzi-induced inflammation, contributing to parasite
persistence and CD progression. A better understanding of the steps involved in the induction of this
chronic inflammatory status, which disables host defense capacity, providing an extra advantage to
the parasite and predisposing infected hosts prematurely to immunosenescence, may provide insights
to designing and developing novel therapeutic approaches to prevent and treat Chagas disease.
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1. Introduction

Chagas disease (CD), or American trypanosomiasis, is an illness first described in 1909
by Carlos Chagas, who identified the disease’s causative pathogen, Trypanosoma cruzi, as
well as its vector, triatomine insects [1]. Even after one century of discovery, CD is still
considered one of the World Health Organization’s (WHO) “neglected tropical diseases”
(NTDs) [2]. Chagas disease primarily affects low-income populations [3] and remains a
social and public health problem, particularly in Latin American countries. CD is a leading
cause of morbidity and mortality in tropical developing countries [4] and, due to the current
unavailability of vaccines and effective treatments, vector control and alternative modes of
transmission-based prevention programs are required [5].

During its complex life cycle, T. cruzi can switch between invertebrate hosts, which
work as vectors for transmission, and vertebrate hosts, where infection takes place in a wide
range of non-immune and immune cells through its obligate intracellular replication [6].
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2. Parasite-Host Interaction in Chagas Disease

Trypanosoma cruzi infection is initiated when the triatomine insect vector deposits in-
fective metacyclic trypomastigotes with its feces or urine on the host’s skin and infects cells
from the mammalian host’s epithelial/mucosal barriers after a blood meal [6]. Although
this early interaction between host cells and parasites may determine the outcome of
T. cruzi infection, considerable attention and most of the studies are focused on macrophage
infection, which is responsible for triggering immune responses [7].

To survive and establish a productive infection in macrophages, phagolysosome-
restricted intracellular parasites must overcome the intense oxidative burst induced by
the activation of macrophage membrane-associated NADPH oxidase and SLAMF1 [8],
which together are responsible for the production of both reactive oxygen species (ROS)
and reactive nitrogen species (RNS). The macrophage phagocytosis of trypomastigotes
elicits superoxide radical (O2

−) production, which is converted into H2O2 by superoxide
dismutase (SOD) within the phagosome [9]. H2O2 itself, or its conversion into hydroxyl
radicals (OH), has toxic effects on parasites, due to its broad reduction power [9]. Despite
the powerful oxidant properties of ROS, T. cruzi resists an oxidative burst-dependent killing
by expressing an arsenal of antioxidant enzymes holding oxidative/nitrative species detox-
ification capacity, through the delivery of reducing equivalents generated from NADPH
via dithiol trypanothione and the thioredoxin homolog tryparedoxin [10–12], allowing
the parasite to escape to the cytoplasm and differentiate into amastigote forms. After
several rounds of amastigote duplication, the rupture of the host cell membrane and the
release of infective trypomastigotes allow them to infect neighboring cells and reach the
bloodstream [13]. Once in the bloodstream, parasites’ recognition and elimination by the
complement system is again undermined by their expression of numerous proteins, such
as calreticulin and GP160 [14,15], which hamper trypomastigotes’ complement-mediated
lysis, bypassing this immune system barrier [16].

Furthermore, trypomastigotes trigger innate immune responses by the recognition of
several pathogen-associated molecular patterns (PAMPs), expressed on their surface by
toll-like receptors (TLRs) expressed in the host cells. This signaling pathway orchestrates
an immune defense by nuclear factor kappa B (NF-kB) activation, which triggers high
levels of cytokine and chemokine production, in macrophages, natural killer (NK) cells, and
dendritic cells (DCs) [17]. The production of IL-12 and interferon-gamma (IFN-γ) by DCs
and NK cells, respectively, elicits the crosstalk between the innate and acquired immunity
required for T helper 1 (Th1) and plasma B cell clonal expansion and differentiation [18], as
well as activation of parasite-specific cytotoxic CD8+ T cells, licensed to destroy infected
cells [19]. IFN-γ derived from Th1 or CD8+ T, along with tumor necrosis factor α (TNF-α)
and IL-12 derived from innate immune cells, activates the expression of the inducible
nitric oxide synthase (Nos2) and the production of higher levels of nitric oxide (NO) by
macrophages, which promotes intracellular parasite killing [20]. Recruited myeloid-derived
suppressor cells (MDSCs) also play an important role in parasite replication control by
upregulating Nos 2 and NO [21].

In addition, ROS production is an important factor in parasites’ replication control [22,23].
The most prominent oxidative molecule gives rise to the reaction of macrophage-derived
O2

− with NO, the peroxynitrite [9]. Non-immune cells, such as cardiomyocytes [24,25],
epithelial [6], and endothelial [26], are also infected and respond to T. cruzi infection by
producing proinflammatory cytokines and undergoing an oxidative burst to control parasite
replication. Although one of the main characteristics of T. cruzi infection is the induction of an
intense Th1-inflammatory response to eliminate the parasite and promote host protection, this
response is also linked with excessive immune system stimulation and disease progression,
mainly during the chronic phase [18,27]. A delicate balance mediated by Th2 responses should
occur to control the magnitude of the inflammatory response during T. cruzi infection by
reducing macrophage and DC activation [28].
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3. Oxidative Stress Response-Induced Senescence

Stress activators include many immune and pathogen-derived molecules. The inten-
sity of stress exposure might result in distinct cell fates. In general, low-stress intensity
exposure results in effective damage repair and cell cycle resumption, whereas high expo-
sures might trigger cell apoptosis. Cells are frequently unable to repair all of the damage
induced by severe and persistent sub-cytotoxic stress exposures, resulting in premature cell
cycle arrest and senescence [29,30]. The term “cellular senescence” was coined by Hayflick
and colleagues to characterize the progressive loss of proliferative potential of viable cells
in culture after several rounds of cell division, regardless of the nutrient availability of
the culture medium [31]. Senescence is mainly induced by the cellular stress response,
although some terminally differentiated cells may lose their proliferative capacity as a
result of their developmental program to become effector cells [32].

Over the years, besides proliferative exhaustion, new insights about how senescence
could be triggered have emerged [33,34]. The continuous activation of DNA damage re-
sponse (DDR) signaling caused by mitochondrial dysfunction and sustained ROS exposure
are thought to be important senescence induction factors [35]. Cell DNA is the primary
molecule affected by oxidative molecules; and continuous exposure to oxidant molecules
may be harmful to the host cells due to their tissue- and DNA-damaging properties, which
can be cumulative and irreversible [36]. When reactive species production exceeds the
host’s antioxidant defense mechanisms, oxidative-induced DNA modifications occur [36].
One of these is activating the DDR, which deals with cytotoxic oxidant damage and ensures
cell genetic stability through cell cycle progression arrest, as well as mechanisms to promote
and coordinate DNA repair machinery [37]. Once triggered, DDR activates the damage
sensor proteins ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and
Rad3-related) kinases, which respond to DNA double-strand breaks (DSB) and single-
stranded DNA (ssDNA) [38,39], preventing cell S-phase entry via activation of p53 and
upregulation of cell cycle arrest effectors, such as p21 [40]. The activation of these pathways
may promote either DNA repair, senescence, or apoptosis of the infected cells [6].

Even when damaged and with their cell cycle arrested, senescent cells remain metabol-
ically active [41]. They function as a source of ROS, which not only reinforces the senescent
phenotype but also increases ROS production, triggering DNA damage and senescence
in neighboring cells [42,43]. In addition to ROS, the expression of several proteins, such
as cytokines, chemokines, growth factors, and interleukins is another hallmark of senes-
cence [44]. This secretome alteration, called senescence-associated secretory phenotype
(SASP), enables senescent cells to influence their microenvironment and to communicate
with neighboring cells [45].

The production of high levels of ROS and senescence are linked to aging [46]. Growing
evidence suggests that aging mechanisms can arise from different processes, such as cel-
lular senescence and their SASP, neuro-immune-endocrine alterations, and accumulation
of damage, although these pathways may often crosstalk [47]. Aging also compromises
the immune system by reducing its effectiveness, a process called immunosenescence,
which causes mild hyperactivity of innate immunity and the decline in adaptive immu-
nity [48,49]. However, individuals carrying chronic infections can also develop premature
immunosenescence, independent of chronologic age [50].

Although SASP contributes to the maintenance of the senescent state and avoids
senescent cell accumulation via immunosurveillance—clearance by the innate immune
system—these same factors may also have detrimental properties that, under certain con-
ditions, might induce tissue dysfunction and tumorigenesis [44]. In contrast to apoptosis,
where injured cells are rapidly phagocytosed and eliminated without triggering inflamma-
tion [51], senescent cell-derived SASP may foster local and systemic sterile inflammation,
as well as the progression of chronic diseases, especially if the immune system’s ability to
remove or prevent senescent cell development is overwhelmed [52].
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4. Immunosenescence Induced by T. cruzi Infection-Mediated Stress and
Inflammatory Responses

Regardless of the role of host cell-produced reactive species in T. cruzi killing, stud-
ies have shown that the parasite subverts the oxidative stress in its favor to maintain its
own survival within the host cytosol [53,54]. Particularly, data from our group suggest
that T. cruzi also explores infection-derived oxidative stress as an additional advantage to
prevent its elimination and to establish its intracellular niche that contributes to the disease
progression. Particularly, we found that cellular stress elicited by T. cruzi infection in the
early stages of infection inhibits fibroblast proliferation and induces a senescent pheno-
type [55]. Furthermore, experimental evidence demonstrated that cells under senescence
are apoptosis-resistant [56,57], and our findings suggest that senescent fibroblasts act as
a long-term reservoir of parasites, allowing T. cruzi to replicate and establish a chronic
infection [55]. Although our group correlated for the first time the early induction of
senescence in T. cruzi infected fibroblasts, previous studies have reported the induction of
immunosenescence on T cell subsets in both chronically infected human subjects [58,59]
and mouse models of T. cruzi infection [8].

In agreement, oxidative stress induced by T. cruzi infection appears to modulate the
expression of genes related to stress responses and cell cycle control, either by activating
DDR signaling pathways or inducing suppression of cellular proliferation via cell cycle
arrest [6,60,61]. It was also reported that high levels of mitochondrial ROS, combined with
IFN production, cause persistent mitochondrial disturbance, boosting both ROS production
and damage in cardiomyocytes, resulting in sustained inflammatory immune responses
during CD [62,63]. Furthermore, infection-induced nitro-oxidative damage causes DNA
breaks in cardiomyocytes and the production of TNF and IL-1β [25,64,65]. Because of its
diverse damage potential, oxidative stress is increasingly being implicated as a promoter
of disease progression and the development of cardiomyopathy [23,66,67]. Data from the
BENEFIT benznidazole clinical study showed that CD development cannot be prevented
after the harm caused by the infection has been established, even after parasitological blood
clearance [68]. Overall, long-term sustained generation of T. cruzi-mediated nitro-oxidative
stress damages cell and mitochondrial function, highlighting oxidative damage as a crucial
pathogenic component in the genesis and progression of Chagas’ heart failure [54].

Aside from oxidative stress, T cell subsets and Th1 responses play an important role in
inducing and mediating protective immunity during acute and chronic T. cruzi infections,
which improves the outcome of CD pathology [18]. Since a higher parasite load and
disease exacerbation have been shown in T-cell deficient mice, infection control and T
cruzi elimination require a complex immune response of both CD4+ and CD8+ T cells [69].
Even when these cells are properly and sufficiently activated to promote infection control,
parasites remain in the host’s organism for several years, activating its immune system.
Data from the literature have shown that trypanocidal therapies in human and animal
studies do not completely clear T. cruzi, supporting the notion that remaining parasites
may act as a continuous source of inflammatory stimulus [6]. Furthermore, parasites may
successfully hide in the organism, a state called T. cruzi dormancy, which allows parasite
persistence even after treatment [9].

In a similar way to what has been described in chronic viral infections [70], persistent
exposure to T. cruzi-derived antigens has been linked to a significant and progressive loss
of immune functions. These events occur primarily in the T cell subsets, as evidenced by
the high frequency of terminally differentiated T cells, upregulation of inhibitory receptor
coexpression, and impaired cytokine production (IL-2, TNF-α, and IFN-γ), as well as
cytotoxic activity. Immune exhaustion resembled immunosenescence phenotypes and
was found in CD8+ T cells of chronic patients with CD and cardiac symptomatology,
when compared to those in the indeterminate stage of the disease [58,71,72]. The same
phenomenon was observed in CD4+ T cells from patients with severe forms of CD, which
also express CD57, a marker associated with sustained antigen stimulation, replicative
senescence, and T cell immune aging [59]. This suggests that the interconnection between
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the stage of T-cell differentiation, the individual’s inflammatory decompensation, its genetic
susceptibility, and the extent of protective host responses may be strongly associated with
advanced pathology and heart disease development and severity during Chagas disease
(Appendix A).

5. Concluding Remarks

Regardless of the beneficial role of senescence induction in tumor suppression to
avoid additional mutagenic effects in the DNA by blocking tumor growth via proliferative
arrest and SASP-mediated clearance of tumor cells by immune cells [73,74], uncontrolled
senescence has a negative impact on the organism. Paradoxically, uncontrolled T.cruzi-
mediated chronic immune activation and immunosenescence may eventually result in
impaired immune responses. The skewed activation profile of T effector cells towards non-
competent parasite-specific T cells, together with degeneration of heart tissue, may directly
impact more severe forms of disease pathology and symptomatology. The breakdown in
host-parasite balance, combined with dampened and exhausted immune responses, high-
lights the potential of investigating the role of senescence in chronic diseases, specifically
Chagas disease, as an open door to the design of new therapeutic strategies to prevent and
efficiently treat infected individuals.

Author Contributions: Conceptualization, K.G.-P. and A.A.F.; original draft, K.G.-P. and A.A.F.;
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(Panel 1) Trypanosoma cruzi infective metacyclic trypomastigotes are released along with the feces
of the triatomine insect vector during its blood meal; and they can infect cells in the skin and
dermis. Infected fibroblasts produce a high level of ROS, which irreversibly damage their DNA
and induce a cellular senescence phenotype, allowing them to serve as a source of inflammatory
mediators (TNF-α, IL-6, and ROS) and a parasite reservoir. Infected macrophages also respond
to the infection by producing ROS, RNS, and pro-inflammatory cytokines that aim to eliminate
the parasite and activate adaptive immune responses against T. cruzi. (Panel 2) Infection-induced
oxidative stress also damages cardiomyocyte DNA, increasing heart inflammation via the production
of pro-inflammatory cytokines (TNF-α and IL-1β), which has a negative impact on heart function
and disease pathogenesis. (Panel 3) Parasite immune evasion mechanisms allow it to survive and
spread in the host’s organism, leading to sustained and excessive immune activation, promoting
immune exhaustion and immunosenescence phenotypes in T CD8+ and T CD4+ cells. ROS: reactive
oxygen species, RNS: reactive nitrogen species (RNS).
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