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Abstract: In recent decades, the global incidence of dengue has risen sharply, with more than 75%
of infected people showing mild or no symptoms. Since the year 2000, dengue in China has spread
quickly. At this stage, there is an urgent need to fully understand its transmission intensity and
spread in China. Serological data provide reliable evidence for symptomatic and recessive infections.
Through a literature search, we included 23 studies that collected age‑specific serological dengue
data released from 1980 to 2021 in China. Fitting four catalyticmodels to these data, we distinguished
the transmissionmechanisms by deviation information criterion and estimated force of infection and
basic reproduction number (R0), important parameters for quantifying transmission intensity. We
found that transmission intensity varies over age in most of the study populations, and attenuation
of antibody protection is identified in some study populations; the R0 of dengue in China is between
1.04–2.33. Due to the scarceness of the data, the temporal trend cannot be identified, but data shows
that transmission intensity weakened from coastal to inland areas and from southern to northern
areas inChina if assuming it remained temporally steadyduring the studyperiod. The results should
be useful for the effective control of dengue in China.

Keywords: Bayesian inference; catalytic model; dengue; mathematical modelling; serological data;
transmission intensity

1. Introduction
1.1. Current Status of Dengue

Dengue is a mosquito‑borne virus infectious disease mainly transmitted through the
bites of female Aedes aegypti and Aedes albopictus. Dengue virus (DENV) has four different
serotypes (DENV‑1, 2, 3 and 4), and both infants and adults are susceptible. The incubation
period is generally 4–10 days, and the infection period is 2–7 days [1]. Dengue is one of the
17 neglected tropical diseases in the Neglected Tropical Diseases (NTD) roadmap [2]. In
recent decades, the incidence of dengue has risen dramatically. The World Health Orga‑
nization (WHO) estimates 100 to 400 million cases of infection each year worldwide, and
nearly half of the world’s population is at risk of the infection [3]. Moreover, since most
cases of denguemanifest as asymptomatic infections (recessive infections), the actual num‑
ber may exceed the reported number. According to Bhatt et al. [4], about 390 (95% CI: 284,
528) million dengue infections occur each year, of which only about 96 (95% CI: 67, 136)
million express clinical symptoms. Dengue has caused a huge burden of disease globally.
The year 2019 saw the highest number of dengue cases reported globally in recent mem‑
ory. Many countries and regions have been affected, with the first recorded transmission
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of dengue in Afghanistan. The United States alone has reported 3.1 million cases, with
more than 25,000 severe cases, while large numbers of cases have also been reported in
Bangladesh (101,000), Malaysia (131,000), the Philippines (420,000) and Vietnam (320,000)
in Asia [3].

China is in eastern Asia and is adjacent to some Southeast Asia countries that have
high dengue incidence. Its southeast coast is a high‑incidence area of dengue, especially in
Guangdong province [5]. Dengue cases were reported almost every year, and a large out‑
break of 45,217 cases occurred in 2014 in China [6]. In addition, in the northern and inland
regions, from2018 to 2020, therewere successive outbreaks of dengue inHebei province [7],
Yunnan province [8], Hunan province [9], Hubei province [10], with a total of more than
300 reported cases. China is not the original area of dengue, andmost dengue outbreaks in
China were caused by imported cases from abroad. Because recessive dengue infections
are not detected by symptom screening, it is very likely that a large number of those in‑
fections [4] become a source of infection and lead to a significant increase in the positivity
rate [11–14]. The social and economic burdens caused by dengue are getting heavier. In
the specific measures to achieve the three major goals of dengue control, the WHO clearly
proposed to conduct research on the transmission kinetics of dengue and develop models
to quantify the joint method of vaccine and vector control in transmission [15]. In this pa‑
per, we used catalytic models based on serological data to estimate dengue transmission
intensity and review the changes in dengue transmission in China over the past years.

1.2. Dengue Data and Modelling
In the modeling study of infectious diseases, the important parameters used to char‑

acterize transmission intensity are the force of infection (FOI, defined as the instantaneous
per capita infection rate at which susceptible individuals acquire infection [16]), and basic
reproductive number (R0, defined as the average number of secondary cases caused by an
infectious individual entering a susceptible population [17]). The role of FOI has greater
significance than the widely used incidence rate because it can distinguish potential age‑
related changes in infection rates [16]. When an infectious disease first occurs, a patient
must infect at least one individual; that is what keeps the epidemic going. However, not
every susceptible person who comes into contact with an infected person will be infected,
and the probability is determined by FOI. When the susceptible population within a re‑
gion has got infected and then acquired immunity or died, the proportion of the suscep‑
tible population will decline; but due to the supplement of newborn babies and migrant
susceptible people from external populations, the proportion of susceptible people may
increase again. To characterize the spread potential of an infectious disease under the con‑
stantly changing susceptibility, the effective reproduction number, which is defined as a
product of basic reproduction number and susceptibility (i.e., R0 × susceptibility), is an
appropriate measure. When a population reaches a steady‑state for an infectious disease,
its effective reproduction is equal to 1, implying the total number of infections is neither
increasing nor decreasing. Therefore, R0 determines not only the growth rate of the infec‑
tious disease but also the proportion (1/R0) of the steady‑state population infected by the
disease [18].

In China, we learned through a literature search that there were few studies using
serological data for dengue modeling. Due to the lag in the infectious disease surveillance
and reporting system and the differences in regional regulatory systems, there is a prob‑
lem with using case notification data in that the number of reports does not match the
reality. The spread of dengue shows a high degree of geographic heterogeneity [19] and
even needs to be measured in a very fine spatial range [20]. Moreover, in many situations,
dengue cases show mild or asymptomatic [4] or are only diagnosed as another viral infec‑
tion in the clinic, which may cause dengue to be misclassified or difficult to diagnose, even
the highly sensitive disease surveillance systems may also underestimate the incidence of
dengue [21,22]. Therefore, the use of dengue case notification data for research may un‑
derestimate dengue transmission intensity.
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Using serological data to estimate dengue transmission intensity has great advan‑
tages because it can detect past symptomatic and asymptomatic infection cases [19] and
more accurately reflect transmission intensity. A literature review of dengue studies in
China showed that most studies used IgM and IgG ELISA (Enzyme‑Linked Immunosor‑
bent Assay) data. Although PRNT (Plaque Reduction Neutralization Test) and PCR (Poly‑
merase Chain Reaction) can identify different serotypes of dengue virus, their difficulty
and cost are relatively high, while ELISA has the advantages of low cost and high effi‑
ciency. Imai [19] used IgG and IgM ELISA, IE (Inhibition ELISA) and PRNT data to esti‑
mate dengue transmission intensity, and they showed that the FOI estimated by the ELISA
data was equal to the sum of the FOI estimated from the specific serological data. In this
study, we used non‑serotype‑specific data to estimate FOI and R0.

2. Materials and Methods
2.1. Literature Search and Data

We searched multiple literature databases for potentially available studies related to
dengue serology in China. Since we mainly studied the spread of dengue in China in re‑
cent years, articles published before 1980 and articles whose study areas are not in China
were excluded. Since a wider age group may not accurately reflect the difference in the
seropositivity rate of the age group [19], the studies that had at least five age groups were
included. Based on these selection criteria (Figure 1), 23 studies [23–45] were finally in‑
cluded (Supplementary File S1).
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Figure 1. Literature search and screening process. Notice: (1) In the search query [ ”Dengue”[Mesh]
OR Dengue[TIAB] OR Dengue[Other term]) AND (Age‑specific OR Age group*) AND (Chin* OR
Taiwan* OR Hong Kong* OR Macau*], *, an asterisk, is the truncation symbol in PubMed, which
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was used at the end of a word to search for all terms that begin with that basic word root. (2) The
search query [SU%(登革热+登革热病毒+登革出血热+DHF+登革热休克综合症)*(血清学+血清调查+
抗体+血清流行病学+血清阳性率+血清型) AND FT%(年龄+年龄组)] in CNKI database can be trans‑
lated into [SU%(Dengue + Dengue virus + Dengue hemorrhagic fever +DHF+ Dengue shock syn‑
drome)*(Serology + serum survey + antibody + seroepidemiology + Seropositive rate + Serotype)
ANDFT%(age + age group)], where SU stands for subject, or TITLE, ABSTRACT, and/or KEYWORD;
% stands for INCLUDE; + stands for the boolean operator OR; * stands for the boolean operator AND;
FT stands for FULL TEXT. (3) The search queries for other two Chinese literature databases are sim‑
ilar to the one used in CNKI database.

The 23 studies involved eight provinces and one region in China, namely Guangdong,
Guangxi, Zhejiang, Hunan, Guizhou, Hainan, Yunnan, Taiwan and Hong Kong, with a to‑
tal of 18 study regions and 31 data sets (Table 1). They are all located south of the Yangtze
River in China. Among them, Guangdong, Guangxi, Zhejiang, Hainan, Taiwan and Hong
Kong are all coastal provinces, while Hunan, Guizhou and Yunnan are inland provinces.
In addition, Yunnan Province and Guangxi Province are adjacent to Southeast Asian coun‑
tries. Most of the eight provinces or regions are located between 20◦ and 30◦ north latitude,
with tropical or subtropical seasonal characteristics, high temperature and humid climate.

Those studies reported the survey data on the age‑stratified non‑serotype‑specific
prevalence of dengue from 1980 to 2019. In the last column of Table 1, we use “Herd”
to indicate that its sample is from the healthy general population; Use “Hospital/CDC” to
indicate that the data was collected at the hospital and/or Centers for Disease Control and
Prevention (CDC); “Blood donation center” means that the sample population is healthy
blood donors in the blood donation center. “Health Checkup Center” means the sample
population is the health checkup population at the port health checkup center. In addition,
single‑year cross‑sectional data from 2011 to 2013 can be extracted from the study [27] and
from 2013 to 2015 from the study [45]. The study [43] was based on the phased data col‑
lected at different stages of a dengue outbreak in the study area. For the three studies, we
fitted our models to the data of each year.

2.2. Dengue Models
Due to the presence of dengue immune antibodies, the seroprevalence rate of the pop‑

ulation increases with age. This rate of change with age can be interpreted as a measure
of the “strength” of the spread of dengue in the past. The significant change in the sero‑
prevalence rate of each age group may be further due to a unique change in the risk of
infection in a certain age window or caused by a change in unique risk factors that are
not related to age, or a combination of the two [46]. Therefore, the seroprevalence rate
provides information about the overall cumulative risk of infection experienced by the
entire age group [47]. In addition, the individual’s dengue immune antibody level may
also decrease with age (antibody protection decay effect). Here, we consider the impact
of different infection mechanisms (Model A–D) on the dengue transmission intensity. For
Model A, we assume that the FOI does not change with age; that is, the FOI is a constant.
For Model B, since the seroprevalence rate of some data sets seems to decrease with age,
we assume that antibody protection decays at a constant rate. For Models C and D, we
consider that the seropositivity rate changed significantly at a certain age due to changes
in the exposure levels or other reasons and introduced the concept of threshold age (Acrit).
In view of that changes in population structure can greatly complicate mathematical mod‑
els and require a large amount of longitudinal population data, we ignore demographic
changes such as population mobility and natural birth/death rates. In the following, we
give the details of the four models.
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Table 1. 23 studies for estimation of dengue transmission intensity in China.

Survey Region Reference Survey Year Age Range No. of
Samples

No. of
Positives Testing Method * Circulating

Serotype Source of Sample Population

Guangdong Province

Guangzhou Huang Y et al.
[23] 1981 5–50+ 174 86 HI DENV‑1,2,3,4 Herd

Zhuhai Li Z et al. [24] 1998 10–60+ 374 4 ELISA NA Herd
Zhuhai Yang Z et al. [25] 2001 10–50+ 558 51 ELISA NA Herd

# GZ Huangpu Zheng X et al. [26] 2008 0–71+ 324 55 ELISA/RT‑PCR NA Herd

Guangzhou Cao Y et al. [27]
2011 0–60+ 2075 200 ELISA NA Hospital/CDC
2012 0–60+ 1201 192 ELISA NA Hospital/CDC
2013 0–60+ 1235 124 ELISA NA Hospital/CDC

Guangzhou Li S et al. [28] 2014 18–60 4000 131 ELISA/PCR DENV‑1,2 Blood Donation Center
Guangzhou Jing Q et al. [29] 2015 0–60+ 850 56 ELISA/IFA test DENV‑1,2,3,4 Herd

Guangxi Province
Beihai Tian X et al. [30] 1980 0–40 435 116 HI DENV‑2 Sentinel Hospital

$ QZ/FCG/HP Zhou K et al. [31] 2010–2012 0–79 1800 37 ELISA NA Herd

Zhejiang Province
Yiwu Sun J et al. [32] 2009 0–80+ 365 102 ELISA DENV‑3 Herd
Cixi Cen D et al. [33] 2004 0–80+ 520 35 IFA NA Herd

Hunan Province
Chenzhou Gao L et.al. [34] 2005 0–80+ 488 7 ELISA NA Herd

Guizhou Province
Guiyang Gao R et al. [35] 2004–2005 0–50+ 2281 197 ELISA NA Herd
Guiyang Tian H et al. [36] 2005 0–60+ 755 55 ELISA NA Herd

& GY/CJ/LD Jiang W et al. [37] 2011 5–60+ 530 11 ELISA NA Herd

Hainan Province
Danzhou Jin Y et al. [38] 2006 0–60+ 431 7 ELISA NA Herd

Yunnan Province
Mengla Lu Y et al. [39] 2014 0–60 182 3 ELISA NA Health Checkup Center
Hekou Pu L et al. [40] 2016 0–60 203 9 ELISA/ RT‑PCR NA Health Checkup Center

Xishuangbanna Li L et al. [41] 2019 18–60 2254 484 ELISA NA Blood Donation Center
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Table 1. Cont.

Survey Region Reference Survey Year Age Range No. of
Samples

No. of
Positives Testing Method * Circulating

Serotype Source of Sample Population

Taiwan Province
% TP/TY/TN Lee YH et al. [42] 2010 0–70+ 1308 44 ELISA NA Herd

Kaohsiung Tsai JJ et al. [43]
2015.8–11 0–89 417 48 ELISA DENV‑1,2 Herd
2016.2–5 0–89 294 36 ELISA DENV‑1,2 Herd

2016.9–2017.1 0–59 226 23 ELISA DENV‑1,2 Herd
2017.8–9 20–89 153 28 ELISA DENV‑1,2 Herd

Kaohsiung and Tainan Pan YH et al. [44]
Kaohsiung 2016 40–80+ 1498 595 ELISA DENV‑1,2,3, Herd
Tainan 2016 40–80+ 2603 291 ELISA DENV‑1,2,3,4 Herd

Hong Kong Lee P et al. [45]
2013 1–66+ 700 24 ELISA NA Hospital
2014 1–66+ 700 32 ELISA NA Hospital
2015 1–66+ 700 31 ELISA NA Hospital

* Circulating serotype is the dengue serotype detected in the study or the main serotype currently circulating, and NA indicates the serotype that was not detected or mentioned in
the study. # GZ Huangpu represents Huangpu District in Guangzhou city; $ QZ/FCG/HP stands for Qinzhou City, Fangchenggang City and Hepu County in Guangxi; & GY/CJ/LD
represents Yunyan District of Guiyang City, Congjiang County of Southeast Guizhou Province and Luodian County of Guizhou Province; % TP/TY/TN indicates Taipei, Taoyuan and
Tainan of Taiwan Province.
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2.2.1. Model A: Constant Force of Infection
According to Muench’s catalytic model [48], people in age group i changes from a

seronegative group to a seropositive group after infection at a rate λ, as shown in Figure 2.
Here λ is used to denote FOI, and the proportions of seronegative and seropositive in the
age group i are x(ai) and z(ai), respectively.
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Figure 2. Model A: the catalytic model that assumes constant FOI without antibody decay.

Since the data is not serotype‑specific, we assume that the total FOI of the four serotypes
is constant and that individuals receive lifelong immunity after infection. Assuming that λ
is a constant, the proportion of the seropositive population in age group i, z(ai) is given by:

z(ai) = 1 − exp(−λai) (1)

Here ai is the median age of the age group i.

2.2.2. Model B: Antibody Protection Decay
There are four serotypes of the dengue virus. A person who is infected with one

serotype will have acquired immunity. Although there is serotype cross‑immunity, the
duration of cross‑immunity is very different from person to person [49–51]. Studies have
shown that in the first six months after primary infection with dengue, the neutralizing
antibody (NAb) titers against all serotypes are the highest [52], but after that, NAb titers
gradually weaken, which mainly depends on the intensity of dengue and the degree of ex‑
posure [53–56]. According to the data we have obtained, the seroprevalence rate of some
data sets decreases with age, which means that there may be a phenomenon that antibody
levels decreasewith age. Following [19], it is assumed that the immunity level of a seropos‑
itive group decays at a rate of α, causing individuals to return to the seronegative group
(Figure 3).
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As shown in Figure 3, the population is divided into the seropositive population (z(ai))
and seronegative population (x(ai) = 1 − z(ai)); the antibody level of the seropositive popu‑
lation decays at a constant rate α, while seronegative populationmay be infected to become
seropositive people. By extending Model A, the change in the proportion of the seroposi‑
tive population in age group i, z(ai) is given by:

dz(ai)

da
= λ[1 − z(ai)]− αz(ai) = λ − (λ + α)z(ai) (2)

Assuming that both λ and α are constant, integrating the above formula gives,

z(ai) = {1 − exp[−ai(λ + α)]}
(

λ

λ + α

)
(3)
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2.2.3. Models That Include Threshold Age
For people of different ages (such as the young and old), their risk of getting dengue

may be different due to differences in the immune system, lifestyle, and other factors, even
if they are exposed to the same environmental conditions. Assuming that the population
is homogeneously mixed, for example, young people may reach a wider range of people,
while the range of activities of the elderly is limited due to reasons such as study andwork.
Their potential exposure patterns are also different. In view of these potential factors, we
assume that the seropositivity rate may change significantly in a certain age window due
to changes in the exposure level or other reasons. We assume that there is a critical age
(Acrit) by which the population is divided into two different age groups. Within each age
group, the FOI is still assumed to be constant but varies between age groups. Based on
this, Model A and Model B are extended to Model C and Model D as follows.

Model C: constant FOI is broken by a critical age

z(ai) = 1 − exp(−λ1ai), when a ≤ Acritz(ai) = 1 − exp(−λ2ai), when a > Acrit (4)

Model D: antibody protection decay with constant FOI broken by a critical age

z(ai) = {1 − exp[−ai(λ1 + α)]}
(

λ1
λ1+α

)
, when a ≤ Acrit

z(ai) = {1 − exp[−ai(λ2 + α)]}
(

λ2
λ2+α

)
, when a > Acrit

(5)

Here, λ1 and λ2 are the respective FOIwhen age a is less than or equal toAcrit or greater
than Acrit, and the decay rate of antibody protection (α) remains constant throughout all
the age groups.

2.3. Inference Method
To estimate FOI and R0, we fit the predicted seroprevalence rates of each age group

to observed data, wherein the observed proportions of seropositivity in each age group
are calculated based on the age‑stratified seroprevalence survey data. In this study, we
use Bayesian inference to estimate the model parameters [57]. The prior information on
parameters is obtained through literature review and experience, and serological data are
extracted from the literature as described in Section 2.1 (Supplementary File S1). Combin‑
ing these with the likelihood function (see Section 2.4), the Markov Chain Monte Carlo
(MCMC) method via normal random walk Metropolis‑Hastings sampling method is used
to generate the posterior distribution ofmodel parameters [57], fromwhich themedian and
its 95% credible interval (CrI) are obtained. The R statistical software (version 4.2.2 [58]) is
used for calculations.

2.4. Negative Log‑Likelihood (‑LnL)
In Bayesian statistics, the likelihood function is calculated through the sample infor‑

mation (observation data). We assume that the probability of seropositive individuals in
the age group i obeys the Beta Binomial Distribution:

Xi ∼ BetaBinomial(Ni, pi, γ)

Here, Ni is the total number of individuals in age group i, pi is the proportion of
seropositive individuals observed in age group i, and γ represents the overdispersion pa‑
rameter of the beta‑binomial distribution.

Following Imai et al. [19], the total negative log‑likelihood function for all age groups,
−LnL(p), is given by:
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− LnL(p) = −

 ∑
i

log
{

B
[

Xi + mi(
1
γ − 1), Ni − Xi + (1 − mi)(

1
γ − 1)

]}
− log

{
B
[
mi(

1
γ − 1), (1 − mi)(

1
γ − 1)

]}
 (6)

where B[a,b] is the beta function with standard parameters a (predicted seropositive num‑
ber) and b (predicted seronegative number), Xi is the number of seropositive individuals
in age group i, mi is the predicted proportion of seropositive patients in the age group i.

2.5. Estimation of Basic Reproduction Number (R0)
Assuming that FOI is constant for a certain amount of time, R0 can be estimated from

the formula [46]:

R0 =
1

1 −
∫ ∞

0 f (a)z(a)da
≈ 1

1 − ∑na
i=1 f (ai)z(ai)

(7)

Here f(a) is the probability density function of the population age distribution, and
z(a) is the predicted seroprevalence from the proposed models. We collected the age distri‑
bution data of the population in each study area from the National Bureau of Statistics [59]
of China and the website [60] of the Red and Black Population Database to calculate f(a).
In actual calculations, the age was divided into na groups, and Formula (7) sums over
these age groups. For the age group i, ai is its median age, and f (ai) is approximated by
f (ai) = ni/Total_N, with ni being the size in age group i and Total_N being the total number
of the population.

2.6. Deviation Information Criterion (DIC) and Model Selection
It should be borne in mind that the infectious disease system can be modeled because

epidemics involve relatively simple processes that occur within a large number of indi‑
viduals [18]. In the modeling studies of infectious diseases, models are used to simplify
the complex real world, and the performance of model fitting varies among models. To
compare model performance, we use the deviation information criterion (DIC) proposed
by Spiegelhalter et al. [61], which combines the fit and complexity of the model and can
compare models of any structure. The model that has the smallest DIC is the best and will
be chosen [57].

Burnham and Anderson [62] suggested models receiving the Akaike Information Cri‑
terion (AIC) within 1–2 of the “best” deserve consideration, and 3–7 have considerably less
support. According to Spiegelhalter et al. [61], these rules of thumb appear to work rea‑
sonably well for DIC. Therefore, in this study, we chose the critical value 3 as the criterion
for DIC to select the best model. In other words, when comparing models, we believe that
when the DIC difference between different models exceeds 3, there will be a performance
difference. Considering that a simple model is more beneficial for result interpretation, for
the data set whose DIC difference between the two models is less than 3, the model with a
relatively simple structure is selected as the best model.

3. Results
Through the literature review, we selected 23 studies from 515 articles, and the study

areas included 8 provinces, 14 cities or regions in China. Those studies reported the survey
data of dengue age‑stratified serological prevalence from 1980 to 2019. For each data set,
we estimated its FOI and R0 using the four models (the details are given in Tables S1–S4
in Supplementary File S2). The model fitting curves of the four models to 31 data sets
are illustrated in Figures S1–S4 in Supplementary File S2. Figure 4 and Table S5 show the
comparison results of DIC among the four models, and the final estimates (Table 2) are
based on the best models that have the smallest values of DIC.
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to data sets.

3.1. Model Comparison and Selection
Figure 4 demonstrates the relative DIC values to the best model for the 31 data sets.

The results show that the best model for data sets [23–26,28,29,32,33,36–42,44,45] is Model
C. In addition,ModelC is also applicable to the data sets of 2012 and 2013 in theGuangzhou
study [27] and the data sets from August to November 2015 and from August to Septem‑
ber 2017 in the Kaohsiung study [43]. The best model for 25 data sets among the 31 data
sets is Model C: constant FOI is broken by a critical age. This indicates the age effect on
the intensity of dengue transmission among these study areas. Model D (Constant FOI
broken by a threshold age with antibody protection decay) was applied to the data sets of
2011–2013 in the study of Guangzhou [27], Chenzhou in 2005 [34], and Kaohsiung in 2016
from February to May [43]. Model A (constant FOI without antibody protection decay)
applies to data sets from September 2016 to January 2017 in the study in Kaohsiung [43]
and the 1980 study in Beihai City, Guangxi [30]. Only the study [35] in Guiyang in 2004–
05 is applied to Model B, which assumes constant FOI and antibody protection decay of
dengue infection. Overall, model fittings illustrate that age has a universal effect on the
transmission of dengue fever, but the protective attenuation effect of antibodies was not
absent in the transmission of dengue fever.
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Table 2. Summary of estimation results from the best model fitting to 31 data sets.

Survey Region Reference Survey Year Acrit (95% CrI) λ (95% CrI) Year−1 R0 (95% CrI) α (95% CrI)
Year−1

Applicable
Model

Guangdong Province λ1 λ2
Guangzhou Huang Y et al. [23] 1981 20.7 (9.9, 82.1) 0.0538 (0.0184, 0.1440) 0.0269 (0.0094, 0.1348) 2.33 (1.64, 3.50) — Model C
Zhuhai Li Z et al. [24] 1998 72.9 (11.6, 83.8) 0.0009 (0.0003, 0.0236) 0.0595 (0.0004, 0.1447) 1.05 (1.02, 1.23) — Model C
Zhuhai Yang Z et al. [25] 2001 65.6 (10.3, 83.3) 0.0034 (0.0021, 0.1238) 0.0585 (0.0022, 0.1448) 1.15 (1.09, 1.33) — Model C

# GZ Huangpu Zheng X et al. [26] 2008 78.1 (9.9, 84.1) 0.0041 (0.0019, 0.0533) 0.0428 (0.0028, 0.1446) 1.15 (1.09, 1.25) — Model C

Guangzhou Cao Y et al. [27] 2011–2013

2011 68.0 (15.5,
83.3)(15.5, 83.3) 0.0085 (0.0040, 0.0237) 0.0356 (0.0039, 0.1442) 1.17 (1.12, 1.31) 0.04 (0.00,

0.10) Model D

2012 39.7 (9.9, 83.1) 0.0078 (0.0041, 0.0598) 0.0071 (0.0034, 0.1400) 1.22 (1.15, 1.40) — Model C
2013 71.5 (12.2, 83.9) 0.0037 (0.0024, 0.0175) 0.0532 (0.0022, 0.1447) 1.15 (1.09, 1.26) — Model C

Guangzhou Li S et al. [28] 2014 64.2 (10.4, 83.7) 0.0014 (0.0007, 0.1331) 0.0476 (0.0007, 0.1450) 1.09 (1.04, 1.32) — Model C
Guangzhou Jing Q et al. [29] 2015 72.7 (11.7, 84.0) 0.0027 (0.0014, 0.0308) 0.0517 (0.0014, 0.1444) 1.11 (1.06, 1.39) — Model C

Guangxi Province
Beihai Tian X et al. [30] 1980 — 0.0181 (0.0130, 0.0277) 1.73 (1.50, 2.19) — Model A

$ QZ/FCG/HP Zhou K et al. [31] 2010–2012 78.7 (13.1, 84.2) 0.0006 (0.0003, 0.0064) 0.0606 (0.0003, 0.1450) 1.04 (1.02, 1.10) — Model C

Zhejiang Province
Yiwu Sun J et al. [32] 2009 29.7 (16.1, 42.0) 0.0252 (0.0122, 0.0559) 0.0061 (0.0043, 0.0093) 1.41 (1.25, 1.70) — Model C
Cixi Cen D et al. [33] 2004 14.0 (9.7, 81.9) 0.0238 (0.0016, 0.1317) 0.0029 (0.0015, 0.0205) 1.13 (1.07, 1.32) — Model C

Hunan Province

Chenzhou Gao L et al. [34] 2005 51.7 (10.3, 83.7) 0.0047 (0.0011, 0.0537) 0.0061 (0.0006, 0.1033) 1.04 (1.02, 1.25) 0.08 (0.02,
0.10) Model D

Guizhou Province

Guiyang Gao R et al. [35] 2004–2005 — 0.0092 (0.0038, 0.0358) 1.10 (1.06, 1.45) 0.08 (0.02,
0.10) Model B

Guiyang Tian H et al. [36] 2005 65.3 (11.4, 83.6) 0.0047 (0.0014, 0.0669) 0.0094 (0.0006, 0.1426) 1.14 (1.06, 1.59) — Model C
& GY/CJ/LD Jiang W et al. [37] 2011 16.4 (9.9, 80.8) 0.0469 (0.0020, 0.1449) 0.0025 (0.0004, 0.1269) 1.16 (1.03, 1.67) — Model C

Hainan Province
Danzhou Jin Y et al. [38] 2006 72.7 (11.3, 84.0) 0.0017 (0.0004, 0.0706) 0.0462 (0.0006, 0.1447) 1.08 (1.02, 1.65) — Model C

Yunnan Province
Mengla Lu Y et al. [39] 2014 66.3 (11.1, 83.4) 0.0024 (0.0007, 0.0554) 0.0538 (0.0010, 0.1448) 1.11 (1.03, 1.50) — Model C
Hekou Pu L et al. [40] 2016 66.5 (11.0, 83.7) 0.0028 (0.0011, 0.0409) 0.0551 (0.0012, 0.1441) 1.12 (1.05, 1.42) — Model C

Xishuangbanna Li L et al. [41] 2019 60.5 (10.9, 83.3) 0.0086 (0.0040, 0.1340) 0.0199 (0.0031, 0.1439) 1.34 (1.18, 1.71) — Model C
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Table 2. Cont.

Survey Region Reference Survey Year Acrit (95% CrI) λ (95% CrI) Year−1 R0 (95% CrI) α (95% CrI)
Year−1

Applicable
Model

Taiwan Province
% TP/TY/TN Lee YH et al. [42] 2010 76.0 (10.2, 84.0) 0.0021 (0.0008, 0.0545) 0.0551 (0.0012, 0.1441) 1.10 (1.04, 1.30) — Model C

Kaohsiung Tsai JJ et al. [43] 2015–2017
2015.8–11 68.1 (11.4, 83.1) 0.0034 (0.0014, 0.0782) 0.0099 (0.0031, 0.0419) 1.19 (1.10, 1.57) — Model C

2016.2–5 66.1 (11.0, 83.0) 0.0155 (0.0046, 0.1169) 0.0397 (0.0056, 0.1368) 1.21 (1.12, 1.55) 0.07 (0.01,
0.10) Model D

2016.9–2017.1 — 0.0052 (0.0021, 0.0203) 1.24 (1.09, 2.16) — Model A
2017.8–9 31.6 (10.3, 81.5) 0.0097 (0.0026, 0.1428) 0.0089 (0.0039, 0.0370) 1.33 (1.18, 1.82) — Model C

Kaohsiung and Tainan Pan YH et al. [44] 2016
Kaohsiung 30.9 (10.5, 74.3) 0.0553 (0.0026, 0.1447) 0.0073 (0.0043, 0.0133) 1.50 (1.20, 2.56) — Model C
Tainan 30.6 (10.2, 79.7) 0.0617 (0.0015, 0.1461) 0.0042 (0.0019, 0.0133) 1.36 (1.10, 2.32) — Model C

Hong Kong Lee P et al. [45] 2013–2015
2013 71.9 (44.8, 83.8) 0.0017 (0.0008, 0.0128) 0.0299 (0.0013, 0.1450) 1.12 (1.06, 1.23) — Model C
2014 65.9 (30.2, 81.5) 0.0010 (0.0005, 0.0037) 0.0063 (0.0019, 0.1252) 1.09 (1.06, 1.19) — Model C
2015 65.7 (17.6, 81.8) 0.0009 (0.0005 0.0057) 0.0070 (0.0019, 0.1263) 1.10 (1.06, 1.18) — Model C

Note: # GZ Huangpu represents Huangpu District in Guangzhou city; $ QZ/FCG/HP stands for Qinzhou City, Fangchenggang City and Hepu County in Guangxi; & GY/CJ/LD
represents Yunyan District of Guiyang City, Congjiang County of Southeast Guizhou Province and Luodian County of Guizhou Province; % TP/TY/TN indicates Taipei, Taoyuan and
Tainan of Taiwan Province.
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3.2. Estimates of FOI and R0

The estimates of the critical age (Acrit), FOI and R0 from the best models selected for
each data set are shown in Table 2 and Figure 5. Among the 28 data sets that have model
C or D as their best models, they can be divided into two groups: For the 19 data sets that
have estimated critical ages older than 60 years, the FOI for ages younger than the critical
age (λ1) is weaker than the FOI for ages older than the critical age (λ2); while for the 9 data
sets that have Acrit < 60 years, λ1 is greater than λ2. Assuming that the spread of dengue
in the study area is in a local potential endemic state, the estimates of R0 would be greater
than 1 (Figure 5). The estimate of R0 obtained by the best model fittings of 31 data sets
was between 1.04 and 2.33 (Table 2). The study [23] conducted in Guangzhou in 1981 had
the largest estimate of R0 = 2.33 (95% CrI: 1.64, 3.50), and the study conducted by Zhou
et al. [31] and Gao et al. [34] had the smallest estimate of R0 = 1.04 (95% CrI: 1.02, 1.10) and
R0 = 1.04 (95% CrI: 1.02, 1.25), respectively. The graph of estimates of R0 versus the study
year from 1980 to 2019 (see Supplementary File S2: Figure S5) showed that R0 was over 1.5
in 1980 and 1981; since then, it dropped and fluctuated below 1.5.
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3.3. Time‑Space Comparison
Among 23 studies selected for this analysis, only three studies provided multiple

years of data. We estimated FOI and R0, respectively, by using their best models in dif‑
ferent years (Figure 6). In the study conducted in Guangzhou [27] from 2011 to 2013, the
estimate ofR0 in 2012was the largest (1.22, 95%CrI: 1.15, 1.40). In the study [43] conducted
in Kaohsiung from 2015 to 2017, the estimate ofR0 showed an upward trend, withR0 = 1.33
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(95% CrI: 1.18, 1.82) for the data set collected in August‑September 2017. In the study [45]
conducted in Hong Kong between 2013 and 2015, R0 was estimated to be the largest in
2013 (1.12, 95% CrI: 1.06, 1.23). Figure 6 shows that there appears to be no significant time
change trend in dengue transmission intensity in the three study areas.
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The study areas included 8 provinces and 1 region in China with 31 data sets. These
nine regions are geographically illustrated with their respective mean estimate of R0 in
Figure 7. The results suggested there may be an underlying spatial pattern of dengue
spread in China: the intensity of dengue infection in coastal areas is generally higher than
in inland areas, and the more it extends to the north, the lower the infection intensity.
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4. Discussion
Based on dengue serological age stratification data extracted from 23 studies in China,

we used four catalytic models to distinguish the potential transmission mechanisms of
dengue and estimated dengue transmission intensity in study areas. We found that dengue
transmission intensity varies among different age groups inmost of the study populations,
and attenuation of antibody protection is identified in some study populations. Further‑
more, we found that R0 of dengue in China was between 1.04–2.33, which agrees with
that Imai’s estimate for China (1.15–2.88) [63] and is comparable with that in Singapore
(1.24–1.48) and Vietnam (1.76–1.85), but lower than that in Thailand (1.96–3.96) and Brazil
(2.07–2.60) [19]. Our estimate of R0 should provide useful information for the herd im‑
munity threshold level and the effectiveness of vaccination or vector control measures re‑
quired to control the spread of dengue in China [64].

Our study showed that there was a strong relationship between age and dengue trans‑
mission in the population. The model fitting indicated that the dengue transmission inten‑
sity changed at a critical age Acrit. Age could be used as a scale to quantify the exposure
history in the past time, so we simply introduced Acrit to model the potential change in
transmission intensity with age. The performance of Model C and Model D, which in‑
clude a critical age in transmission intensity, was better in 28 of the 31 data sets from the
23 studies. This suggests that populations in those study areas have generally experienced
changes in the risk of dengue transmission over a period of time. The critical age might
be the time when the risk of dengue transmission changed in the study population. In
addition, the existence and identification of the critical age provide a basis for the optimal
formulation of dengue prevention and control measures. For example, for the study [41]
conducted in 2019 in Xishuangbanna, Yunnan Province,Acritwas estimated to be 60.5 years
(95% CrI: 10.9, 83.3), and the FOI was 0.0086 (95% CrI: 0.0040, 0.1340) and 0.0199 (95%
CrI: 0.0031, 0.1439) for ages younger and older than the critical age, respectively; this indi‑
cates that the risk of dengue transmission was greater in the population aged older than
60.5 years, and the prevention and control of dengue fever should be focused on the elderly
population. On the contrary, for the study [33] conducted in Cixi City, Zhejiang Province,
in 2004, Acrit was estimated to be 14 years (95% CrI: 9.7, 81.9), and the FOI was 0.0238 (95%
CrI: 0.0016, 0.1317) and 0.0029 (95% CrI: 0.0015, 0.0205) for ages younger and older than
14 years, respectively, suggesting that children and adolescents were at greater risk of
dengue transmission, and should be the focus of dengue prevention and control.

Primary infectionwith one serotype is often able to provide life‑long immunity against
the reinfection of the same serotype. However, cases of homotypic reinfection confirmed
by reverse transcriptase‑polymerase chain reaction (RT‑PCR) have recently been observed
inNicaragua [65]. SevereDENV‑2 transmission has also appeared in theDENV‑2 antibody
population in Iquitos, Peru [66,67]. The increase in infection in the older age groupmay be
due to a significant change in the risk of dengue infection in the study group 51 years ago,
as well as a decrease in antibody levels in the older age group. This indicates that isotype
immunity may not be able to obtain complete protection, especially when the specific vir‑
ulence of the virus strain is high, the infectivity is high, or the quality of host immunity is
poor [68]. In addition, because there are four types of DENV, specific immune antibodies
acquired through infectionwith one serotypemight provide only partial protection against
the other three serotypes, and it is still possible to infect a different serotype virus for a sec‑
ond time in the future. Due to the lack of specific serological data on dengue, it is difficult
to estimate the transmission intensity of each serotype in this study. However, the poten‑
tial relationship between the attenuation of antibody protection and the transmission of
dengue fever in the population could be identified through mathematical modeling. Our
comparison of model performance based on the DIC value illustrates this: The study [34]
in Chenzhou, Zhejiang Province in 2005, provided evidence of this phenomenon. The ap‑
plicable model for the data set from this study is Model D, with the estimated critical age
being 51.7 years (95% CrI: 10.3, 83.7) and the FOI being 0.0047 (95% CrI: 0.0011, 0.0537) and
0.0061 (95% CrI: 0.0006, 0.1033) for ages younger and older than the critical age, respec‑
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tively; its antibody protection is estimated to decay at a rate of 0.08 (95% CrI: 0.02, 0.10)
per year.

Although we only estimated the total FOI of all serotypes in the study areas based
on non‑serotype‑specific data, these data were still sufficient to assess the heterogeneity of
overall dengue transmission intensity between different regions and populations. Related
studies have demonstrated that FOI estimated from non‑serotype‑specific data is consis‑
tent with the sum of FOI estimated from PRNT data [27]. Although the data sets collected
cover the period from 1981 to 2019, these data sets were obtained from different geograph‑
ical locations across China. Among 23 studies collected, only three studies [27,43,45] pro‑
vided the serological surveys over multiple years in the same locations; within the short
time gaps only over 3 years, the data sets from the three studies cannot show any clear
temporal changes in transmission intensity (Figure 6). If seroprevalence survey data over
a long period, say more than 5 years were available, the potential periodicity or another
temporal trend in dengue transmission intensity could be inferred (e.g., [19]). In view of
temporally steady transmission intensity [19], the average transmission intensity over dif‑
ferent locationswithin the sameprovince anddifferent study years (if thereweremore than
one study in one province) showed the geographical patterns: It weakened from coastal ar‑
eas to inland areas, and from southern areas to northern areas (Figure 7). Thismight reflect
that the large and dense populations, including many foreigners in the southeast coastal
areas of China, provided certain beneficial conditions for the spread of dengue. Compared
to other inland provinces, Yunnan province had a relatively high transmission intensity.
This might reflect its specialty: located in the southwest of China and bordered by Myan‑
mar, Laos and Vietnam, which had a high incidence of dengue [19,20] and frequent pop‑
ulation movements, trade, and cultural exchanges. The highest mean estimate of basic
reproduction number comes from Guangxi Zhuang Autonomous Region; this could be
the consequence of the following factors of the region: bordering with Vietnam and being
parts of the coastline so that the pressure for imported cases to spread locally is enormous,
and the hot and humid climate that is good for mosquitos to live and grow and therefore
is more conducive to the spread of dengue fever.

It was reported that the force of infection has declinedwhile the average age of dengue
hemorrhagic fever (DHF) cases in Thailand has increased from8.1 to 24.3 years over the last
four decays. This is mainly driven by the decreased birth and death rate [69,70]. The lim‑
ited data we collected in this study cannot show any clear temporal change in transmission
intensity in China, as shown in Figure 6 and Figure S5. Further, our data are age‑stratified
serological data and cannot directly be used for analyzing the age of dengue hemorrhagic
fever (DHF) cases. With the similar demographic transition due to decreased birth and
death rates, it is interesting to investigate whether a similar change pattern in the age of
dengue cases also occurred in China. This information is important for the control and
prevention of dengue in China and is surely a future topic of investigation.

The advantage of using serological data for inferring the burden and transmission
intensity of dengue is that it is not affected by infectious disease surveillance systems and
case reporting systems. With more than 75% of people infected with dengue having no
clinical symptoms [4], serological data can more accurately estimate the actual number of
cases. However, there are still some problems. The main problem lies in the differences
in the methods used in the studies included. In the 23 studies, seroprevalence surveys
sampled different populations and used serum samples collected for different purposes,
which might not be representative of the total population in the study area. For example,
the sample populations of the studies [24,25] were entry and exit personnel at Zhuhai Port;
the sample populations of studies [28,41] were the blood donors in the blood donation
center; the sample populations of studies [39,40] were entry‑exit personnel at port health
examination centers; the sample population of the study [45]was patients sent to the Prince
ofWalesHospital inHongKong for diagnosis. The use of convenient serum samples could
increase the amount of serological data, but the potential bias introduced by such sampling
must be considered when analyzing such data.
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There are some other limitations in our research. First, when using the models to esti‑
mate R0 through FOI, we assumed that dengue was in endemic balance, which means that
the estimates of R0 for all data sets were greater than 1. However, this was obviously not
applicable to areaswhere denguewas not endemic or the casesweremainly imported from
outside. Secondly, the literature review for dengue showed that there were still few stud‑
ies in China using serological data as a tool to monitor dengue transmission. Most model
studies used case notification data, and its reliability largely depended on the quality of
the infectious diseases surveillance system and reporting system [71]. A better understand‑
ing of changes in transmission intensity can not only improve estimates of the burden of
disease caused by dengue but also help policymakers develop effective prevention and
control plans. Therefore, we advocate the more extensive and routine use of serological
surveys as a monitoring tool to provide valuable data for the study of infectious disease
as dengue.
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