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Abstract: Schistosomiasis japonica is a zoonotic parasitic disease causing liver fibrosis. Liver sinu-
soidal endothelial cells (LSECs) exhibit fenestrations, which promote hepatocyte regeneration and
reverses the process of liver fibrosis. To investigate the pathological changes of LSECs in schistosomi-
asis, we established a Schistosomiasis model. The population, phenotype, and secretory function of
LSECs were detected by flow cytometry at 20, 28, and 42 days post infection. The changes in LSEC
fenestration and basement membrane were observed through scanning electron microscopy (SEM)
and transmission electron microscopy (TEM). Quantitative real-time PCR and Western blotting were
used to detect the expression of molecules associated with epithelial–mesenchymal transition (EMT)
and fibrosis of LSECs and the liver. The flow cytometry results showed that the total LSEC propor-
tions, differentiated LSEC proportions, and nitric oxide (NO) secretion of LSECs were decreased,
and the proportion of dedifferentiated LSECs increased significantly post infection. The electron
microscopy results showed that the number of fenestrate was decreased and there was complete
basement membrane formation in LSECs following infection. The qPCR and Western blot results
showed that EMT, and fibrosis-related indicators of LSECs and the liver changed significantly during
the early stages of infection and were aggravated in the middle and late stages. The pathological
changes in LSECs may promote EMT and liver fibrosis induced by Schistosoma japonicum infection.

Keywords: Schistosoma japonicum; liver sinusoidal endothelial cells; de-differentiation; epithelial–mesenchymal
transition; liver fibrosis

1. Introduction

Schistosomiasis japonica is a zoonotic parasitic disease. It is primarily prevalent in
China, the Philippines, and other Asian countries. Eggs are deposited in the host liver,
causing portal hypertension, liver fibrosis, and splenomegaly, seriously threatening human
health [1]. By the end of 2020, there were still 450 endemic counties (cities and districts) in
China, 29,517 cases of advanced schistosomiasis, and approximately 71,370,400 people at
risk of infection [2]. After several efforts, schistosomiasis infection has been well controlled
in China. Infection control was achieved in 2008, and transmission control was completed
in 2015 [3]. In contrast, the risk of transmission remains high due to several hosts and
the ecological environment for snail breeding [4]. Schistosomiasis remains endemic in
some areas of China [5]. Moreover, there are still many chronic schistosomiasis patients
in China [2]. In February 2022, the WHO published new guidelines to update the global
public health strategy against schistosomiasis [6]. Due to a lack of effective treatment for
schistosomiasis liver fibrosis, there is an urgent need to study the regulatory mechanism of
liver fibrosis.
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Chronic liver injury leads to liver inflammation and fibrosis, which activates myofi-
broblasts and leads to the secretion of extracellular matrix proteins [7]. Liver sinusoidal en-
dothelial cells (LSECs) in the hepatic sinuses are the first cells to respond to liver injury [8,9].
As a barrier between hepatocytes and blood flow, LSECs have fenestrations due to a lack
of a basal membrane, which can promote nutrient transport [8]. Under physiological
conditions, LSECs can regulate hepatic vascular tension and help maintain low portal
pressure [9]. LSECs maintain hepatic stellate cells and Kupffer cells in the resting state and
promote immune tolerance in the liver [8]. Previous research has shown that LSECs are
involved in initiating hepatocyte regeneration and reversing the process of liver fibrosis. In
contrast, abnormal activation of LSECs associated with chronic liver injury can also induce
liver fibrosis [10].

There are two phenotypes of LSECs, including differentiated and dedifferentiated
phenotypes. Differentiated LSECs have abundant fenestral structures and lack a complete
basement membrane, which is essential to inducing hepatocyte regeneration and maintain-
ing HSCs in a resting state [9]. Dedifferentiated LSECs lose their fenestral structure and
form a complete basement membrane beneath the cells. This can activate HSC transfor-
mation into myofibroblasts and promote the development of liver fibrosis [11,12]. Some
studies have shown that LSECs can induce the dedifferentiation type [13] or endothelial-
to-mesenchymal transition (EMT) during the early stage of hepatic fibrosis [14]. Thus,
how LSECs change during the model of liver fibrosis induced by schistosoma infection
remains unknown.

In this study, a mouse model of Schistosoma japonicum infection was used. LSECs were
isolated using gradient density centrifugation from the model mice. The changes in LSEC
phenotype and function were detected by flow cytometry. The ultrastructure of LSECs was
observed by scanning and transmission electron microscopes. The changes in EMT and
fibrosis in LSECs and liver tissues were detected by qPCR and Western blot. This study
sought to investigate the changes in LSECs in the infected model of schistosoma and the
effect on liver fibrosis. These findings will be helpful to identify an effective strategy to
treat liver fibrosis induced by S. japonicum infection.

2. Materials and Methods
2.1. Ethics Statement

Our experiments involving C57BL/6 mice were performed according to China’s
Laboratory of Animal Welfare and Ethics Committee (LAWEC). The LAWEC Committee
of the National Institute of Parasitic Diseases Chinese Center for Disease Control and
Prevention approved the protocol (NIPD-2020-10).

2.2. Animals and Parasites

Female specific pathogen-free (SPF) C57BL/6 mice (6–8 weeks old; body weight
20 ± 2 g) were purchased from Shanghai Lingchang Biotechnology Co., Ltd. (Shanghai,
China). Mice were housed in an SPF-grade animal room at our institute. The vector-borne
tropical ward of our institute provided cerariae. Mice were percutaneously infected with
cercariae by shaving the skin of the abdomen.

2.3. Reagents

Dulbecco’s phosphate-buffered saline (DPBS) and albumin from bovine serum (BSA)
were purchased from Gibco (Grand Island, NY, USA). A Percoll cell separation solu-
tion was purchased from GE (Chicago, IL, USA), and collagenase from clostridium his-
tolyticum was purchased from Sigma-Aldrich (St. Louis, MO, USA). Fluorescently con-
jugated antibodies, including PerCP-Cy5.5 rat anti-mouse CD45, FITC rat anti-mouse
CD146, Fixable Viability Stain 575V, PE rat anti-mouse CD32b, Bv421 rat anti-mouse
TGF-β and AF647 rat anti-mouse eNOS were purchased from Invitrogen Corporation
(Waltham, MA, USA). Mouse CD146 kit Invitrogen™ was provided by Miltenyi Biotec Co.,
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Ltd. (Bergisch Gladbach, Germany). Hyper ScriptTMIII RT SuperMix and Universal SYBR
qPCR Mix were provided by Enzy Artisan (Shanghai, China).

2.4. Infection and Cell Isolation

A total of 60 C57BL/6 mice were randomly divided into an infected or uninfected
group (30 mice/group). Mice in the infected group were anesthetized via an intraperitoneal
injection of 1% sodium pentobarbital. Mice with shaved abdomen skin were percutaneously
infected with 20 ± 1 cercariae. The uninfected group did not receive any treatment.

After anesthetizing the mice, 10 infected and 10 uninfected mice were sacrificed at 20,
28, and 42 days post infection, respectively. Mice were sterilized with 75% alcohol, secured
to the board, and perfused with 1×Dulbecco’s phosphate-buffered saline (DPBS) to remove
red blood cells. After perfusion, the liver was cut into fragments. Collagenase dissociated
liver tissue into a single-cell suspension. Cells were separated by differential gradient
centrifugation with 25%/50% Percoll solution [15]. The supernatant and lipid layer was
discarded, and the cells were washed twice with DPBS. The red cells were lysed using BD
Pharm Lyse™ lysing solution (Becton Dickinson and Company, Franklin Lakes, NJ, USA)
to obtain hepatic non-parenchymal cells.

The concentrations of the hepatic non-parenchymal cells were adjusted to 1× 107 cells.
We used an LSEC Isolation Kit (MiltenyiBiotec, Auburn, CA, USA) to isolate LSECs. The
cellular suspension was centrifuged, and the supernatant was completely removed. The
cell pellet was resuspended in 90 µL of buffer (phosphate-buffered saline, pH 7.2; 0.025%
bovine serum albumin [BSA]; and 0.1 mM ethylenediaminetetraacetic acid [EDTA]). Next,
10 µL CD146 microbeads per 107 total cells were added, and the mixture was incubated at
4 ◦C for 15 min. The cells were washed by adding 1 mL buffer and centrifuged at 300× g for
10 min, and the supernatant was completely removed using a pipette. The cell precipitates
were resuspended with 500 µL buffer. The magnetic rack was placed, and the magnetic
sorting column was placed in the magnetic field. Next, 500 µL buffer was added to wash
the column, and the cell suspension was passed through the column. The column was
washed with buffer three times. The sorting column was removed from the magnetic rack
and placed on the appropriate collection tube. Then, 1 mL buffer was added to the column
and the magnetic-labeled LSECs were flushed out through the plunger.

2.5. Flow Cytometry

The hepatic non-parenchymal cells were adjusted to 1 × 106/mL using fluorescence-
activated cell sorting (FACS) buffer (2% BSA and 2 mM EDTA in DPBS). The following
antibodies were used in our experiments: Fixable Viability Stain 575V, CD45-Percp-cy5.5,
CD146-FITC, CD32b-PE, and TGF-β Bv421. LSECs were defined as CD45− CD146+.

Each 1 mL cell suspension was mixed with 1 µL Fixable Viability Stain 575V, incu-
bated in the dark at room temperature for 15 min, and the cells were washed twice. Cells
were stained with different combinations of antibodies for 30 min at room temperature
(24–26 ◦C) in the dark, and washed with FACS buffer once. The fixation and permeabi-
lization solution was added, incubated in the dark at 4 ◦C for 20 min, and the cells were
washed twice. The cells were stained with intracellular anti-mouse TGF-β diluted anti-
body (antibody was diluted with 1 × Perm/Wash buffer) at 4 ◦C for 30 min, and washed
twice. The cells were fixed in 1% paraformaldehyde at 4 ◦C for 20 min, and the cells were
washed once. Next, 200 µL staining buffer was added to each sample, and the cells were
suspended for detection. All experiments were carried out using a BD FACS Verse flow
cytometer (BD Biosciences). Data were analyzed with FlowJo 10 software (TreeStar Inc.,
Ashland, OR, USA). The proportions of LSECs, CD32b+ LSECs, TGF-β+ LSECs, and eNOS
expression were measured.

2.6. Electron Microscopy

Scanning electron microscope (SEM): after removing the red blood cells from the liver,
an electron microscope fixation solution containing 2.5% glutaraldehyde was perfused into
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the mouse liver. After the liver had hardened, the edge of the right liver lobe was cut to
approximately 2 mm × 2 mm and soaked into the electron microscope fixation solution for
2 h. The fixed samples were rinsed three times with phosphate buffer (0.1M) (PB, PH 7.4).
The samples were fixed with 1% osmium acid at room temperature for 1–2 h avoiding light,
and rinsed with PB three times. The samples were dehydrated, dried, and sprayed with
gold for 30 s. The LSEC window pores were observed with SEM and photographed.

Transmission electron microscope (TEM): TEM samples were dehydrated twice with
30–100% alcohol and 100% acetone. The samples were embedded and polymerized at 60 ◦C
for 48 h to prepare 60–80 µm ultra-thin slices. The samples were stained to avoid light with
a 2% uranium acetate saturated alcohol solution for 8 min and to prevent carbon dioxide
with a lead citrate solution for 8 min. After cleaning and drying, the samples were observed
and photographed with a transmission electron microscope to evaluate the changes in the
LSEC basement membrane.

2.7. Reverse Transcription Quantitative PCR

The total RNA from LSECs and mouse livers were extracted using TRIzol. Comple-
mentary DNA (cDNA) was synthesized using 1 µg total RNA with a Prime Script RT
Master Mix (Takara, Shiga). RT-qPCR was used to determine the level of gene expres-
sion, including those in the liver samples (E-cadherin, N-cadherin, fibronectin, laminin,
vimentin, α-SMA, collagen I, III, and IV) and LSEC samples (E-cadherin, VE-cadherin,
Zonula occludens1, fibronectin, and α-SMA) using Fast SYBR Green master Mix (Bio-Rad,
Hercules, CA, USA). The qPCR reaction system included 10 µL 2 × S6 Universal SYBR
qPCR Mix, 1 µL upstream primers, 1 µL downstream primers, 3 µL cDNA, and 5 µL
ddH2O. The primers used in this study are listed in Table 1, which were synthesized by
Enzy Artisan Co., LTD (Shanghai, China). The qPCR reaction conditions were as follows:
95 ◦C for 30 s; 95 ◦C for 5 s, 60 ◦C for 30 s, over 38 cycles. After the circulating value (Ct)
was obtained, the relative expression of the target gene was evaluated using 2−∆∆Ct.

Table 1. Primer sequences for qPCR.

Gene Name Primer Sequence (5′→3′)

GAPDH
F:CATCACTGCCACCCAGAAGACTG

R:ATGCCATGAGCTTCCCGTTCAG

E-cadherin
F:GGTCATCAGTGTGCTCACCTCT
R:GCTGTTGTGCTCAAGCCTTCAC

VE-cadherin
F:GAACGAGGACAGCAACTTCACC
R:GTTAGCGTGCTGGTTCCAGTCA

Zonula occludens1 (ZO1)
F:GTTGGTACGGTGCCCTGAAAGA
R:GCTGACAGGTAGGACAGACGAT

Fibronectin (FN)
F:GGTCCTCTCCTTCCATCTCCTTAC
R:GGACCCCTGAGCATCTTGAGTG

2.8. Western Blot

The mouse liver tissues were collected and lysed using a radioimmunoprecipitation assay
(RIPA) lysis buffer (Shanghai Epizyme Biomedical Technology Co., Ltd., Shanghai, China)
supplemented with a protease inhibitor cocktail and EDTA (Beyotime Biotechnology,
Shanghai, China). The lysates were centrifuged at 12,000× g for 10 min. The protein con-
centrations were detected using the BCA method. After boiling at 100 ◦C for 10 min, the sam-
ples were loaded into wells, and SDS-polyacrylamide gel electrophoresis was performed at
90 V for approximately 1 h. The protein strips were transferred to polyvinylidene fluoride
(PVDF) membranes. After blocking, the membranes were incubated sequentially with
primary and secondary antibodies. Anti-GAPDH (5174S, Cell Signaling Technology, CST,
Danvers, MA, USA), anti-a-SMA (19245S, CST), and anti-Collagen I a1 (bs-7158R, Bioss)
antibodies were used as the primary antibodies. A horseradish peroxidase-conjugated
anti-mouse IgG antibody (7076S, CST) was used as the secondary antibody. Immunore-
active bands were visualized on digital images captured with a ChemiDoc MP Imaging
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System (Bio-Rad). The band intensities were quantified using Image J software (NIH,
Bethesda, MD, USA).

2.9. Statistical Analysis

Data analysis was performed using GraphPad Prism Version 9.0.0 and SPSS 20.0
(IBM Corp., Armonk, NY, USA). Differences between the groups were assessed using a
nonparametric one-way analysis of variance. Data were presented as the mean ± standard
deviation. p < 0.05 indicated a significant difference.

3. Results
3.1. The Changes in the Proportion of LSECs in Mice Infected with S. japonicum

The flow cytometry results showed that the percentage of LSECs (CD45-CD146+) in
hepatic non-parenchymal cells was (28.70 ± 6.41)%, (9.43 ± 4.88)%, and (2.18 ± 0.49)%
at 20, 28, and 42 days, respectively following S. japonicum infection. Compared with the
uninfected group (50.40± 1.68)%, the proportion of LSECs decreased significantly (p < 0.01)
(Figure 1A,D). After infection for 20, 28, and 42 days, the proportion of CD32b+ LSECs
was (95.80 ± 0.28)%, (89.22 ± 4.03)%, and (74.82 ± 5.06)%, which was lower than that of
the uninfected group (97.27 ± 0.58)% (Figure 1B,E). The TGF-β+ LSEC population was
(80.20 ± 1.78)%, (88.37 ± 1.49)%, and (81.83 ± 3.55)%, which was higher than that of the
uninfected group (73.37 ± 3.44)% (Figure 1C,F). The results indicated that the proportion of
differentiated LSECs (CD32b+ LSECs) decreased, whereas the proportion of dedifferentiated
LSECs (TGF-β+ LSECs) significantly increased after infection. The expression of eNOS in
LSECs decreased significantly post infection during the 20th to 42th day post infection.
This indicated that the secretion of NO in LSECs was decreased, and the function of LSECs
was damaged.Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 6 of 13 
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Figure 1. Changes in the LSEC phenotype after being infected with S. japonicum. (A) The population
of LSECs in hepatic non-parenchymal cells after infection. (B) The population of CD32b+ LSECs
in hepatic non-parenchymal cells after infection. (C) The population of TGF-β+ LSECs in hepatic
non-parenchymal cells after infection. (D) The population of eNOS+ LSECs in the hepatic non-
parenchymal cells after infection. (E) Histogram showing the proportion of LSECs (CD45−CD146+).
(F) Histogram of the proportion of CD32b+ LSECs. (G) Histogram of the proportion of TGF-β+ LSECs.
(H) Histogram of the proportion of eNOS+ LSECs. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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3.2. Changes in the Number of Fenestrations of LSEC after Infection

The SEM results showed that the LSECs of the uninfected mice displayed multiple
fenestrations, which dispersed and connected to form a sieve plate. The number of fenes-
trations in LSEC decreased significantly post infection. In contrast, the number of LSECs
without fenestration increased continuously (Figure 2A–D). The TEM results revealed that
the number of microvilli in the disc space were reduced after infection for 42 days. A large
amount of collagen was deposited in the hepatic disc space in the liver of infected mice. In
the uninfected group, LSECs in the liver of the mice had obvious fenestration and did not
have a basement membrane. After being infected for 42 days, fenestration disappeared,
and the basement membrane appeared under the LSECs (Figure 2E–J).
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Figure 2. The structure of LSEC fenestration was altered in the liver of mice following infection.
(A) The number of LSEC fenestration in the uninfected group. (B) The number of LSEC fenestra-
tion for 20 days after infection. (C) The number of LSEC fenestrations for 28 days post infection.
(D) The number of LSEC fenestrations for 42 days post infection. (E) The structure of the LSEC
basement membrane in the uninfected group. (F) The structure of the LSEC basement membrane
for 42 days post infection. (G) The number of microvilli in the hepatic disc space of the uninfected
mice (TEM magnification). (H) The structure of the LSEC basement membrane in the uninfected
group (TEM magnification). (I) The number of microvilli and collagen in the hepatic disc space
for 42 days post infection (TEM magnification). (J) The LSEC basement membrane structure for
42 days post infection (TEM magnification). SP, sieve plate; F, fenestration; G, gap; Ed, sinusoidal
endothelial cells; SOD, space of Disse; MV, microvilli; Col, collagen; small arrow, fenestration; big
arrow, basement membrane.

3.3. The Changes of EMT in LSECs after Infection with S. japonicum

The qPCR results showed that after infection for 20 days, the level of E-cadherin mRNA
expression in the LSECs was significantly lower than that in the uninfected group (p < 0.05)
(Figure 3A). However, the levels of VE-cadherin, ZO1, fibronectin, and α-SMA mRNA
expression in LSECs did not differ from that of the uninfected group. Following infection
for 28 and 42 days, the level of E-cadherin, VE-cadherin, and ZO1 mRNA expression in
LSECs decreased (Figure 3A–C). In contrast, the levels of fibronectin and α-SMA mRNA
expression increased significantly (Figure 3D–E). These results indicated that LSECs began
EMT changes during the early stages after infection, and the LSECs transformed into
fibroblasts during the middle and late stages, producing large amounts of α-SMA.

3.4. EMT and Liver Fibrosis in the Liver after Infection with S. japonicum

The qPCR results showed that the levels of mRNA markers associated with EMT
(vimentin) and liver fibrosis (Collagen I, III, and IV) in the liver at 20 days post infection
were significantly higher than those in the uninfected group (Figure 4E,G–I). After infection
for 28 and 42 days, the level of E-cadherin mRNA decreased (Figure 4A), whereas the level
of marker mRNA associated with EMT (N-cadherin, fibronectin, laminin, and vimentin)
were increased significantly (Figure 4B–E). The levels of marker mRNA associated with
liver fibrosis, including α-SMA, collagen I, III, and IV, were increased at 28 and 42 days post
infection (Figure 4F–I). The Western blot results showed that the protein levels of α-SMA
and collagen I were increased consistently at 28 and 42 days post infection (Figure 4J–L).
These results indicated that at 20 days post infection, the liver began to undergo moderate
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changes in fibrosis and EMT. After infection for 28 and 42 days, the changes in fibrosis and
EMT in the liver became more significant.
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*** p < 0.001; **** p < 0.0001.
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4. Discussion

Schistosomiasis is a globally distributed neglected tropical disease, which primarily
occurs in tropical and subtropical regions [16]. Worldwide, approximately 236 million
people are infected with schistosomes, 90% of which are located in sub-Saharan Africa,
and results in approximately 300,000 deaths per year [17,18]. In China, according to the
national schistosomiasis epidemic bulletin in 2020, although schistosomiasis has a low
prevalence, there remains a large number of patients with schistosomiasis liver fibrosis [2].
At present, there is no effective treatment for liver fibrosis induced by schistosoma infection.
Therefore, elucidating the regulatory mechanism of schistosomiasis liver fibrosis is essential
to providing potential targets for the treatment of liver fibrosis.

After being infected with S. japonicum, the eggs are deposited in the host liver. Several
antigens from the schistosomula and soluble eggs that are released induce both immune and
inflammatory responses [19,20]. Some cells (e.g., hepatocytes, hepatic stellate cells, hepatic
sinusoidal endothelial cells, and bile duct epithelial cells) transform into myofibroblasts
(MFB), releasing large amounts of extracellular matrix (ECM) [21]. The mass transformation
to MFB represents a key link in the development of hepatic fibrosis. A large amount of
ECM deposits in the liver tissue leads to the formation of schistosomiasis liver fibrosis and
seriously affects human health [22].

LSECs are at the highest proportion in mouse livers, accounting for approximately 70%
of liver non-parenchymal cells [23]. Moreover, LSECs play an essential role in maintaining
the balance between liver regeneration and fibrosis [10]. LSECs have differentiation and
dedifferentiation phenotypes. The differentiated LSECs have a normal function, which are
rich in fenestration and lack a complete basement membrane. The permeability of hepatic
sinuses depends on this unique structure, which promotes the exchange of nutrients and
gases between cells. Nitric oxide synthase (eNOS) activity is high in differentiated LSECs,
which produce and release NO, and maintain the resting state of HSCs [8]. In chronic liver
injury, the fenestration diameter of LSECs decreased, and a complete basement membrane
gradually formed. This results in changes to LSEC dedifferentiation [12]. During the
early stage of non-alcoholic liver injury, chronic hepatitis, and other models, LSECs exhibit
changes in dedifferentiation [13,24].

The key feature of MFB activation is epithelial–mesenchymal transition (EMT) [21,25–27].
During the change in EMT, epithelium acquires mesenchymal properties, which plays
an important role in tissue repair, inflammation, fibrosis, and other processes [28,29].
EMT is an important source of myofibroblasts [10]. Growing evidence shows that when
EMT is dominant in tissues, liver tissues progress toward fibrosis [27]. Dedifferentiated
LSECs transform into myofibroblast-like cells through EMT and secrete a large amount
of fibronectin and α-SMA to promote fibrosis formation [30–32]. Therefore, maintaining
LSECs with a differentiated phenotype is an effective strategy for reversing hepatic fibrosis.

After infection, LSECs developed a dedifferentiated phenotype and changed into
mesenchymal cells. CD32b is an essential indicator of differentiated LSEC, and high levels
of TGF-β were detected in dedifferentiated LSEC [12,33]. Following infection for 20, 28,
and 42 days, the proportion of total LSECs (CD45−CD146+) and differentiation phenotype
CD32b+ LSECs in infected mice decreased continuously, whereas the dedifferentiation
phenotype (TGF-β+ LSECs) increased significantly. Following infection, the level of eNOS
protein expression in LSECs decreased significantly, indicating that the amount of NO
secreted by LSECs had decreased significantly. This finding suggested that the ability of
LSECs to maintain the resting state of HSCs was reduced. Moreover, the number of fenestra-
tions in LSECs decreased and the basement membrane formed. This finding suggested that
LSECs converted to a dedifferentiated phenotype in the middle and late stages of infection.
EMT is a dynamic pathological process. Some of the dedifferentiated LSECs underwent
further EMT changes and transformed into mesenchymal cells, producing a large amount
of ECM. The level of epithelial marker mRNA, including E-cadherin, VE-cadherin, and
Zo1, decreased, while mesenchymal markers (FN1 and α-SMA) increased during the early
stages. Additionally, they changed more significantly during the middle and late stages
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of infection. These results indicated that the dedifferentiation and EMT in LSECs began
during the early stages of infection (20 days post infection). With the development of
infection, the extent of pathological changes aggravated in the LSECs.

Pathological changes in LSECs could further promote the progression of liver fibro-
sis induced by S. japonicum infection. On the one hand, dedifferentiated LSECs could
induce HSC activation. Dedifferentiated LSECs reduced NO secretion but greatly increased
TGF-β secretion post infection. NO benefits the maintenance of HSC quiescence [11,34],
whereas TGF-β is a classical cytokine that activates HSCs [35]. Activated HSCs were the
primary source of MFB [36,37]. Therefore, dedifferentiated LSECs had transformed into a
pro-inflammatory phenotype, which could indirectly promote liver fibrosis by activating
HSCs. On the other hand, dedifferentiated LSECs could directly undergo EMT changes,
transform into MFB, produce a large number of ECM, and promote hepatic fibrosis [38,39].
Maintaining the differentiated phenotype of LSEC is an effective treatment for hepatic
fibrosis. Some studies have shown that the administration of statin treatment or actin
depolymerization to maintain the LSEC phenotype could decrease portal pressure and
improve NASH features in an early NASH model [33,40]. Long noncoding RNAs can
interact with EZH2, and maintain LSEC differentiation through KLF2-eNOS-sGC pathway
and alleviate CCl4-induced liver fibrosis [41].

It has been well established that egg deposition in the liver releases soluble egg
antigens and recruits lymphocytes, leading to the formation of granuloma and liver
fibrosis [42,43]. However, our experiments indicated that egg deposition in the liver was
not the only cause of liver fibrosis. LSEC injury during the early stage of infection also
promoted the progression of liver fibrosis. It was established that S. japonicum lay eggs
about 24 days post infection. The pathological changes in LSECs occurred earlier than
schistosome oviposition. Pathological lesions appeared in LSECs on the 20th day or earlier
after infection. Pathological injury to LSECs could also induce EMT and fibrosis changes
in the liver tissue. The qPCR and Western blot results showed that markers of EMT and
fibrosis in the liver changed during the early stage (20th day post infection) and aggravated
in the middle and late stages of infection. The pathological changes in the liver were
consistent with that of LSECs. Thus, histological changes in LSECs induced by S. japonicum
infection are also important factors for promoting liver fibrosis.

However, our study only simultaneously observed EMT and fibrosis changes in
LSEC and liver tissue in schistosomiasis and did not determine whether EMT changes
occurred earlier than liver fibrosis. It also remains unknown whether EMT changes cause
liver fibrosis. Therefore, further experiments are needed to explore the role of EMT in
liver fibrosis.

5. Conclusions

In the present study, we identified changes in the pathology and functional impairment
of LSEC following an infection with S. japonicum. These changes predated schistosome
oviposition. The changes in LSEC were consistent with the process of liver fibrosis in-
duced by S. japonicum infection. This indicates that LSECs are involved in the regulation
of schistosomiasis liver fibrosis. Therefore, using drugs or Lnc RNA to target the patho-
logical changes in LSECs represents a promising strategy that can alleviate or reverse
schistosomiasis liver fibrosis.
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