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Abstract: To better guide dengue prevention and control efforts, the use of routinely collected data to
develop risk maps is proposed. For this purpose, dengue experts identified indicators representative
of entomological, epidemiological and demographic risks, hereafter called components, by using
surveillance data aggregated at the level of Consejos Populares (CPs) in two municipalities of Cuba
(Santiago de Cuba and Cienfuegos) in the period of 2010–2015. Two vulnerability models (one with
equally weighted components and one with data-derived weights using Principal Component Analy-
sis), and three incidence-based risk models were built to construct risk maps. The correlation between
the two vulnerability models was high (tau > 0.89). The single-component and multicomponent
incidence-based models were also highly correlated (tau ≥ 0.9). However, the agreement between the
vulnerability- and the incidence-based risk maps was below 0.6 in the setting with a prolonged history
of dengue transmission. This may suggest that an incidence-based approach does not fully reflect
the complexity of vulnerability for future transmission. The small difference between single- and
multicomponent incidence maps indicates that in a setting with a narrow availability of data, simpler
models can be used. Nevertheless, the generalized linear mixed multicomponent model provides
information of covariate-adjusted and spatially smoothed relative risks of disease transmission, which
can be important for the prospective evaluation of an intervention strategy. In conclusion, caution is
needed when interpreting risk maps, as the results vary depending on the importance given to the
components involved in disease transmission. The multicomponent vulnerability mapping needs to
be prospectively validated based on an intervention trial targeting high-risk areas.

Keywords: dengue; arbovirus; Aedes; epidemiology; prevention; stratification; risk mapping; Cuba

1. Introduction

Incidence of diseases, such as dengue, Zika and chikungunya, which are significantly
contributing to the global burden of diseases, are steadily expanding in the world [1]. In
particular, dengue is caused by one of four dengue virus serotypes (DENV-1, DENV-2,
DENV-3 and DENV-4) belonging to the Flaviviridae family [2]. The control of arboviruses
and also other viral diseases with epidemic potential becomes progressively more difficult,
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and struggles with increasing costs of control interventions and, in the case of vector control
programs, increasing insecticide resistance [3]. It has been repeatedly highlighted that there
is a critical need to develop novel approaches to prevent and/or control these diseases [4–7].

As transmission of infectious diseases, specifically vector-borne ones, is highly het-
erogeneous in space and time [8], several researchers as well as the World Health Or-
ganization [9] proposed a better use of routinely collected surveillance data, for instance
through a risk mapping tool, to guide timely and effective management of outbreaks [10,11].
This is possible in Low and Middle Income Countries (LMIC), where disease incidence,
disease-related risk factors and surveillance data are often available on a weekly or monthly
basis, mainly from public health services. The system most often used for systematic
reporting with a nation-wide coverage is the District Health Information System version 2
(DHIS2) [12].

Spatial and temporal risk mapping based on surveillance data is not only important
for arboviral disease prevention but also for other infectious diseases, such as malaria
and COVID-19, where control measures are intensified in a geographical area when an
epidemic occurs, measured through test-positivity rate, case counts or hospitalization
rates exceeding a threshold [13–15]. Additionally, for arbovirus control, risk mapping
allows for guiding preventive measures complementary to the widely applied control
efforts reactive to an outbreak. Indeed, current vector control strategies in dengue-endemic
countries—Aedes foci detection, environmental management, larvicide application and
adulticide spraying—are mainly carried out/intensified in response to detected clinical
cases but fail to contain outbreaks or the spread of emerging Aedes-borne diseases such as
chikungunya or Zika. Such a reactive outbreak response means in practice that actions are
implemented several days or weeks after infection occurred—usually near or after the peak
of an epidemic [16]—and are directed towards the case households, which may not be the
major sites of infection given the high daytime mobility of the population [17,18].

An enhanced approach, supported by theoretical evidence, focuses on the identifi-
cation of areas that concentrate a large fraction of Aedes-borne disease cases or elevated
transmission risk for reframing vector control actions [19]. This will allow control pro-
grams to target their interventions to the areas at highest risk of transmission and, hence,
increase the quality while decreasing the cost of the interventions and also decrease the use
of insecticides, which in itself affects insecticide-resistance development of the involved
vectors [18].

Risk mapping for arboviruses exists in the shape of single-component temporal or
spatial models using clinical case reports [20–23]. The traditional approach to measure a
relative disease risk uses the Standardized Incidence Ratio (SIR). However, this approach
has been found to be instable, especially in sparsely populated areas [24]. Alternative
solutions have been proposed to overcome this lack of reliability and also to take into
consideration the effect of other risk (and/or protective) factors [25].

Clinical dengue case incidence is a proxy for transmission risk [26], however, there
are many asymptomatic cases, which are responsible for silent and cryptic transmission of
arboviruses. In order to take this aspect into account, the accuracy of risk models can be
improved by including, besides case data, other factors influencing transmission, such as
population density, entomological infestation and environmental and social characteris-
tics [17,27–31]. Such multicomponent approaches for dengue risk mapping can be based on
indices or on models [27]. For the former, vulnerability indices have been proposed based
on exposure and susceptibility indicators [32], which typically integrate multiple indicators
in a single measure. They generally rely on the aggregation of data of different indicators
using a weighted summation.

Several vulnerability frameworks have been developed and later adapted for health
risk assessment. For example, the European research project MOVE (Methods for the Im-
provement of Vulnerability Assessment in Europe) [33] created a framework for the study of
climate change that has been adapted to assess socioeconomic vulnerability to dengue fever
in Cali, Colombia [30]. In Brazil, the Health Vulnerability Index (HVI) developed by Geren-
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cia de Epidemiologia Informaçao (GEEPI, 2013) Belo Horizonte and the ArboAlvo model
have been used for the study of dengue and other arboviral diseases [34,35]. At a global
scale, maps of vulnerability to infectious diseases have been created using methodologies
such as the Infectious Disease Vulnerability Index (IDVI) [36] and the Water-Associated
Disease Index (WADI) [32]. The WADI has been used for dengue vulnerability estimation
and mapping at different spatial scales in several countries [32,37–40]. This index has been
widely used because of its ease of implementing and because it is constructed using freely
available data such as living conditions, population characteristics, climate, land use and
land cover [32].

The knowledge-based multicomponent index that we present here, different from the
above approaches as it only using routine data at the local level, takes into account several
indicators describing the multiple dimensions of the complex web of factors influencing the
transmission of dengue and affecting the susceptibility of the population and the exposure
to the vector transmitting the virus (the agent). The components and indicators included
were proposed by experts and technical staff active in vector control programs and in
epidemiological research. The index is not only built based upon their experience but also
takes into account the evidence of the published literature and the availability of the data.

Alternatively, generalized linear mixed modeling is an established tool to obtain dis-
ease risk estimates and maps, which may improve local estimates by incorporating spatial
correlation and the effects of explanatory variables [41]. The variety of the results given by
several approaches may not necessarily be a symptom of wrongful implementation, but of
different views of a complex problem. A balance should be sought to design the simplest,
yet most accurate, model that can be used in a routine setting to guide disease control
efforts. A compromise must be found between the level of empirical detail needed, the
availability of information and the potential applicability for the design of vector control
interventions [42].

In this study, we aim to describe methods to identify areas of higher vulnerability
for dengue transmission. This can be used by control programs to guide prevention and
control strategies targeting high-risk areas. Therefore, we present different approaches,
incidence- and vulnerability-based, of single- and multicomponent risk mapping based on
surveillance data that are available at a decentralized level (the level of decision making for
control actions) in Cuba.

2. Materials and Methods
2.1. Design

We design a methodological study to compare multicomponent risk models with
single-component models for disease occurrence and evaluate the added value of the
former. We illustrate the application of this methodology through a case study in two
Cuban settings.

2.2. Settings and Data Collection

Settings. For this case study, we selected Cienfuegos and Santiago de Cuba, two cities
in Cuba with a different history of dengue transmission and context. These two munici-
palities are the capital cities of their respective provinces. The spatial unit of analysis was
the Consejo Popular—hereafter called CP, in plural, CPs—which is a local administrative
structure with representatives of the government, community organizations and the health
sector, among others [43].

The Santiago de Cuba municipality, located in the southeast of Cuba, has a population
of 506,037 inhabitants and a population density of 490.5 inhabitants/km2 [44]. There are
19 urban CPs, with an average population of 15,035 inhabitants. The climate is warm
with high temperatures (28–34 ◦C) and little rainfall, mainly between June and September.
Between 1997 and 2010, the four serotypes of dengue caused large but controlled outbreaks,
namely in 2001 (less than 50 cases), 2006–2007 (approximately 13,000 cases) and 2010 (ap-
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proximately 2600 cases). Since 2010, the transmission pattern is mostly endemo-epidemic
and cases are reported every year [45–48].

The Cienfuegos municipality, located in the center-southern part of Cuba, has 171,946 in-
habitants and a population density of 483.5 inhabitants/km2 [44]. There are 19 CPs, with an
average population of 8636 inhabitants. Temperatures oscillating between 20.9 and 31 ◦C and
scarce rainfall concentrated between June and September characterize the weather of this city.
After 1981, no dengue cases were detected for two decades. Between 2001 and 2010, only two
small outbreaks occurred: 2001 (14 cases) and 2006 (136 cases). Afterwards, every year there
were few cases until an outbreak of 6000 cases in 2014. From 2015 onwards, all four serotypes
are present, and this area should now be considered dengue-endemic (personal communication
of Toledo ME).

Data collection. In Cuba, the surveillance system from the Ministry of Health (MOH)
routinely collects the following information, available at the level of municipality and
CP. Epidemiological data of laboratory-confirmed dengue cases from all municipal health
structures are reported in the routine surveillance system of the municipal epidemiology
unit of the MOH. These are clinically suspected dengue cases that tested positive on the
Ultra-micro-ELISA dengue IgM test, following the national protocol [49].

The dataset used in our analysis contains for each patient the date of onset of symp-
toms, the date of blood sample collection, the patient’s residential address and whether the
case had alarm signs indicating a severe dengue case, based on the WHO guidelines [50].
The Cuban routine surveillance system combines a passive approach with active case
finding from the moment the first arboviral disease case is confirmed. This contributes to
the data quality and completeness. The data obtained cover the period of 2010–2014 for
Santiago. In the case of Cienfuegos, the study period starts in 2012, coinciding with the
start of regular reports of dengue cases. In both municipalities, the end of the period was
marked by the start of the Zika epidemic (2015 for Santiago, 2016 for Cienfuegos).

Entomological data on Ae. aegypti infestation are routinely collected by the Provincial
Vector Control Unit, responsible for the vector control program [51]. These data include
information per month on the number of houses with at least one water-holding container
with Ae. aegypti immature stages, number of water-holding containers with Ae. aegypti
immature stages, number of houses visited and number of pupae detected per 100 houses
for each CP. One out of three of all inspected houses is systematically revisited by a
specialized provincial team as part of a quality control system implemented in the Cuban
routine program to control for the motivational factor of the technicians in the area.

Socioeconomic and environmental data were not included, as these data are not
available in Cuba at the level of CPs, only at the municipality level from the census
conducted in 2012 [52]. Nevertheless, we consider that these factors are linked to the
entomological component, which is a more direct measure of vector abundance and disease
risk [18,53,54]. Demographic data are available from household census records from
the National Statistics office for calculation of population density per CP and from the
provincial health authorities for the sites with daytime high population densities [44].

2.3. Multicomponent Risk Assessment and Mapping

This section describes the methodology in three stages: (1) identifying components
and indicators, (2) specifying the models and (3) identifying the methodology to classify
and map the results.

2.3.1. Preliminary Stage: Knowledge-Based Identification of Components and Indicators

We developed a multicomponent approach based on the Integrated Prevention and
Control Strategy for Dengue in Mesoamerica (MSA), promoted by the Pan-American
Health Organization (PAHO) [19]. It proposes to base dengue control strategies on the
identification of geographical areas with high transmission risk using epidemiological, en-
tomological, demographic and environmental components. An expert group of academics
and policymakers from four Latin-American countries, united through the DENTARGET
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network (https://www.dentarget.org/, accessed on 1 March 2023), took this MSA plan
as a basis for designing a proactive dengue control strategy in different Latin-American
contexts. This expert group discussed which data are available in the Latin-American
countries and which ones are suitable for the risk mapping proposed in the MSA plan.

To capture the variability in transmission patterns, the expert group proposed to
take into account historical data from a two- to five-year window period, including as
much as possible of the above-mentioned components [18]. To define the epidemiological
characteristics of a spatial unit, indicators such as the cumulative incidence of cases, the
typical location of the first cases detected at the beginning of the seasonal increase or out-
break, the persistence of cases in or between epidemics/seasons, the proportion of dengue
serotypes circulating and the number of severe cases can be used. The entomological
profile can be characterized based on persistence of high Aedes larval indices over time
and cumulative infestation levels, and in case these are not available, environmental risk
factors (such as presence of suitable places for Aedes infestation, e.g., tire storage areas,
cemeteries, water-storage behavior of households) might be used as proxies. For what
concerns the demographic components, it is suggested to complement the population
density with indicators that take into account the human movement as a driver of disease
dispersion [17].

Climatic and geographical factors such as temperature, rainfall, relative humidity
and altitude are important to define risk, but the ability to differentiate risk levels with
these variables is limited in this set-up, as they tend to vary minimally in the context of
neighboring geographical areas [55,56].

Indicators for the Cuban setting are summarized in Table 1 and were the result of a
discussion among researchers and members of the provincial vector control units of the
Ministry of Health.

Table 1. CP-level transmission-linked indicators included in the multicomponent models.

Component Indicators Description Source *

Epidemiological

Cumulative number of dengue cases Cumulative number of confirmed dengue cases Based on retrospective surveillance
data from 2010–2015 on dengue cases

Cumulative incidence of dengue cases Cumulative number of confirmed dengue cases
per 10,000 inhabitants

Proportion of severe dengue cases Proportion of severe cases among confirmed
dengue cases

Times initiating outbreak Number of times that dengue seasonal increase
started in CP

Dengue case persistence Number of months with more than five cases
per month

Entomological

Maximum monthly Breteau index
averaged over the years

of the study period

Breteau index of the month with highest Aedes
infestation per year, averaged over time 1

Based on retrospective entomological
surveillance data from 2010–2015

Average monthly Breteau index Average monthly Breteau index
over time

Pupae per house index Pupae per house index from the last epidemic year
of the study period (2014) 2

Demographic Population density (per square km) Population divided by the surface
in square kilometers

National Statistics Office, Provincial
Office of the Ministry of Health

Locations with high human concentration
and mobility

Number of locations within a CP with intense
daytime human mobility and concentration.

These locations were identified by local
knowledgeable field workers based on their
qualitative appraisal of heavy circulation or

prolonged presence of persons and selected by
consensus. They included, among others,

schools, factories, health centers, transportation
nodes and markets.

1 Breteau index calculated as the number of water-holding containers with Ae. aegypti immature stages per
100 houses. 2 Pupae per house index calculated as the total number of pupae found divided by the total number
of inspected households. * The indices and models for Santiago de Cuba cover five years (2010–2014), and those
for Cienfuegos cover four years (2012–2015).

2.3.2. Modeling Stage

A correlation matrix is generated to unveil possible relationships between the indi-
cators. With the aim of assigning a level of risk of dengue transmission to each CP, we

https://www.dentarget.org/
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followed two approaches to include multiple components in the risk analysis: a knowledge-
based one, based on the understanding or experience considering the causal relationships
associated with the disease risk and leading to disease occurrence in a community [57],
and a data-driven approach, relying on statistical models. In what follows, we consider the
study municipality A divided into n non-overlapping CPs: {Ai}n

i=1.

Multicomponent vulnerability index approach

This section describes the development of a multicomponent vulnerability index that
encompasses the knowledge-based selection and weighing of components and indicators, here-
after called KBMCvulnerability. The expert group described above (https://www.dentarget.
org/, accessed on 1 March 2023)) [18] first selected the components and decided that each
component (epidemiological, entomological and demographic) is of equal importance for
estimating the risk of dengue transmission. Based on their expertise they also selected the
indicators included in the components. Hence, given K = 3 components, each component k
(k = 1, . . . , K) containing pk indicators (Table 1), we assigned equal weights for the different
components and for the indicators within the components. For each geographical entity, the
CP i (i = 1, . . . , n), we compute a vulnerability index as follows:

1. Generate z-score standardized indicators (zij) with mean 0 and standard deviation 1:

zij =
xij − µj

sj
, (1)

where µj and sj are, respectively, the mean and standard deviation of indicator j in CP i.
2. Calculate an aggregated value for each CP i and component k (k = 1, . . . , K) as

aik =
1
pk

jpk

∑
j=j1

zij, (2)

where j = j1, . . . , jpk represent the indicators included in component k.
3. Define a global index Ui as a measure of vulnerability, by averaging the aggregated

values of the K components:

Ui =
1
K

K

∑
k=1

aik (3)

4. Rank the CPs in increasing order of Ui and classify them using the quantile method into
five classes, assigning a rank between 1 and 5, representing the level of vulnerability.

Data-driven multicomponent modeling

In addition to the above-described multicomponent vulnerability index approach
(knowledge-based selection and weighing), two data-driven weighing approaches were
used. The first one relies on the use of statistical regression models to relate the relative risk
of disease (the outcome) with potential risk factors. Here, disease risk for each geographical
unit is estimated using statistical models that incorporate standardized covariates from the
area and from the neighboring areas (CPs, in our case study) to improve local estimates. The
second one uses a two-stage Principal Component Analysis (PCA) to assign data-driven
weights to the different components in the vulnerability index.

Multicomponent Multivariate Regression Modeling of Disease Incidence

In this approach, abbreviated as MCincidence, we describe the three steps of risk esti-
mation based on multivariate regression modeling: (1) verification of model assumptions
(collinearity testing), (2) selection of the model and (3) the estimation of the relative risk.

We test the presence of collinearity among predictors by computing the generalized
Variance-Inflation Factors (VIFs). We excluded the indicator with the highest variance
inflation factor (VIF > 10) and repeated this process to retain only the covariates with a
VIF ≤ 10 (Supplementary material Text S1, Table S1).

https://www.dentarget.org/
https://www.dentarget.org/
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We use Generalized Linear Mixed Models (GLMMs) for the analysis of dengue disease
incidence rates and its spatial distribution. These models are useful to estimate random effects
in addition to the fixed effects [58]. In disease modeling and mapping [24], the observed
case counts, yi, in area i, conditional to the relative risk θi, are assumed to follow a Poisson
distribution with mean µi = Eiθi, where Ei is the expected case count in area i and the relative
risk θi represents the Standardized Incidence Ratio (SIR) in area i, considering the entire
population in the municipality as reference. This relative risk can be decomposed as:

log(θi) = β0 + βxi + ψi, (4)

where β0 is the intercept (interpreted as the logarithm of the global risk or the mean log
risk), β is the vector of p coefficients (fixed effects) associated with the vector of covariates
xi in area i and ψi is a random effect for area i that can take different linear forms: as an
independent and normally distributed residual or as a combination of independent and
spatial random effects, as in [58], the most commonly used in the literature for disease
mapping [59]. The inclusion of such a random effect allows for over-dispersion in the
Poisson model that would otherwise assume equal mean and variance for area i [60].

In our case studies, the indicators from Table 1 used as covariates (xi) were as follows:
proportion of severe cases, times initiating outbreak, case persistence, maximum monthly
Breteau index averaged over the years of the study period, average monthly Breteau index,
pupae per house index from the last epidemic year of the study period, population density
and locations with high human concentration and mobility.

We expanded ψi to specify structured and unstructured spatial effects, resulting in two
non-spatial (GLM, Independent GLMM) and four spatial structures (Supplementary mate-
rial Table S2): Intrinsic Conditional Autoregressive (ICAR), Besag, York and Mollié model
(BYM), Leroux et al. model (LEROUX) and Spatial Lag Model (SLM). These models are
commonly used in disease risk mapping, especially for dengue, using spatially aggregated
count data [58–64].

The underlying spatial structure is defined through the matrix W =
[
wij

]
. In this

paper, we assume a first-order neighborhood structure (Queen’s adjacency) and binary
spatial weights, such that CPs that share a common boundary are considered neighbors.
The predictors, priors and functions for each model are described in Table S2.

In the framework of Bayesian inference, the model parameters were determined
using Integrated Nested Laplace Approximation (INLA), which offers a fast and accurate
alternative to Markov Chain Monte Carlo (MCMC) for latent Gaussian models [65]. This
approach has a wide range of applications and can be used to fit a variety of models
including generalized linear mixed, spatial and spatial-temporal models [66].

For the model selection, we use the Deviance Information Criterion (DIC) [67]. It takes
into account the goodness-of-fit (by means of the deviance) and incorporates the complexity
of the model with a penalty term, which is defined as the effective number of parameters,
similar to the Akaike Information Criterion [68,69]. The model with the smallest DIC is
selected for disease risk estimation, classification and mapping.

Using the selected model, we calculate the relative risk of disease in each CP as
compared to the municipality and obtain the point estimates of disease risk (θi) from the
INLA posterior mean, meanwhile the 95% credible intervals are obtained from the 0.025
and 0.975 quantiles of the fitted model.

Multicomponent Vulnerability Index

A data-driven weighting based on Principal Component Analysis (PCA) is used to
obtain a multicomponent vulnerability index—abbreviated as PCAMCvulnerability. We use
the three expert-identified components (epidemiological, entomological and demographic)
as dimensions of the vulnerability index. As stated above, given K = 3 expert-identified
components and each component k (k = 1, . . . , K) contains pk indicators (Table 1), we
construct a vulnerability index using a two-stage PCA, as described elsewhere [70–72].
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Since our goal is to construct an index, we decided to account for 100% of the total
variation to avoid discarding information from the input indicators in the estimation of
the overall vulnerability index. In the first stage, we use PCA to estimate three separate
sub-indices: epidemiological, entomological and demographic. In the second stage, we
use PCA to estimate the vulnerability index on the basis of the estimated indices of the
components as input indicators.

The indicators included in each component are first standardized, as described in
Equation (1), and then aggregated using PCA to derive an index for each expert-identified
component (K). These indices are considered as the unobserved variables IEp

i , IEn
i and

IDe
i , where the superscripts denote the epidemiological, entomological and demographic

components, respectively. We obtain the indices of each component for each CP i as
weighted averages as follows:

IEp
i =

∑4
j=1 λ

Ep
j PEp

ji

∑4
j=1 λ

Ep
j

, (5)

IEn
i =

∑2
j=1 λEn

j PEn
ji

∑2
j=1 λEn

j
, (6)

IDe
i =

∑2
j=1 λDe

j PDe
ji

∑2
j=1 λDe

j
, (7)

where λ
Ep
j , λEn

j and λDe
j are the eigenvalues of the j-th principal components and PEp

ji , PEn
ji

and PDe
ji are the j-th principal component scores for CP i. It is assumed that λ

Ep
1 > λ

Ep
2 >

. . . > λ
Ep
4 , λEn

1 > λEn
2 and λDe

1 > λDe
2 . The number of terms in the summations (4, 2 and 2)

represents the number of indicators included in the epidemiological, entomological and
demographic components. The principal component scores

(
PEp

l , PEn
l , PDe

l

)
, l = 1, . . . , pk,

are estimated as linear combinations of the component loadings (δEp
lp , δEn

lp , δDe
lp ) and the p

indicators (XEp
p , XEn

p , XDe
p ) included in the expert-identified component K, as follows:

PEp
l = ∑ δ

Ep
lp XEp

p , (8)

PEn
l = ∑ δEn

lp XEn
p (9)

PDe
l = ∑ δDe

lp XDe
p (10)

The number of principal components is equal to the number of indicators included in
each expert component.

In the second stage, we compute the overall vulnerability index with the following equations:

P1i = ϕ11 IEp
i + ϕ12 IEn

i + ϕ13 IDe
i , (11)

P2i = ϕ21 IEp
i + ϕ22 IEn

i + ϕ23 IDe
i , (12)

P3i = ϕ31 IEp
i + ϕ32 IEn

i + ϕ33 IDe
i , (13)

PCIndexi =
∑3

j=1 λjPji

∑3
j=1 λj

, (14)
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where PCIndexi is the index of vulnerability for the i-th CP; λj: eigenvalue of the j-th
principal component; Pji: the j-th principal component for the i-th CP. ϕ11, ϕ12 and ϕ13 are
the loadings of the respective sub-indexes.

2.3.3. Classification and Mapping

We classified the estimated risk and vulnerability in five classes using the quantile
method, which divides the distribution of the ordinal ranking of the data into intervals of
equal cardinality [73]. As a result, the same number of CPs per class is obtained, facilitating
the visual comparison of the estimated parameters through the construction of thematic
maps. With the results obtained, we aim to visualize the spatial risk patterns as a tool for
policy use in decision making.

2.4. Comparison with Single-Component Mapping

Two single-component approaches commonly used in public health [74] were used:
incidence and incidence relative risk mapping.

2.4.1. Single-Component Cumulative Incidence Model

This model, abbreviated as SCincidence, uses a combination of disease events and
population data. The spatial distribution of disease data can be displayed as cumulative
incidence over the studied period at the level of the CP.

2.4.2. Single-Component Standardized Incidence Ratio Model

For this model, abbreviated SCSIR, incidence risk estimates are obtained by computing
the Standardized Incidence Ratio (SIR): for each area i (i = 1, . . . , n), where SIRi is defined
as the ratio of the observed counts (Yi) to the expected counts (Ei) over the study period.
The expected counts Ei represent the total number of cases expected if the population of
area i would behave in the way the standard population behaves (standard population
equal to population of entire municipality). Ei is calculated using indirect standardization.
SIRi indicates whether area i has a higher (SIRi > 1), equal (SIRi = 1) or lower (SIRi < 1)
risk than expected from the population at municipality level.

We compared the multicomponent knowledge-based and data-driven approaches
with the single-component approaches by calculating Kendall’s tau-b rank correlation
coefficient [75,76], ranging between −1 and 1, with 0 indicating no correlation between
the results of the tested methods. A value of 1 indicates that the rankings assigned by the
compared methods are identical, while a value of −1 indicates totally opposite rankings.

The analyses and thematic maps generated for spatial visualization were done using
R (version 4.01) and RStudio (version 1.4.1717) with the packages INLA, sf, sp, spdep,
ggplot2 and tmap [77–81].

3. Results

The two studied municipalities are presented in Figure 1. High population densities
are concentrated in the center of these two cities, coinciding with older neighborhoods,
reaching a population density between 16,599 and 29,889 persons/km2 in Santiago de Cuba.
In both cities, the peripheral CPs have the lowest densities, ranging between 359.0 and
760.8 persons/km2 in Cienfuegos.

Between 2010 and 2015, dengue incidence shows a clear seasonal pattern in both
municipalities. In particular, in Santiago de Cuba, each year there is a wave starting
in summer and lasting for 6–7 months, while in Cienfuegos, waves are smaller and less
frequent in the first years. In both municipalities, the increasing trend in the period included
a large outbreak in 2014 (Figure 2).

The CP level indicators from the two study areas were tested for multicollinearity by
computing the VIFs. Average monthly BI over five years was the indicator with the highest
VIF (VIF = 32.126) in Santiago de Cuba and the second highest in Cienfuegos (VIF = 15.082).
It was thus not used in the further analysis. After removing this indicator, no other variable
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showed a VIF greater than 10. Table S1 shows a summary of the VIFs of the variables from
the two study sites.
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Figure 1. Map of CPs with their respective population densities (person per square kilometer) for
Santiago de Cuba and Cienfuegos municipalities. (a) CPs in Cienfuegos municipality: 1 Reina,
2 Centro Histórico, 3 Punta Gorda, 4 San Lázaro, 5 La Gloria, 6 La Juanita, 7 Juanita 2, 8 Junco
Sur, 9 Tulipán, 10 La Barrera, 11 Buena Vista, 12 Pueblo Griffo, 13 Pastorita, 14 Paraíso, 15 Caonao,
16 Guaos, 17 Pepito Tey, 18 Rancho Luna, 19 Castillo-CEN. (b) CPs in Santiago de Cuba municipality:
10 Agüero Mar Verde, 11 Ciudamar, 12 Altamira, 13 Vista Hermosa, 14 Veguita de Galo, 15 Chichar-
rones, 16 Flores, 17 G. Moncada, 18 J. M. Heredia, 19 Los Maceo, 20 30 de Noviembre, 21 Santa
Bárbara, 22 Vista Alegre, 23 Sueño, 24 Los Olmos, 25 Mariana Grajales, 26 José Martí Norte, 27 José
Martí Sur, 29 Manuel Isla.

In Santiago de Cuba, the KBMCvulnerability model identifies Los Olmos, Guillermón
Moncada, Altamira and Flores as the CPs with the highest vulnerability to dengue (Table 2
and Figure 3). In these CPs, the score of the epidemiological component ranked between
three and five and the entomological component received the maximum value in three
out of four CPs. In Cienfuegos, the CPs with the highest ranks were La Juanita, La
Gloria, Centro Histórico and Juanita 2. In these areas, the three components show almost
equal importance: three out of four CPs received a rank of five in the epidemiological
and entomological component, while the demographic dimension always received the
maximum rank.
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As a first step in the data-driven MCincidence approach, the collinearity between the
predictors was evaluated. This resulted in the exclusion of one entomological indicator, the
average monthly Breteau index. With the generalized linear mixed models, following a
Bayesian framework and INLA, several models (FIXED, IID, ICAR, BYM, BYM2, LEROUX,
SLM) were fit with different specifications of the random terms and the spatial structure
(Supplemental Material Text S1, Table S1).
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Figure 2. Monthly incidence rates of dengue (per 100,000) in Santiago de Cuba (dashed blue) and
Cienfuegos (solid red) municipality over the period of 2010–2015.

Table 3 shows that the values of Deviance Information Criterion (DIC), the effective
number of parameters (p.eff) and the Watanabe–Akaike Information Criterion (WAIC) are
very similar for the models including random effects and lower than the values of the
model with only fixed effects. This suggests that including random effects in the models
is necessary to explain the variability of the data. Based on the DIC and WAIC, BYM
and ICAR were the best models for Santiago de Cuba and Cienfuegos, respectively. With
these two models, the Relative Risk (RR) of disease transmission was estimated taking into
account the effect of epidemiological, entomological and demographic indicators, and a
structured spatial random effect.
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Table 2. Multicomponent score ranks, estimated by the KBMCvulnerability index, per CP in Santiago
de Cuba and Cienfuegos.

CP Epidemiological
Z (R) 1

Entomological
Z (R) 1

Demographic
Z (R) 1

KBMCvulnerability
Index 2, Z (R) 1

Santiago de Cuba
Los Olmos 0.34 (4) 1.02 (5) 1.12 (5) 0.83 (5)

Guillermón Moncada 1.17 (5) 0.04 (3) 1.02 (5) 0.74 (5)
Altamira 1.13 (5) 1.32 (5) −0.39 (2) 0.69 (5)

Flores 0.23 (4) 1.19 (5) 0.42 (4) 0.61 (5)
Vista Hermosa 0.14 (3) 1.75 (5) −0.24 (3) 0.55 (4)
J. M. Heredia −0.12 (3) −0.36 (2) 1.75 (5) 0.42 (4)
Los Maceos 0.41 (4) −0.21 (3) 0.65 (5) 0.28 (4)

30 de Noviembre −0.06 (3) 0.43 (4) 0.19 (4) 0.19 (4)
Chicharrones 0.76 (5) 0.35 (4) −0.6 (2) 0.17 (3)

Veguita de Galo 0.42 (5) 0.56 (4) −0.78 (1) 0.07 (3)
Aguero Mar Verde 0.26 (4) 0.17 (4) −0.54 (2) −0.04 (3)

Sueño −0.15 (2) −0.14 (3) −0.03 (3) −0.1 (3)
Mariana Grajales −0.5 (2) −0.1 (3) −0.18 (3) −0.26 (2)

Santa Bárbara −0.09 (3) −0.97 (1) 0.03 (4) −0.34 (2)
Vista Alegre −0.62 (2) −0.48 (2) −0.06 (3) −0.39 (2)

José Martí Sur −0.6 (2) −1.57 (1) −0.02 (4) −0.73 (2)
Manuel Isla −0.78 (1) −0.87 (2) −0.67 (1) −0.78 (1)

José Martí Norte −0.83 (1) −1.38 (1) −0.54 (2) −0.92 (1)
Ciudamar −1.12 (1) −0.75 (2) −1.12 (1) −0.99 (1)

Cienfuegos
La Juanita 1.34 (5) 2.28 (5) 1.45 (5) 1.69 (5)
La Gloria 1.06 (5) 2.12 (5) 0.97 (5) 1.38 (5)

Centro Histórico 0.93 (5) 0.2 (4) 2.3 (5) 1.15 (5)
Juanita 2 0.44 (4) 0.69 (5) 0.75 (5) 0.63 (5)

Reina 0.74 (5) 0.59 (4) 0.29 (4) 0.54 (4)
Punta Gorda 0.3 (4) 0.71 (5) 0.03 (3) 0.35 (4)

Junco Sur 0.16 (3) 0.29 (4) 0.1 (4) 0.18 (4)
Tulipán 0.49 (4) −0.29 (3) 0.23 (4) 0.15 (4)

San Lázaro 0.19 (4) 0.24 (4) −0.27 (3) 0.05 (3)
Buena Vista 0.16 (3) −0.14 (3) −0.57 (2) −0.19 (3)

Pastorita −0.22 (3) −0.56 (3) −0.36 (3) −0.38 (3)
Pueblo Griffo −0.44 (2) −0.2 (3) −0.74 (2) −0.46 (3)

Caonao −0.58 (2) −0.93 (1) −0.06 (3) −0.53 (2)
La Barrera −0.12 (3) −0.63 (2) −0.85 (2) −0.53 (2)

Rancho Luna −0.93 (1) −0.97 (1) 0.08 (4) −0.61 (2)
Castillo-CEN −0.89 (2) −0.66 (2) −0.48 (2) −0.67 (2)

Paraíso −0.76 (2) −0.92 (2) −0.95 (1) −0.87 (1)
Guaos −0.93 (1) −0.92 (1) −0.95 (1) −0.93 (1)

Pepito Tey −0.93 (1) −0.91 (2) −0.96 (1) −0.94 (1)
1 Z: z-score value of the standardized scores, R: rank value. The CPs in the table are ordered by the z-score of the
multicomponent index. 2 Index: KBMCvulnerability standardized index.
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Figure 3. Dengue risk maps based on KBMCvulnerability, PCAMCvulnerability, MCincidence,
SCincidence and SCSIR models in Santiago de Cuba and Cienfuegos. (a) KBMCvulnerability index in
Santiago de Cuba; (b) PCAMCvulnerability index in Santiago de Cuba; (c) MCincidence in Santiago
de Cuba; (d) SCincidence in Santiago de Cuba; (e) SCSIR in Santiago de Cuba; (f) KBMCvulnerability
index in Cienfuegos; (g) PCAMCvulnerability index in Cienfuegos; (h) MCincidence in Cienfuegos;
(i) SCincidence in Cienfuegos; (j) SCSIR in Cienfuegos.
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Table 3. Comparison of the MCincidence multivariate regression models based on the Deviance In-
formation Criterion (DIC), effective number of parameters (p.eff) and Watanabe–Akaike Information
Criterion (WAIC) in Santiago de Cuba and Cienfuegos.

Cienfuegos Santiago de Cuba
Model DIC p.eff WAIC DIC p.eff WAIC

FIXED 1112.03 −112.87 2056.54 1399.36 −129.65 2385.63
IID 164.66 18.05 160.38 202.74 18.88 197.03

ICAR 163.38 17.86 158.29 202.82 18.88 197.22
BYM 164.67 18.08 160.35 202.74 18.88 197.03

BYM2 163.85 17.90 159.08 202.76 18.89 197.05
LEROUX 163.80 17.99 158.89 202.77 18.88 197.08

SLM 163.96 18.07 159.05 202.76 18.89 197.07

The results of fitting the selected models to the data of Santiago de Cuba and Cienfue-
gos using the MCincidence approach are shown in Table 4. The analysis of the coefficients
of the indicators included in the models suggests that persistency of cases is the only
indicator that is statistically significantly associated with a positive increase in disease risk,
meaning that an increase of one unit in the standardized persistence is associated with an
increase of 26% and 36% in the risk of dengue disease in Cienfuegos and Santiago de Cuba,
respectively, holding the rest of the covariates constant.

Table 4. Posterior means, standard deviation and 95% credibility intervals for the fixed effects of the
intercept and the covariates included in the MCincidence multivariate regression models.

Cienfuegos 2 Santiago de Cuba 3

Coefficients 1 Mean 4 (SD) (LL; UL) 4 Mean (SD) (LL; UL)

(Intercept) 0.36 (0.077) (0.304; 0.412) 0.87(0.079) (0.74; 1.02)
Population density 1.01 (0.483) (0.372; 2.56) 1.03 (0.095) (0.85; 1.25)

Locations with high human concentration 1.22 (0.233) (0.77; 1.954) 1.07 (0.087) (0.90; 1.27)
Maximum monthly Breteau index 0.72 (0.549) (0.234; 2.108) 1.17 (0.125) (0.91; 1.50)

Pupae per house index 1.83 (0.485) (0.695; 4.843) 1.05 (0.112) (0.84; 1.31)
Proportion of severe cases 0.94 (0.249) (0.572; 1.552) 0.87 (0.108) (0.70; 1.07)
Times initiating outbreak 0.78 (0.483) (0.302; 2.085) 0.96 (0.099) (0.79; 1.17)
Dengue case persistence 3.16 (0.6) (1.022; 11.132) 1.36 (0.145) (1.02; 1.82)

1 Standardized indicators, 2 ICAR model, 3 BYM model, 4 exponentiated coefficients, SD: standard deviation;
LL: lower limit of the credibility interval (0.025 quantile); UL: upper limit of the credibility interval (0.975 quantile).

The ranks created for the spatial units under study in both municipalities using the
vulnerability (KBMCvulnerability and PCAMCvulnerability) and the risk (MCincidence,
SCincidence and SCSIR) models are shown in Table 5 and Figure 3. These show that despite
the different methodologies underlying them, all models identified Los Olmos in Santiago
de Cuba, and La Gloria and Centro Histórico in Cienfuegos, as the most vulnerable areas.
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Table 5. Risk and vulnerability ranks estimated by KBMCvulnerability, PCAMCvulnerability, MCin-
cidence, SCincidence and SCSIR models.

Vulnerability Models Risk Models

CPs KBMCvulnerability
Index

PCAMCvulnerability
Index MCincidence SCincidence SCSIR

Santiago de Cuba
Guillermón
Moncada 5 4 5 5 5

Veguita de Galo 3 3 5 5 5
Los Olmos 5 5 5 5 5
Chicharrones 3 3 5 5 5
Sueño 3 3 4 4 4
Altamira 5 4 4 4 4
Vista Hermosa 4 5 4 4 4
Los Maceo 4 5 4 3 4
J. M. Heredia 4 4 3 3 3
Flores 5 5 3 3 3
30 de Noviembre 4 4 3 3 3
Santa Barbara 2 2 3 4 3
Vista Alegre 2 2 2 2 2
Aguero Mar Verde 3 3 2 2 2
Ciudamar 1 1 2 2 2
Manuel Isla 1 1 2 1 2
José Martí Sur 2 2 1 1 1
José Martí Norte 1 1 1 2 1
Mariana Grajales 2 2 1 1 1
Cienfuegos
La Gloria 5 5 5 5 5
Reina 4 4 5 5 5
Centro Histórico 5 5 5 5 5
Tulipán 4 4 5 5 5
La Juanita 5 5 4 4 4
Juanita 2 5 5 4 4 4
Punta Gorda 4 4 4 4 4
Junco Sur 4 4 4 4 4
San Lázaro 3 3 3 3 3
Pueblo Griffo 3 3 3 3 3
Buena Vista 3 3 3 3 3
Pastorita 3 3 3 3 3
Caonao 2 2 2 2 2
Paraíso 1 1 2 2 2
La Barrera 2 2 2 2 2
Castillo-CEN 2 2 2 2 2
Rancho Luna 2 2 1 1 1
Pepito Tey 1 1 1 1 1
Guaos 1 1 1 1 1

There is a high correlation between the vulnerability risk stratification obtained by
the knowledge-based multicomponent and data-driven principal component analysis
approaches, with a Kendall’s tau of 0.89 and 1 for Santiago de Cuba and Cienfuegos, respec-
tively (Table 6). The correlation between the incidence-based approaches—MCincidence,
SCincidence and SCSIR—had tau values between 0.9 and 1 for Santiago de Cuba. For
Cienfuegos, there was a perfect agreement between the three incidence-based models. The
agreement between the vulnerability risk stratification and the MCincidence-based models
was below 0.6 for Santiago de Cuba and reached 0.84 for Cienfuegos.
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Table 6. Kendall’s tau-b correlation for the agreement of the risk estimates between KBMCvulnerabil-
ity, PCAMCvulnerability, MCincidence, SCincidence and SCSIR approaches.

Vulnerability Models Risk Models
KBMCvulnerability Index PCAMCvulnerability Index MCincidence SCincidence SCSIR

Santiago de Cuba
KBMCvulnerability index 1 *** 0.89 *** 0.55 * 0.5 * 0.55 *

PCAMCvulnerability index 0.89 *** 1 *** 0.51 * 0.43 0.51 *
MCincidence 0.55 * 0.51 * 1 *** 0.9 *** 1 ***
SCincidence 0.5 * 0.43 0.9 *** 1 *** 0.9 ***

SCSIR 0.55 * 0.51 * 1 *** 0.9 *** 1 ***
Cienfuegos

KBMCvulnerability index 1 *** 1 *** 0.84 *** 0.84 *** 0.84 ***
PCAMCvulnerability index 1 *** 1 *** 0.84 *** 0.84 *** 0.84 ***

MCincidence 0.84 *** 0.84 *** 1 *** 1 *** 1 ***
SCincidence 0.84 *** 0.84 *** 1 *** 1 *** 1 ***

SCSIR 0.84 *** 0.84 *** 1 *** 1 *** 1 ***

*: 0.01 < p-value ≤ 0.05, ***: p-value ≤ 0.001.

Risk Mapping

Five maps were created with the models proposed in each city. The dengue risk
maps show that CPs with higher vulnerability/risks are concentrated in the center of the
respective cities (Figure 3).

4. Discussion

Two single-component approaches (cumulative incidence and standardized incidence
ratio models) were compared with (1) a multicomponent model predicting dengue inci-
dence and incorporating epidemiological, entomological and demographic indicators; and
(2) two multicomponent approaches where a vulnerability index was estimated by giving
different weights to the epidemiological, entomological and demographic components.
The first approach was based on expert information to select and weigh the indicators used
to obtain quantitative vulnerability estimates [57], and the second was data-driven based
on PCA. The data-driven multivariate regression approach used generalized linear mixed
models with random effects (BYM and ICAR) in a Bayesian framework fitted with INLA.
For all analyses, routine data from two Cuban municipalities over the period of 2010–2015
were used and the spatial heterogeneity pattern of the dengue transmission was visualized
using thematic maps. The result of the risk mapping was discussed with the provincial
dengue control teams, who confirmed the presence in these areas of multiple environmental
risks and human risky behaviors concerning hygiene and water management.

The comparison of the ranks of disease risk obtained by the three models using
mainly—and almost only—incidence data (SCincidence, SCSIR and MCincidence) showed
similar results, while the ranks obtained by the multicomponent vulnerability approaches
(KBMCvulnerability and PCAMCvulnerability), giving more attention to entomological
and demographic information, besides incidence data, were somehow different. The
vulnerability approach differed more from the incidence-based approaches in Santiago
de Cuba than in Cienfuegos, which could be explained by a longer history of dengue
circulation and immunity influencing the clinical presentation and transmission, as well as
more relative importance of entomology and demography in explaining transmission in
the former municipality.

Disease risk mapping can have different goals, ranging from the visualization of
the extent of a disease to providing support for the implementation of public health
interventions, and can use, from descriptive or analytical maps based on logistic regres-
sion, generalized linear models to machine learning methods (e.g., based on Random
Forest) [25,82,83]. Advances in geospatial science have supported public health programs
in their planning of disease control and elimination activities with the identification of
disease clusters or “hotspots” and also with the production of spatial prediction maps [15].
These maps can be used for targeting vector control or other interventions [83] because
it has been observed that massive campaigns of mosquito control with full coverage of
the cities are not sustainable in practice, especially in resource-constrained countries [42].
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Evidence on the use of disease risk mapping to identify areas of higher vulnerability for
dengue transmission with the aim of guiding preventive actions is less extensive and
still shows research gaps [83]. In Colombia, vulnerable areas were identified using socio-
demographic data [30], while in Argentina and Brazil, multicomponent models have been
automated and implemented using software tools [84,85].

The multicomponent methods used in this study have the advantage that they capture
information from multiple dimensions of the complex network of factors that are related
to dengue transmission. The knowledge-based approach is fairly simple and easy to
implement, as it does not require statistical tools. Nevertheless, it requires more data than
the incidence-only method, and uncertainty can only be assessed by bootstrapping [86,87].

For the data-driven modeling approach, generalized linear mixed models can be used
with different distributions of the data, including those in the exponential family (binary,
binomial, Poisson, normal, gamma). A Bayesian framework can be used to fit them while
taking into account different aspects of the relations between the factors associated with
the research problem and the hierarchical structure of this relation.

There are several ways to specify and fit the models using a Bayesian framework. We
fitted the models using INLA, a fast and computationally efficient alternative to MCMC.
In spatial analysis, this technique can use indicators of autocorrelation to strengthen the
models by borrowing information from the neighboring areas and is especially useful when
data availability is limited. Its drawback is that more advanced statistical knowledge and
computational skills are needed. For the selection of the best model, we used DIC. DIC has
been recommended, as it is based on the model fit and the complexity of the model [88].
An alternative data-driven approach is to assign weights using PCA. It has been employed
to create an index that takes into account the multi-dimensionality of the problem and uses
weights extracted from the datasets [86].

In contrast to the vulnerability multicomponent approaches, disease occurrence maps
are often used since incidence is often the only data available. These maps are used
to identify areas that concentrate a large fraction of Aedes-borne disease cases and are
regarded as a proxy for transmission risk. The disadvantages of this approach are that
it does not represent asymptomatic cases and misses cryptic/silent transmission and
since place of residence is used for case reporting, it might overlook the actual place of
transmission. Moreover, as incidence data depend on the health-seeking behavior of people,
in underserved areas with less health care attention, this may have a negative impact on
the reliability of spatial heterogeneity risk maps [89].

Epidemiological and entomological data that are collected routinely have been used
by several authors to design spatial decision support systems for the early detection of
outbreaks [90,91]. Nevertheless, adequate quality and extent of such geo-referenced data,
crucial elements for developing reliable risk maps, are still lacking in many health systems,
in addition to the difficulties in the analysis and use of these maps [25]. The scale is another
key factor. It has been suggested that modeling of environmental land-use data at country
scales is important for guiding national programs but is not useful at decentralized levels,
where control actions are planned and implemented [92].

However, a strength of this study is the use of routinely collected surveillance data. The
existence of fine-grained georeferenced monthly repeated measurements for several years
offers a unique opportunity to analyze epidemiological and entomological information.
Such data can be subject to bias, but the Cuban surveillance system puts in place actions to
guarantee quality and completeness. Underreporting of symptomatic cases is unlikely to
be substantial in the Cuban context, as the routine Cuban surveillance system combines
a passive approach with active case finding from the moment the first dengue or other
arboviral disease case is confirmed [47]. A limitation, though, is that confirmed dengue
cases are registered according to the residential addresses, which is not necessarily the
place of infection, especially because Ae. aegypti has a biting preference during the day,
when many people are outside their homes.
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Likewise, the entomological information is routinely collected by vector control tech-
nicians during their monthly inspection of all houses using standardized procedures, and
completeness of information depends on their motivation. Additionally, a quality control
system is implemented in the Cuban routine program to control for this factor and consists of
a systematic revisiting of one-third of all inspected houses by a specialized provincial team.

Although there is growing evidence suggesting that human mobility plays an impor-
tant role in the transmission of dengue [93–95], it was not taken into account, as it is not
routinely collected and therefore not readily available. Another limitation is that we did
not include meteorological data, though weather has a major influence on the temporal
pattern of an epidemic [56].

The strategies for modeling and mapping of transmission risks for dengue are under
debate, as there are no dengue-specific thresholds defined and widely accepted, neither for
entomological indicators or incidence figures [50,96–99], which makes multicomponent risk
mapping important. Our analyses and the evidence of hotspot presence and persistence
from other studies provide a logical framework for guiding the prioritization of preventive
control actions [26]. Hotspot detection must be a flexible and interpretable approach, as
risks, pathogens and human behavior can change. The analysis of the spatio-temporal
patterns underlying the spread of dengue and hotspot detection may provide useful infor-
mation to support public health officers to control and predict dengue spread over critical
hotspots. Such hotspots can be targeted with preventive and long-lasting interventions
before the peak transmission period.

No single approach is likely to be optimal for every question, and models need to take
into account the local context and data availability. The small difference between single-
and multicomponent incidence maps indicates that in a setting with a narrow availability of
data, simpler models can be used. Nevertheless, the incidence-based multicomponent model
(which implements a generalized linear mixed model) allows for a robust parametrization with
factors associated with disease endemicity and provides more information by means of the
covariate-adjusted and spatially smoothed RR of disease transmission, which can be used for
the prospective evaluation of interventions. In addition, several shortcomings of the simpler
approaches have been reported. For instance, extremely high values of Standardized Mortality
Ratios (SMRs)—a measure similar to SIR—were found by Wakefield, probably caused by
small expected numbers in large populated areas [100]. Additionally, he identified difficulties
with the associated p-values since statistically significant results were also obtained even with
small deviations from 1 in largely populated areas, among other drawbacks. However, if a
vulnerability model is used, where different origins of risk (demographical, number of cases,
mosquito density) are important, the resulting risk maps might be quite different from the
incidence-based ones. The vulnerability approach that we followed includes an indicator of
human mobility and potential for out-of-residence transmission, which could explain part of
the disagreement with the risk (incidence) approach.

The choice of maps—and indicators included—must be guided by objectives [101]:
does one need a map for visualization of disease distribution and intensity, for imple-
menting preventive or reactive vector control measures or for prediction of concentration
of cases for better organization of health care? A prospective validation of the used ap-
proaches has been suggested, although this is still an issue of debate [32,35,36,40]. For the
incidence-based models, one can use the incidence of the subsequent years to evaluate
agreement of future and past incidences. However, for the vulnerability maps, one cannot
simply compare subsequent maps of disease incidence, as vulnerability or transmission
risk is not captured by a single indicator but needs to include the multi-factorial complexity.
Nevertheless, an approach for the validation of the indices, with limitations though, is
to use disease incidence as a proxy of the true vulnerability [40,102]. Linear regression
and Receiver Operating Characteristic (ROC) curves have also been used for the statistical
validation of the indices [102–104]. Additionally, dengue hotspots identified using vulnera-
bility indices have been validated by comparing their distribution with the distribution of
Zika and chikungunya [26,48]. Still, validation of a vulnerability map should preferably be
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done with an intervention trial targeting prevention and control measures to the high-risk
areas by observing whether transmission is decreasing or not.

For a hotspot-driven approach at the sub-city level to be viable and effective, it is
critical to determine whether the observed heterogeneity at this scale is a feature of dengue
transmission or whether it follows a more stochastic pattern [105]. Therefore, to achieve robust
policy recommendation, prospective validation is not only needed for the evaluation of the
effectiveness of the interventions but also to detect potential changes in the distribution of
hotspots due to the targeted interventions or the changes in demographic or epidemiological
trends, which would have to be addressed in an adaptive and iterative process.

In conclusion, caution is needed when interpreting maps, as the results vary depend-
ing on the importance given to the components involved in disease transmission. The
multicomponent vulnerability mapping needs to be prospectively validated based on an
intervention trial targeting high-risk areas.
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