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Abstract: Dengue is an arbovirus transmitted by mosquitoes of the genus Aedes and is one of the
15 main public health problems in the world, including Colombia. Where limited financial resources
create a problem for management, there is a need for the department to prioritize target areas for
public health implementation. This study focuses on a spatio-temporal analysis to determine the
targeted area to manage the public health problems related to dengue cases. To this end, three
phases at three different scales were carried out. First, for the departmental scale, four risk clusters
were identified in Cauca (RR ≥ 1.49) using the Poisson model, and three clusters were identified
through Getis-Ord Gi* hotspots analysis; among them, Patía municipality presented significantly
high incidence rates in the time window (2014–2018). Second, on the municipality scale, altitude and
minimum temperature were observed to be more relevant than precipitation; considering posterior
means, no spatial autocorrelation for the Markov Chain Monte Carlo was found (Moran test < 1.0),
and convergence was reached for b1–b105 with 20,000 iterations. Finally, on the local scale, a clustered
pattern was observed for dengue cases distribution (nearest neighbour index, NNI = 0.202819) and
the accumulated number of pupae (G = 0.70007). Two neighbourhoods showed higher concentrations
of both epidemiological and entomological hotspots. In conclusion, the municipality of Patía is in an
operational scenario of a high transmission of dengue.

Keywords: Aedes aegypti; Getis-Ord Gi*; Poisson regression; pupae index; spatio-temporal analysis

1. Introduction

Dengue is the most rapidly expanding arboviruses in the world, and its incidence has
increased in recent decades in tropical and subtropical countries, becoming a global public
health problem [1,2]. In the Americas there was recorded the highest number of dengue
cases in history in 2019 with more than 2.7 million cases, including 22,127 serious cases and
1206 deaths [3].

In Colombia, approximately 58% of the population is at risk of having the disease,
since it is endemic to approximately 909 municipalities, and 108 municipalities are centres
of dengue transmission [1]. In 2021, during the epidemiological week 52, about 53,334 cases
were recorded, of which 50% corresponded to dengue with warning signs, and 1.8% cor-
responded to severe dengue. Although the behaviour of the disease at the national level
was within the expected range, the resulting mortality showed a significant increase. Some
departments, including Cauca, are in a situation of alert [4], and Cauca itself reported
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336 cases over the course of 2022. Between 2020 and 2021, this department was also under
alert since its epidemiological behaviour exceeded the expected threshold [4,5].

The main vector of dengue in Colombia is the Ae. aegypti mosquito, an anthropophilic
species that is found mainly in urban areas. In general, this vector infests natural or artificial
containers in or around homes [6]. Its distribution has been reported in all departments of
Colombia up to 2302 m.a.s.l. [7]. Under optimal conditions of food availability and adequate
oviposition sites, the average dispersal of a female Aedes spp. mosquito is estimated to be
between 50 and 100 m, which limits its visits to two or three dwellings during its adult
life [8], although fed females have been recorded to disperse as far as 800 m in 6 days [9].

The dynamics that allow the transmission of dengue respond to a series of general and
specific factors known as macrodeterminants and microdeterminants of dengue. Macrode-
terminants can be (1) environmental, such as altitude, latitude and climatic conditions
that facilitate larval development, vector survival and virus replication in the vector [10]
and (2) demographic and socioeconomic conditions, such as intraurban mobility, inade-
quate urbanization patterns and lack of access to water supply and sewerage services, as
well as cultural conditions, such as a low perception of risk. Microdeterminants include
host characteristics, the circulation of the various dengue serotypes and entomological
factors. These considerations highlight the presence of various conditions that favour the
endemic–epidemic transmission of dengue in the different municipalities of the department
of Cauca [10].

These variables provide valuable information, which is collected by health institutions
and thus forms the early warning components of systematic public health surveillance
systems, when this surveillance is based on indicators. Although dengue surveillance
is traditionally syndromic or sentinel, there are also alternative sources of information
which do not necessarily belong to the health field and could be taken into account to
carry out surveillance based on indicators such as meteorological, entomological and
environmental data.

Given the multiplicity of factors that affect the transmission of dengue, geographic
information systems (GISs) have become a very useful tool for identifying the distri-
bution patterns of events and studying their association with the macrodeterminants
mentioned above.

Thus, the use of global and local spatial-temporal analysis tools such as the nearest
neighbour index (NNI) [11]; the Getis Ord-Gi* statistic, used to detect hot and cold dengue
spots with geographically homogeneous high or low values [12]; and kernel density, applied
in several studies on dengue [13,14] among other techniques, allow the generation of maps
that highlight the geographic areas and population groups at risk [15,16]. Those generated
maps can serve as a basis for responsible institutions to design strategies for preventing
and reducing the risk of dengue epidemics.

In order to assist in determining the problematic dengue areas to ensure an effective
management of the dengue cases, a spatio-temporal analysis was conducted. This analysis
contributes to the process of spatial stratification, allowing the prioritization of control
actions, to generate base information for developing contingency plans for vector-borne
diseases, such as dengue fever.

The primary objective of this study was to analyse the spatio-temporal distribution of
dengue in the department of Cauca to identify high-dengue-risk municipalities through
spatial scan statistics and cluster analysis.

The department of Cauca was selected due to its epidemiological behaviour in the last
ten years, with the most important epidemic outbreak recorded in this period occurring
between the end of 2009 and 2010. The endemic–epidemic characteristics of Cauca provide
a suitable study area to carry out a series of spatial analyses since it presents temporal,
seasonal, and cyclical behaviours in at-risk populations, enabling a better characterization
without presenting biases due to epidemics or hyperendemic trends.

A secondary aim was to contribute to the spatial stratification of dengue in the identi-
fied high-risk municipalities, which includes determining the effect of environmental risk
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factors on the rate of dengue cases and the identification of important transmission foci [8].
With this study, the finding determines the level of risks and helps to determine actions
needed to control the risks.

A third objective was to prioritize vector-control activities through the identification
and analysis of persistent dengue and entomological clusters by neighbourhood, to reveal
correlations and to generate base information for the elaboration of contingency plans for
vector-borne diseases, such as dengue, in problem areas which will be targeted for intensive
intervention.

2. Materials and Methods

The study comprised three phases. The first phase targeted the locations of risk
clusters in the department of Cauca through a spatio-temporal analysis. The department of
Cauca was selected because it has been on epidemiological warning for more than three
consecutive years since 2019, given the higher-than-expected increase in dengue cases, as
reported in the epidemiological reports of the National Institute of Health (INS, acronym
in Spanish) [4,5]. In the second phase, environmental variables related to the disease were
identified through the development of a Poisson regression model for the municipality
of Patía, which was selected because it shows a relatively moderate dengue risk. In the
third phase of the study, areas with higher-than-expected incidence of the disease were
established and clusters were identified at the neighbourhood scale (an urban spatial unit),
using spatial analysis processes in GIS software. These urban spatial units should be
targeted for intensive intervention and surveillance. Figure 1 shows the development of
each of the phases.
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2.1. Study Area

The department of Cauca is located in southwestern Colombia between the coor-
dinates 00◦58′ and 3◦19′ north latitude and 75◦47′ and 77◦57′ west longitude. It is di-
vided into 42 municipalities covering an area of 29,308 km2 and has a population of
1,491,937 inhabitants [17]. Its average altitude is 1693 m.a.s.l.; however, it contains all
thermal floors, which is reflected in its diversity of ecosystems. It contains mangrove
forests; moors; wetlands; warm forests; sub-Andean, Andean and high-Andean forests;
inter-Andean valleys; and dry and subxerophytic forests [18].

The climate in the department of Cauca has a great variability depending on its
geographic and geomorphologic characteristics. On the Pacific coast of the department,
there are warm wet and semi-humid pluvial climates, with rainfall that can range from
3000 mm to 7000 mm per year and average temperatures of 24 ◦C. In the central subregion,
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the climate is predominantly temperate wet, with temperatures that oscillate between 18 ◦C
and 24 ◦C. The Patía Valley stands out as the driest area in the department as it has a warm
dry climate and receives less than 1500 mm of rainfall per year. In contrast, the eastern
edge of Cauca has a cold dry and very cold dry climate, while the Amazonian foothills has
a warm wet climate.

Cauca has seven subregions: the central subregion, where the capital Popayán is
located; the northern subregion, divided into 13 municipalities, including Miranda, Puerto
Tejada and Villa Rica; the eastern subregion; the Pacific subregion; the southern subregion,
where the municipality of Patía (see Section 2.3.2) and a large part of the Patía River valley
are located; the subregion of the Massif; and the Amazonian Piedmont subregion, which
includes the municipality of Piamonte [18].

For each phase of the study, we considered the results obtained in the previous phase.
For Phase 1, Cauca was chosen as we explained before. For Phase 2, Patía municipality was
selected considering the findings of spatio-temporal analysis and for Phase 3 we chose its
municipal seat, because of its important as an administrative centre, seat of government,
or capital city. Additionally, this municipal seat has been positive for pupae sampling
throughout several years in several neighbourhoods.

2.2. Data Description

Epidemiological data regarding dengue and severe dengue cases were used in each
of the phases of the study, including laboratory-confirmed cases and cases confirmed by
epidemiological linkage. Data also included sociodemographic characteristics at the patient
level such as age, sex, occupation, and ethnic data. These data are routinely reported by the
Unidades Primarias Generadoras de Datos (UPGD in spanish) following the guidelines
established by the WHO in 2009 [19].

In Colombia, a laboratory-confirmed case is a probable case of dengue, severe dengue,
or dengue mortality confirmed by any of the laboratory criteria for dengue diagnosis. A
positive PCR or viral isolation in patients with less than 5 days of onset of fever or Dengue
IgM Dengue ELISA in patients with 5 or more days of onset of fever, while a confirmed case
by epidemiological linkage involves confirming probable cases of dengue from laboratory-
confirmed cases using the association of person, time and space [19]. This information is
recorded in a database that contains epidemiological records by epidemiological week, so
for the present study it was necessary to group them by year.

The procedures and specifications applied to the data for the development of the
phases of the study are described below:

2.2.1. Dengue Incidence Data for the Department Scale

For the spatio-temporal analysis, dengue event notification data from the department
of Cauca recorded in the period 2012 to 2018, acquired through the National System of Pub-
lic Health Surveillance (SIVIGILA, for its Spanish abbreviation) were used. Data available
at https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/SIVIGILA.aspx (accessed on
10 January 2020).

The year 2019 was excluded from the analysis because it was an epidemic period; there-
fore, to avoid overestimating the cluster, that year was not considered in the spatio-temporal
analysis. For hot spots detection, the incidence rates of dengue per 10,000 inhabitants from
2014 to 2018 were calculated from the cases reported to the SIVIGILA, and the population
statistics of the projection system reported by the National Administrative Department of
Statistics in 2020; in both process data were georeferenced. In 2014, a total of 378 cases of
dengue fever were registered in the department of Cauca, with an increase of 40% in 2015
with 631 cases. About 803 cases were confirmed in 2016 and only 96 cases in 2017. Finally,
in 2018, there were 177 cases registered.

https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/SIVIGILA.aspx
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2.2.2. Dengue Data for the Local Scale

For the municipality of Patía the databases of dengue and severe dengue cases from
2015 to 2019 reported by the Epidemiology Surveillance Group of the Department of
Health of Cauca were reviewed (data available by request). Of the 246 total cases, 66 were
discarded for reasons such as duplication of information, addresses that could not be found
or different origins. As a result, 180 cases of dengue were used, including six cases of severe
dengue, of whom 167 were georeferenced and 13 were geocode. To explore the data, a
dengue endemic channel for the municipality of Patía was developed. An endemic channel
represents the number of cases within the expected normal seasonal range; anything above
this moving threshold would be considered representative of an unprecedented number of
cases, i.e., an outbreak (Figure 2). The zones of success, security, and alarm determine the
habitual behavior of the dengue cases.
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Events were differentiated when they had been confirmed by a laboratory or clinic,
confirmed by an epidemiological linkage, discarded, updated, or adjusted due to typing
error. Subsequently, only the variables that were necessary to carry out the geocoding or
georeferencing process were selected as appropriate. Whether the case had moved from
his or her municipality of residence was also noted, and the location of the address and/or
the neighbourhood was taken into account.

The geocoding process, which consists of assigning geographic coordinates to the
addresses, was carried out in cases where the detailed description of the location was
available, through Google Maps Geocoding API [20]. Georeferencing, which also involves
the positioning of the element in a coordinate system, was applied for general descriptions
referring to polygon-type elements.

Georeferencing was carried out using the point-radius method [21]. The assignment of
coordinates was performed using the centroid of the most specific political divisions, which
could correspond to a village, section, or neighbourhood. This centroid was calculated using
the Calculate Geometry tool of ArcGIS® 10.8 for regular polygons and the Point on Surface
tool of QGIS 3.10.5 for irregular polygons, using the official layers of the rural and urban
sections provided by DANE [22]. For the polygons of neighbourhoods in the municipality,
the layer was downloaded from the collaborative project Open Street Maps (OSM) due to
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its greater precision (https://www.openstreetmap.org/#map=5/4.632/-74.299 accessed on
25 June 2020). Data with ambiguous locations and data with neighbourhood or village
locations that did not correspond to the information of the municipality or cases that
reported a municipality of residence other than Patía were excluded.

2.3. Study Design

A retrospective study based on the epidemiological data collected for the observation
window from 2012 to 2019; after performing its georeferencing, the study was developed at
three scales: departmental, municipal, and local.

2.3.1. Phase 1: Spatio-Temporal Analysis of Dengue Distribution for Cluster Detection,
Targeting High-Dengue-Risk Clusters of Municipalities at the Departmental
Scale (Objective 1)

• Space-time clustering: A space-time scan statistic for the detection of risk clusters
following the Poisson model [23] was used for the years 2012 to 2018 when a spa-
tial pattern of dengue cases existed. Targeting was carried out using the reported
epidemiological information and included the following steps: (1) grouping of the
epidemiological cases of the event reported to SIVIGILA according to the municipality
of residence of the case or where the case originated, (2) information regarding the total
number of cases of dengue and severe dengue taking into account the time of year and
(3) location of the centroids in terms of latitude and longitude for each municipality in
the department.

• The information was processed using Kulldorff’s method [23]. This method uses
a model in which the number of events in a geographic area is distributed accord-
ing to the Poisson model; under the null hypothesis, and without covariates, the
expected number of cases in each area is proportional to its population size, or to
the person-years in that area. Because the data are aggregated in census districts, the
measurement was concentrated in terms of the central coordinates of those districts
and was expanded along a third dimension that reflects the size of the population as it
changes over time.

• The retrospective space-time analysis scanning for clusters with high rates using the
discrete Poisson model was defined by a cylindrical window with a circular geographic
base and with a height corresponding to time. The base was defined exactly as for
the purely spatial scan statistic, while the height reflects the time frame of potential
clusters. The cylindrical window was then moved in space and time, so that for each
possible geographical location and size, it also visited each possible time frame. In
effect, we obtained an infinite number of overlapping cylinders of different size and
shape, jointly covering the entire study region, where each cylinder reflected a possible
cluster [23].

• Hotspot detection: Once the overall landscape of the Cauca department was defined
by clustering risk, a more detailed analysis was carried out to distinguish the year-to-
year epidemiological behaviour of each municipality using the High-Low Clustering
technique (Getis-Ord General and Getis Ord-Gi* statistic). This technique identifies the
areas where the highest incidence rates of dengue are geographically homogeneous
and concentrated under statistical significance parameters. These areas, known as
hot and cold spots, as they specifically consider the extreme high or low values, have
been previously used by authors such as Khormi and Kumar [24] and Mutheneni
et al. [12] to study the spatial patterns of dengue and their potential application in
disease management programmes.

• The clusters that presented a pattern of distribution of the incidence rates of dengue per
10,000 inhabitants—that is, data that were not randomly distributed in the department
of Cauca for the period between 2014 and 2018—were identified. The conceptualiza-
tion of inverse distance was determined using the Euclidean distance without defining
a distance threshold. Additionally, the statistical significance was based on the False
Discovery Rate (FDR) correction.

https://www.openstreetmap.org/#map=5/4.632/-74.299
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• These spatial geostatistical techniques allowed us to characterize the geographic distri-
bution of the incidence of dengue [25] and to thereby identify statistically significant
hot spots and cold spots using the Getis-Ord Gi* statistic. This statistic allowed us to
examine the local level of spatial clustering to identify and visualize the municipalities
whose dengue rate values were extreme and geographically homogeneous.

2.3.2. Phase 2: Spatial Stratification of Dengue Risk Villages by Poisson Regression, to
Determine the Effect of Environmental Factors That Influence the Spatial Variation of
Dengue at the Municipal Scale (Objective 2)

• Study site: Patía municipality was chosen for spatial and environmental factors anal-
ysis within the department after carrying out Phase 1; the municipality had one of
the highest incidences of dengue fever in the time window (2012–2018). In relation to
entomological indicators, it has been positive for pupae index throughout the years in
several neighbourhoods of its municipal seat.

• The municipality is located in the department of Cauca and has an area of 723 km2.
As of 2021, it had a population of 37,793 inhabitants, of whom 13,598 lived in the
urban area. The municipal seat, called Bordo-Patía, is located at the coordinates
02◦06′56′′ N and 76◦59′21′′W and at an altitude of 910 m.a.s.l. The average temperature
of the municipality is between 25 and 27 ◦C (maximum temperature 33–38 ◦C and
minimum temperature 15–19 ◦C), and the average annual precipitation is 2171 mm.
The municipality includes zones of premontane rainforest, premontane dry forest, and
tropical dry forest [26].

• The climate in Patía is conditioned by its geoforms. A warm climate is representative
of the depression or valley of Patía, which covers most of its extent. A cold climate is
associated with the western mountain range that passes through the north of the mu-
nicipality. Precipitation in the municipality has a bimodal distribution and is divided
into two wet periods (March–May and October–December, the latter of which is more
intense) separated by two dry periods (January–February and June–September) [27].

• Environmental factors: The environmental variables that were considered in the Pois-
son regression were altitude, minimum and maximum temperature, and precipitation.
To acquire the data associated with these variables, the NASA Earth Data platform
and the Climate Engine climate database were used.

• Altitude data were obtained from the NASA website, https://search.asf.alaska.edu/#/
(accessed on 8 October 2020), which has a variety of high-resolution cartographic
resources. To download the digital elevation model (DEM) from which the altitude
data were derived, a user account was created to access the platform. After the area of
interest was located, the dataset “ALOS PALSAR” was selected, which contains the
global DEM at a resolution of 12.5 m obtained through the synthetic aperture radar of
the Advanced Land Observation Satellite (ALOS).

• The climate data were acquired through the website https://app.climateengine.or
g/climateEngine (accessed on 24 March 2021); after logging into the platform, a
series of parameters were defined, such as the dataset, the meteorological variables of
precipitation, maximum and minimum temperature, and the time interval (2015–2019).
The dataset selected for the study was Terraclimate, which has monthly information
on all required variables with a spatial resolution of 4 km. It is the most detailed
among the various datasets available in the Climate Engine platform, which covers
pixel values between 5 × 5 km and 55 × 55 km. Additionally, this dataset has an array
of data from WorldClim, CRUTs 4.0 and JRA 55, which were structured and validated
using interpolation and reanalysis techniques [28].

• Poisson regression analysis: Prior to modelling, univariate Poisson regression models
were developed to identify the environmental factors that influence the increase of
and spatial variation in the dengue burden in the municipality; a Poisson regression
model was run using ArcGis Pro© software, taking into consideration the statisti-
cally significant variables between altitude, temperature (maximum and minimum)
and precipitation.

https://search.asf.alaska.edu/#/
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
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• To identify how the environmental factors influence the increase of and spatial varia-
tion in the dengue burden in a village within the municipality, a Poisson regression
model was run using WinBUGS [29] and GeoBUGS [30] software packages, both useful
for making inferences under a Bayesian framework using the Gibbs Sampling method.

• WinBUGS approaches Bayesian estimation problems by multiplying a priori distribu-
tion by the likelihood and then simulating samples from the a posteriori distribution
using the Gibbs algorithm. Predictive maps for the risk of infection were obtained
taking into consideration the statistically significant variables such as altitude and
minimum temperature.

• Subsequently, a Hierarchical Bayesian Model (HBM) was built in two stages; the HBM
uses multiple levels of analysis in an iterative way [31]. As described by Best [32],
in the HBA the unexplained extra-variance found in spatial statistics is identified as
either spatially correlated effects or heterogeneity effects.

• A purely spatial modelling in two stages was followed: at the first stage, a likelihood
model for the observed and expected dengue disease counts was specified based on
the environmental variables. At the second stage, a prior model over the space of
possible relative risks (RR) was specified. The data included two covariates measur-
ing the minimum temperature and elevation within the municipality, and a list of
adjacent villages, using the intrinsic conditional autoregressive (CAR) prior proposed
by Besag, York and Mollie [33]. This model considers the spatial correlation between
neighbouring areas. The general model could be written as:

Oi ~ Poisson(µi),
log (µi) = log Ei + α0 + α1xi/10 + bi,

(1)

• Where α0 is the log relative risk for dengue in the study region, xi is one of the
covariates with associated regression coefficient α1, and bi is an area that represents
the residual or unexplained relative risk of disease. To allow for spatial dependence
between the random effects bi in nearby areas, the car.normal distribution was used.
The set of posterior means of relative risks was then used to create a map to visualize
high- or low-risk segments.

• The Bayesian interpretation of probability allows (proper prior) probabilities to be as-
signed subjectively to random events, in accordance with the natural history of the dis-
ease. The Markov Chain Monte Carlo (MCMC) implementation ran a sampling chain
for 20,000 iterations, and the first 1000 iterations were discarded as pre-convergence
“burn-in” [34]. Spatial autocorrelation was evaluated using Moran’s Index in the
residuals. After running the HBM, we use the package CODA and R2WinBUGS to
analyse the outputs [29–32].

2.3.3. Phase 3: Spatial Analysis for the Identification of Epidemiological and Entomological
Clusters at the Local Scale, to Prioritize Vector-Control Activities (Objective 3)

• Spatial analysis with Hot Spot analysis: Prior to hot spot analysis, the Getis-Ord
General G statistic was used to identify significant risk clusters. The z-score and
p-value are measures of statistical significance that lead to acceptance or rejection
of the null hypothesis. For this technique, the null hypothesis states that the values
associated with features are randomly distributed. For this analysis, a radius of 100 m
was established as threshold distance within the neighbourhood area. This radius
was selected based on the dispersal area of the vector [9,35,36] and the results of other
similar studies [37–40]. The potential clusters with the highest burden of dengue per
unit area were identified, based on the incidence rate in the neighbourhoods that
permanently contribute to the cumulative burden of dengue cases in the municipal
seat of Patía.

• Getis-Ord Gi* test for entomological data: The existence of spatial distribution pat-
terns of the pupal stage of Ae. aegypti vector was evaluated through the study of
entomological variables at the neighbourhood scale, such as the total number of pupae,
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the index of pupae per person and the Breteau index (BI) for spatial analysis in GIS
software. Those indicators were selected because the sub-department of health of
Cauca (Secretaría de Salud) collected systematically and continuously in conducting
this type of entomological surveillance.

• First, an analysis of the spatial distribution of the vector was performed, with a
measure of the degree of clustering (high or low) using the general G statistic of Getis-
Ord to indicate whether the pattern was uniformly or randomly clustered based on the
fixed distance band parameter. Subsequently, neighbourhoods with groupings or high
and homogeneous concentrations of clusters were identified with the Getis-Ord Gi*
statistic using 100 m as a distance threshold. The statistical significance was based on
the False Discovery Rate (FDR) correction. The information on the variables used was
obtained through the Basic Entomology Unit of the Department of Health of Cauca
(data available by request).

• For both spatial analyses we consider “local” in the sense of considering neighbour-
hood areas within the municipality.

2.4. Ethics Statement

Access to patient data, including the home addresses of the patients, was approved by
the Ethics Committee of the National Institute of Health, Colombia (CEMIN 13-2019).

3. Results
3.1. Geographic Distribution of Dengue Incidence

Between 2012 and 2018, the Cauca department showed about 3023 dengue cases
throughout the territory. A time-series plot of dengue virus cases (DENV,) in Figure 3,
shows dengue cases on the vertical axis, and the time period for the analysis on the
horizontal axis. The series shown below is non-stationary and non-linear, with trends that
could be associated with a seasonal component.

Trop. Med. Infect. Dis. 2023, 8, 262 32 of 31 
 

 

 
Figure 3. Time series of dengue cases from the department of Cauca from 2012–2018. 

Figure 4 shows the variation of the incidence rate of dengue for the 42 municipalities 
of the department of Cauca between 2014 and 2018. Global cluster analysis was performed 
to represent a variable range between 0.10 and 83.23 cases per 10,000 inhabitants. 

 
Figure 4. Dengue incidence rate x 10,000 population for the department of Cauca (2014–2018). 

Figure 3. Time series of dengue cases from the department of Cauca from 2012–2018.

Figure 4 shows the variation of the incidence rate of dengue for the 42 municipalities
of the department of Cauca between 2014 and 2018. Global cluster analysis was performed
to represent a variable range between 0.10 and 83.23 cases per 10,000 inhabitants.



Trop. Med. Infect. Dis. 2023, 8, 262 10 of 29

Trop. Med. Infect. Dis. 2023, 8, 262 32 of 31 
 

 

 
Figure 3. Time series of dengue cases from the department of Cauca from 2012–2018. 

Figure 4 shows the variation of the incidence rate of dengue for the 42 municipalities 
of the department of Cauca between 2014 and 2018. Global cluster analysis was performed 
to represent a variable range between 0.10 and 83.23 cases per 10,000 inhabitants. 

 
Figure 4. Dengue incidence rate x 10,000 population for the department of Cauca (2014–2018). Figure 4. Dengue incidence rate × 10,000 population for the department of Cauca (2014–2018).

In general, the department of Cauca had high incidence rates of dengue in 2014, 2015
and 2018. The epidemiological behaviour of the department was characterized by having
376 cases in 2014; a 64% increase in 2015, with a cumulative incidence rate of 47.04 per
100,000 inhabitants; a gradual decrease in the incidence rate in 2016 and 2017 because of
the effect of interventions in the Zika outbreak; and an unusual increase in cases in 2018,
with a total of 177 accumulated cases (Figures 2 and 3).

The municipalities in the northeast of the department (Miranda, Puerto Tejada, Villa
Rica, Padilla, Corinto, Caloto and Santander de Quilichao) had high incidence rates every
year, while the municipalities towards the Pacific coast (Guapi, Timbiquí and Algeria,
considering that the latter had very low entomological indices of pupae) had variable and
non-persistent incidence rates. Towards the southeastern part of the department, there was
an unusual increase in the number of cases in Piamonte (IR = 75.3; POP = 9335), while in
the southern region of the department, the municipality of Sucre had the highest incidence
rate (IR = 83.23; POP = 9748). The municipality of Patía had continuously moderate to high
incidence rates during the observation window (IR = 3.8–28.4; POP = 37,793).

3.1.1. Identification of Clusters of High Risk for Dengue in Cauca

In the retrospective spatio-temporal analysis, the search for clusters with high rates
using the discrete Poisson model allowed the identification of four statistically significant
geographic clusters with a total of 2697 cases and an annual rate of 29.3 cases per 100,000 in-
habitants. This model is useful when count data are available, where there is a background
population from which the cases arise, and under the null hypothesis that the cases of
dengue are independent of each other.

The first cluster was obtained for 2018, with the highest relative risk of 26.25, while
the second cluster, which included the municipality of Patía, presented a relative risk of
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8.17 (p < 0.05) specifically for the period between January 2014 and December 2016. In this
time frame, the observed cases (n = 293) were higher than the expected cases (n = 39.65) for
these municipalities. The third cluster had a relative risk of 4.83 between 2013 and 2015
and was statistically significant, while the fourth cluster presented a value of 1.49 for 2016
(p > 0.1). Table 1 shows the results for each of the clusters from the analysis of the number
of registered cases relative to the number of expected cases. A graphical representation of
the four clusters is shown in Figure 5.

Table 1. Spatio-temporal analysis for the identification of high-risk clusters for dengue in the
department of Cauca (2012–2018).

Dengue Clusters in the Department of Cauca

Cluster I * Cluster II * Cluster III * Cluster IV

Municipalities Piamonte Patía and Sucre

Caloto, Miranda, Corinto,
Padilla, Puerto Tejada,
Guachené, Santander de
Quilichao and Villa Rica

López de Micay, Tim-
biquí, Suárez, El Tambo
and Argelia

Time frame 2018 2014–2016 2013–2015 2016
Population 7343 45,103 274,554 134,841
Registered cases 56 293 857 59
Expected cases 2.18 39.65 237.22 39.77
Relative risk 26.25 8.17 4.83 1.49
Likelihood ratio 128.58 345.14 566.61 4.11

*p < 0.001.
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3.1.2. Getis-Ord Gi* Dengue Hotspot Detection

When analysing the spatial distribution of the incidence rate of dengue for the years
2014 to 2018 in the department, a hot spot analysis identified significantly high rates
(≥95% confidence) in the municipalities of Miranda and Patía (year 2014), and the munici-
palities of Patía and Puerto Tejada (year 2015). No municipalities were identified as “cold”
areas where the incidence rate was significantly low.
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In the global analysis for 2014 and 2015, the presence of clusters was evidenced for
the variable incidence rate (p < 0.1; z-score ≥ 1.65). The spatial pattern of the disease was
distributed in an aggregated way that formed clusters, as the spatial analysis looks for
patterns and meanings. In Figure 6, the dark and light red colours indicate hotspots of
dengue cases (z-score Getis-Ord > 2.58 statistically significant). The blue and light blue
colours represent cold spot areas (z-score Getis-Ord < 2.58 statistically significant).
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Figure 6. Hot spots for the department of Cauca considering the incidence rate of dengue (2014–2018).

The presence of the municipality of Patía in the cluster analysis persisted until 2017,
when it presented significantly high incidence rates, along with the municipality of Pia-
monte. However, the risk clusters identified in that year were not statistically significant
(p > 0.1; z-score: 0.023974). For 2018, the municipalities of Piamonte and Santa Rosa showed
high incidence rates, although the presence of Ae. aegypti was not reported in the municipal
seat of Santa Rosa. This difference was not statistically significant (p > 0.1; z-score < 1.65).

Once the geographical variation of the event was established, the areas within the
municipality with a higher than expected incidence of the disease at the section and neigh-
bourhood scales were identified. This analysis confirmed geographic variation with respect
to the incidence rate variable, which was evidenced by identifying the neighbourhoods
with higher or lower proportions of events.
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3.2. Spatial Variation of the Probability of Dengue Incidence as a Function of Environmental
Variables in the Municipality of Patía

In the epidemiological targeting for Patía, the municipality reached significant inci-
dence rates of dengue in 2014, 2015, 2016 and 2018. During the latter year, the incidence
rate was 6.5 per 10,000 inhabitants, with a total of 24 accumulated cases (Figures 2 and 3).
In 2015, 41% (n = 72) of the total number of cases in the period were analysed; meanwhile,
2016 gathered 32% (n = 56), followed by 2018 and 2019 with 11% (n = 19) and 10% (n = 17)
respectively; the year with the lowest number of cases was 2017, with 7% (n = 12). Figure 7
shows the location of dengue cases registered in the period 2015–2019.
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Figure 7. Observed number of dengue cases in Patía municipality for 2015–2019 period.

These incidence fluctuations may reveal a relationship between dengue disease and
the explanatory environmental variables, increasing the probability of finding dengue and
its vectors in the villages and population centres analysed, which will allow the carrying
out of a characterization process, which is secondary to the targeting process and is useful
for identifying and describing the main epidemiological and environmental variables that
shape the dynamics of dengue transmission in one of the prioritized clusters of the disease
at the departmental scale.

Using a count (Poisson) model type for our dependent discrete variable allowed us
to identify the elevation (β = 0.0197) and the minimum temperature (β = 45,185) data
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as statistically significant (p ≤ 0.01). This results indicate that, in the municipality of
Patía, dengue cases are positively influenced by altitude and minimum temperature. Both
variables had a significant z-statistic (elev. = 11.2427; min.temp. = 10.4163), meaning that
they could contribute significantly to the model.

The identification of risky villages or towns within the municipality requires spatial
analysis using GIS and Hierarchical Bayesian Modelling (HBM). It is common knowledge
among vector-borne disease researchers that elevation is a risky factor for dengue, but the
relationship between the number of cases and minimum temperature may still exist within
each particular region. Figure 8 shows the changes in the relative risk (mean) of dengue
infection through a HBM as a function of environmental variables: altitude and minimum
temperature. This posterior relative risk map clearly shows the characteristic Bayesian
smoothing of the crude relative risks.

Figure 8. Poisson spatial BYM regression model for dengue disease based on environmental variables
altitude and minimum temperature, years 2015–2019 (Patía, Cauca).

Additionally, the Caldas-Lang Climate Classification shown in Figure 8 is a classifica-
tion method widely used in Colombia to characterize the climate, since it allows observation
of the general behaviour of temperature as a function of the altitude and humidity of a
certain region. This figure shows the risk levels divided into seven levels from lower to
higher; a high probability of dengue disease is expected in 18 of 104 villages, which are
located towards the northwest of the municipality, and in some isolated villages such as
Piedra-Sentada, el Estrecho and El Bordo.

The results of the characterization process show that although the probability of
dengue infection for the years 2015 and 2019 as a function of the minimum temperature
and altitude variables was higher in the northwest part of the department, some population
centres, including El Bordo-Patía, were influenced by other variables, such as biological
and sociodemographic variables. Table 2 shows the posterior means and posterior standard
deviations of the Poisson regression coefficients related to dengue cases. The model run on
WinBUGS software with 20,000 iterations starting at 1001.
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Table 2. Summary of the results of relative risk estimations using BYM model for dengue.

Node Mean Standard
Deviation

Monte Carlo
Standard Error 2.5% Median 97.5%

alpha0 7.695 3.47 0.2902 1.795 7.505 14.39
alpha1 −0.02165 0.008491 6.66 × 10−4 −0.03802 −0.02159 −0.006483
alpha2 −3.194 1.483 0.1237 −5.948 −3.101 −0.6001

b [1] −0.5435 0.6066 0.01957 −1.777 −0.5334 0.6039
b [2] 1.34 0.4015 0.01827 0.5572 1.337 2.132
b [3] −0.5395 0.2034 0.01239 2.672 3.057 3.464
b [4] −0.3136 0.5844 0.01519 −1.499 −0.3007 0.7992
b [5] −0.1096 0.5187 0.01175 −1.165 −0.09905 0.8628
b [6] −0.2194 0.5398 0.01347 −1.334 −0.2008 0.7841
b [7] −0.572 0.5891 0.01551 −1.775 −0.5546 0.5265
b [8] 0.6091 0.628 0.01041 −0.7112 0.6408 1.763
b [9] 0.01779 0.5955 0.008791 −1.202 0.03556 1.121
b [10] 0.2088 0.5201 0.01189 −0.8448 0.2213 1.185
b [11] 0.3356 0.769 0.02283 −1.213 0.3575 1.799
b [12] 0.2252 0.5891 0.005614 −0.9738 0.2411 1.339
b [13] 0.6786 0.7378 0.02756 −0.8057 0.686 2.082
b [14] −0.1665 0.5087 0.01047 −1.227 −0.1489 0.7755
b [15] −0.3246 0.5874 0.01131 −1.532 −0.3095 0.7713
b [16] 0.5209 0.8719 0.03325 −1.256 0.5406 2.169
b [17] −0.2656 0.8166 0.01115 −2.038 −0.2108 1.168
b [18] 0.2778 0.5413 0.004316 −0.8249 0.2923 1.291
b [19] 0.5524 0.9201 0.03325 −1.301 0.5725 2.294
b [20] 0.3277 0.5034 0.004141 −0.6865 0.3374 1.296
b [21] 0.5987 0.583 0.00776 −0.5936 0.6208 1.676
b [22] 0.6985 0.7948 0.02767 −0.9144 0.7118 2.201
b [23] 0.7003 0.7746 0.03044 −0.8398 0.7047 2.194
b [24] 0.6407 0.8443 0.03292 −1.052 0.6559 2.274
b [25] 0.6698 0.9354 0.03484 −1.199 0.6845 2.46
b [26] 0.6066 0.9397 0.03487 −1.268 0.633 2.4
b [27] 0.4907 0.8011 0.03154 −1.127 0.5083 2.01
b [28] 0.2674 0.7399 0.02962 −1.217 0.2898 1.654
b [29] 0.4655 0.7695 0.02498 −1.113 0.4954 1.902
b [30] 1.099 0.5708 0.01492 −0.0659 1.119 2.17
b [31] 0.5501 0.6691 0.01684 −0.813 0.5687 1.815
b [32] 0.4066 0.778 0.01396 −1.227 0.4386 1.83
b [33] −0.0915 0.7589 0.7589 −1.718 −0.03475 1.237
b [34] 0.4784 0.5976 0.009939 −0.7641 0.4966 1.595
b [35] 0.849 0.7001 0.02512 −0.5624 0.8676 2.169
b [36] 0.9551 0.5268 0.005398 −0.1324 0.9757 1.924
b [37] 0.606 0.6236 0.02026 −0.6453 0.6139 1.809
b [38] 0.8178 0.5307 0.008372 −0.2679 0.8293 1.818
b [39] 0.4421 0.6346 0.02222 −0.8558 0.4562 1.663
b [40] 0.2733 0.6547 0.02012 −1.051 0.2935 1.513
b [41] 0.7322 0.5801 0.01306 −0.4673 0.7522 1.81
b [42] 0.3273 0.5643 0.006039 −0.8295 0.3457 1.381
b [43] −0.341 0.706 0.01081 −1.842 −0.3008 0.9222
b [44] 0.05025 0.6627 0.006465 −1.334 0.07333 1.279
b [45] −0.1234 0.6103 0.01085 −1.353 −0.1065 1.033
b [46] −0.0973 0.5937 0.008167 −1.32 −0.07968 1.005
b [47] −0.009787 0.5173 0.005345 −1.068 0.005371 0.9668
b [48] 0.1815 0.5157 0.00985 −0.861 0.1892 1.171
b [49] 0.1697 0.6075 0.005576 −1.071 0.1897 1.316
b [50] 0.3164 0.5631 0.006296 −0.8412 0.336 1.368
b [51] 0.09894 0.709 0.01129 −1.346 0.1211 1.418
b [52] 0.1512 0.6355 0.01506 −1.137 0.1628 1.357
b [53] 0.07944 0.5645 0.004516 −1.074 0.09702 1.143
b [54] 0.377 0.6513 0.02601 −0.9065 0.3821 1.643
b [55] −0.6758 0.5308 0.0199 −1.748 −0.661 0.3264
b [56] 0.1952 0.5787 0.01601 −1.003 0.2111 1.279
b [57] 0.2195 0.6124 0.01644 −1.024 0.236 1.374
b [58] 0.4243 0.6111 0.02113 −0.7872 0.4305 1.605
b [59] 0.6599 0.834 0.02483 −1.075 0.6953 2.181
b [60] 0.1436 0.6062 0.01453 −1.076 0.1599 1.293
b [61] 0.1939 0.6635 0.01304 −1.185 0.2181 1.416
b [62] −0.01998 0.7152 0.02696 −1.478 −0.01188 1.346
b [63] 0.2854 0.6176 0.009941 −0.9863 0.3086 1.432
b [64] 0.3602 0.6933 0.0105 −1.06 0.3934 1.629
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Table 2. Cont.

Node Mean Standard
Deviation

Monte Carlo
Standard Error 2.5% Median 97.5%

b [65] 0.8406 0.7516 0.01541 −0.7825 0.9024 2.152
b [66] −0.3531 0.5254 0.01345 −1.404 −0.3417 0.6417
b [67] −0.3 0.6403 0.01245 −1.612 −0.2808 0.8996
b [68] −0.2166 0.5635 0.0104 −1.381 −0.2001 0.8314
b [69] −0.4795 0.6148 0.01522 −1.742 −0.4533 0.6633
b [70] −0.7309 0.6564 0.01606 −2.078 −0.7153 0.5015
b [71] −0.3847 0.6053 0.01633 −1.613 −0.3669 0.7566
b [72] −0.2605 0.6073 0.0147 −1.523 −0.2339 0.8679
b [73] −0.08215 0.6319 0.009134 −1.407 −0.04773 1.057
b [74] 1.696 0.4305 0.005831 0.802 1.714 2.492
b [75] −0.0793 0.5685 0.009272 −1.267 −0.05448 0.9694
b [76] −0.2972 0.6727 0.01103 −1.692 −0.2665 0.9358
b [77] −0.04271 0.5972 0.009422 −1.281 −0.01751 1.048
b [78] −0.2496 0.5543 0.00934 −1.413 −0.2206 0.7576
b [79] −0.1282 0.5572 0.01277 −1.305 −0.1067 0.8917
b [80] −0.4082 0.5174 0.01142 −1.498 −0.3859 0.5412
b [81] −0.7311 0.6199 0.01116 −2.031 −0.6984 0.3958
b [82] −0.7444 0.5425 0.01338 −1.871 −0.7151 0.2382
b [83] −0.2832 0.9397 0.01321 −2.357 −0.1985 1.312
b [84] −1.256 0.6806 0.01606 −2.659 −1.228 −0.009965
b [85] −0.8898 0.655 0.01436 −2.256 −0.8608 0.3195
b [86] −1.294 0.5551 0.01508 −2.444 −1.27 −0.27
b [87] −1.348 0.7438 0.01577 −2.915 −1.31 0.007691
b [88] −0.4158 0.6708 0.0184 −1.799 −0.3965 0.8323
b [89] −0.05354 0.6186 0.01769 −1.314 −0.04162 1.119
b [90] −1.061 0.5791 0.01582 −2.244 −1.046 0.03023
b [91] −1.265 0.7097 0.01687 −2.74 −1.23 0.02105
b [92] −0.8122 0.5955 0.01683 −2.022 −0.7983 0.3181
b [93] −0.8615 0.6813 0.01718 −2.263 −0.8314 0.4095
b [94] −0.8309 0.5883 0.01738 −2.03 −0.8136 0.2922
b [95] −0.7791 0.6103 0.01846 −2.038 −0.76 0.3611
b [96] −1.085 0.6701 0.01851 −2.488 −1.057 0.1453
b [97] −0.2666 0.6203 0.01904 −1.56 −0.25 0.9118
b [98] −1.002 0.7106 0.01762 −2.467 −0.976 0.3117
b [99] −0.7158 0.573 0.01842 −1.878 −0.7047 0.3791

b [100] −0.9311 0.6718 0.01815 −2.343 −0.8914 0.2785
b [101] −0.5415 0.8362 0.01919 −2.312 −0.4927 0.9519
b [102] −0.3021 0.6052 0.01899 −1.546 −0.2837 0.8592
b [103] −0.5478 0.6663 0.0198 −1.923 −0.5185 0.6852
b [104] −0.8285 0.7359 0.02025 −2.37 −0.7977 0.5246
b [105] 3.06 0.2034 0.01239 2.672 3.057 3.464

tau 0.3771 0.08271 0.001286 0.2407 0.3688 0.5622

From the relative risk estimations displayed in Table 2, analysis reveals that RR
estimations at the northwest of the municipality are greater than those near the Patía River
valley. The data displayed provide a picture about the application of the spatial model,
such as BYM model, that is even more realistic than that the frequentist approach.

The spatial autocorrelation was evaluated with the regression residuals to assess if
the Poisson model was correctly specified. Figure 9 shows the cross-correlations between
variables in Markov Chain Monte Carlo output showing no spatial autocorrelation for
the Markov chain (Moran Test < 1.0). Trace and kernel density for priors (Figure 10) are
both available as separate plots, but they are available together via the plot method using
the CODA package through R. The plot shows convergence in the case of parameter b1
as well as the other parameters of b. However, the lack of convergence in the case of α2,
specifically between the range of 10,000 and 15,000 iterations, may be a wrong sign about
convergence if one takes into account that the density distribution is rather irregular. Data
used for cross-correlations and trace and kernel density for nodes are contained within the
supplementary material section.

The BYM-Poisson model is a good hierarchical distribution to model our data because
of the nature of the outcome vatiable. Hence, one of the advantages of this model allows
the identification of spatially aggregated count data when incidence is not so high. There
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are several methodological alternatives for generating estimates with Bayesian hierarchical
models and the accuracy of the risk map could be increased for more detailed comparisons
by including more explanatory variables. The BYM-Poisson model indicates that, in the
municipality of Patía, dengue cases are positively and spatially influenced by altitude
and minimum temperature. The results of the estimation can be used as the reference
to anticipate the spread of dengue in a municipality, i.e., Patía. The strategic decision
and action must be implemented in critical months and must be carried out by the ETV
Programme and the Inspection, Surveillance and Health Control Process at Cauca to achieve
a more optimal prevention.

3.3. Determination of Disease and Entomological Cluster in the Municipal Seat of Patía

Table 3 shows the result of the total data with the cases by origin, discarded cases,
and those that were integrated into the geocoding or georeferencing process. Of the
246 cases used for assigning latitude and longitude, 66 cases were discarded for reasons
such as duplication of information between neighbourhood and village, addresses that
could not be found, or different origins. Of the total registered cases, 13% were displaced,
and six of these cases were reported in Popayan as their municipality of residence and
notification; this municipality is the capital city of Cauca (economic and administrative
centre of the department).
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Table 3. Dengue cases registered in the municipality of Patía by source. Dengue cases from the
a national and b department level.

Dengue Cases in the Municipality of Patia (2015–2019)

SIVIGILA
Notified a

CAUCA
Notified b Provenience Dismiss Final Data

Year
2015 101 97 109 12 97
2016 65 86 91 3 88
2017 14 14 23 9 14
2018 24 24 31 6 25
2019 17 22 28 6 22
Total 221 243 282 36 246

In total, 180 cases of dengue, including six cases of severe dengue in the municipality
of Patía that occurred between 2015 and 2019, were georeferenced (n = 167) and geocoded
(n = 13). Of the 180 cases of dengue, 59.9% were men and 40.1% were women. The age range
of those affected by the disease ranged from 1 to 89 years, with the following breakdown:
1–5 years, 6.2%; 6–11 years, 16.4%; 12–18 years, 15.8%; 19–26 years, 19.2%; 27–59 years, 35%;
and 60 years and older, 7.3%.

After carrying out the global analysis, the −1.65 ≥ z-score ≤ 1.65 pattern did not
appear to be significantly different than random at the local scale. Although the calculation
of the Getis-Ord General G statistic (=0.001909) for the study period did not allow us to
establish a clustering pattern (p < 0.1780; z-score: 1.3468), nine neighbourhoods were found
to have more than 15 cases per 1000 habitants and four neighbourhoods more than 23 cases
per 1000 habitants (Figure 11).

Figure 11. Dengue incidence rate per 1000 habitants in Bordo-Patía, Cauca (2015–2019).
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Spatial Pattern Analysis of Entomological Variables

Regarding the immature stage of the species, for the accumulated pupae for the years
2017 to 2019, the observed general G of Getis-Ord was greater than zero (G = 0.700066),
showing that the variable has an aggregate/cluster distribution pattern. The null hy-
pothesis test of complete spatial randomness (CSR) was rejected (Z coefficient = 1.808633,
p < 0.1). This means that the spatial distribution of the high vector distribution values in the
study area was more spatially clustered than would be expected if the underlying spatial
distribution processes were random.

Figure 12 shows the neighbourhoods with statistically significant values. The analysis
of hot spots by applying the Getis-Ord Gi* statistic to the 26 neighbourhoods showed
that the Libertador neighbourhood has the highest spatial clustering pattern for the dis-
tribution of pupae applying the FDR correction (Gi p-value = 0.001; nNeighbors = 22).
Additionally, when using the critical p-values and z-scores, the Modelo and Olaya Herrera
neighbourhoods had a statistically significant pattern, with 90% confidence (p ≤ 0.1). 

 

 

 
Trop. Med. Infect. Dis. 2023, 8, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/tropicalmed 

 
Figure 12. Accumulated pupae of A. aegypti (2017–2019) in the neighbourhoods of Bordo–Patía 
(left); hot spots for pupae calculated using the Getis-Ord Gi* statistic (right). 

 

Figure 12. Accumulated pupae of A. aegypti (2017–2019) in the neighbourhoods of Bordo–Patía (left);
hot spots for pupae calculated using the Getis-Ord Gi* statistic (right).

Figure 13 shows spatial autocorrelation for a series of distances and creates a line
graph of those distances and their corresponding z-scores. Z-scores reflect the intensity
of spatial clustering, and statistically significant peak z-scores indicate distances where
spatial processes promoting clustering are most pronounced. For the accumulated pu-
pae variable, we did not find peak distances statistically significant vis-à-vis the radius
parameter established.

However, one peak at 536.74 m showed the lower p-value, p ≤ 0.1 (z-score = 1.3622).
For the Breteau Index (pupae), the cluster analysis by year did not show statisti-

cally significant patterns. However, the neighbourhoods with the highest BIs were Galán
(BI = 18.18) in 2017, Prados del Norte (BI = 11.21) in 2018 and El Lago (BI = 12.5) in 2019.
For the cumulative years (2017–2019), the highest BIs (BI > 8.33) were reported for the
neighbourhoods Calle Nueva, Modelo, Libertador, Las Ferias and La Floresta. Table 4
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shows a comparison of the cumulative values of pupae, the BIs and the cases reported
during that period.

Trop. Med. Infect. Dis. 2023, 8, 262 45 of 31 
 

 

 
Figure 13. Incremental spatial autocorrelation for the accumulated pupae in Bordo–Patía neighbour-
hoods (2017–2019). 

For the Breteau Index (pupae), the cluster analysis by year did not show statistically 
significant patterns. However, the neighbourhoods with the highest BIs were Galán (BI = 
18.18) in 2017, Prados del Norte (BI = 11.21) in 2018 and El Lago (BI = 12.5) in 2019. For the 
cumulative years (2017–2019), the highest BIs (BI > 8.33) were reported for the neighbour-
hoods Calle Nueva, Modelo, Libertador, Las Ferias and La Floresta. Table 4 shows a com-
parison of the cumulative values of pupae, the BIs and the cases reported during that pe-
riod. 

Table 4. Dengue cases and Pupae Index in Bordo-Patía neighbourhoods, disaggregated by year 
(2017–2019). 

Neighbourhood
s 

Populatio
n 

Year 2017 Year 2018 Year 2019 
No.  

Case
s 

Total 
Pupa

e 

Bretea
u  

Index 

Pupae/Perso
n 

No.  
Case

s 

Total 
Pupa

e 

Bretea
u  

Index 

Pupae/Perso
n 

No.  
Case

s 

Total 
Pupa

e 

Bretea
u 

 Index 

Pupae/Perso
n 

Altillo 185 0 34 7.22 0.13 0 18 2.78 0.06 0 54 6.18 0.22 
Aruba y Curazao 178 0 0 0.00 0.00 0 0 0.00 0.00 2 0 0.00 0.00 

Balboita 365 0 9 2.38 0.02 0 0 0.00 0.00 1 17 2.08 0.04 
Calle Nueva 291 0 67 3.57 0.12 0 35 1.92 0.10 0 20 0.69 0.02 

Centro 263 0 2 1.59 0.01 0 0 0.00 0.00 0 35 4.17 0.15 
El Campín 155 0 175 5.93 0.31 0 18 2.50 0.06 0 172 8.04 0.26 

El Lago 523 0 9 4.17 0.04 0 12 7.14 0.09 1 102 12.50 0.28 
El Peñol 416 0 42 5.36 0.10 0 33 5.41 0.12 0 60 4.25 0.12 

Estudiantes 368 0 80 2.78 0.09 0 32 4.17 0.06 0 135 5.09 0.14 
Fundadores 419 0 81 5.29 0.22 0 17 4.78 0.06 0 88 4.17 0.15 

Galán 199 0 49 18.18 0.54 1 17.5 5.56 0.11 0 0 0.00 0.00 
Hospital 8 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 

Hueco Lindo 359 1 102.5 4.29 0.19 0 45 2.38 0.14 0 96 5.00 0.13 
Jardín 303 0 63 1.85 0.09 0 0 0.00 0.00 0 29 2.78 0.03 

La Floresta 281 0 43 15.38 0.41 0 12 7.14 0.10 0 0 0.00 0.00 
La Unión 348 1 98 6.21 0.21 1 33 7.14 0.10 0 55 4.76 0.09 
Las Ferias 86 0 163 14.29 0.49 0 15 2.78 0.07 0 108 9.44 0.21 
Libertador 583 1 410 15.93 0.47 0 145 8.33 0.33 0 138 4.70 0.15 

Figure 13. Incremental spatial autocorrelation for the accumulated pupae in Bordo–Patía neighbour-
hoods (2017–2019).

Table 4. Dengue cases and Pupae Index in Bordo-Patía neighbourhoods, disaggregated by year
(2017–2019).

Neighbourhoods Population
Year 2017 Year 2018 Year 2019

No.
Cases

Total
Pupae

Breteau
Index

Pupae/
Person

No.
Cases

Total
Pupae

Breteau
Index

Pupae/
Person

No.
Cases

Total
Pupae

Breteau
Index

Pupae/
Person

Altillo 185 0 34 7.22 0.13 0 18 2.78 0.06 0 54 6.18 0.22
Aruba y Curazao 178 0 0 0.00 0.00 0 0 0.00 0.00 2 0 0.00 0.00

Balboita 365 0 9 2.38 0.02 0 0 0.00 0.00 1 17 2.08 0.04
Calle Nueva 291 0 67 3.57 0.12 0 35 1.92 0.10 0 20 0.69 0.02

Centro 263 0 2 1.59 0.01 0 0 0.00 0.00 0 35 4.17 0.15
El Campín 155 0 175 5.93 0.31 0 18 2.50 0.06 0 172 8.04 0.26

El Lago 523 0 9 4.17 0.04 0 12 7.14 0.09 1 102 12.50 0.28
El Peñol 416 0 42 5.36 0.10 0 33 5.41 0.12 0 60 4.25 0.12

Estudiantes 368 0 80 2.78 0.09 0 32 4.17 0.06 0 135 5.09 0.14
Fundadores 419 0 81 5.29 0.22 0 17 4.78 0.06 0 88 4.17 0.15

Galán 199 0 49 18.18 0.54 1 17.5 5.56 0.11 0 0 0.00 0.00
Hospital 8 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00

Hueco Lindo 359 1 102.5 4.29 0.19 0 45 2.38 0.14 0 96 5.00 0.13
Jardín 303 0 63 1.85 0.09 0 0 0.00 0.00 0 29 2.78 0.03

La Floresta 281 0 43 15.38 0.41 0 12 7.14 0.10 0 0 0.00 0.00
La Unión 348 1 98 6.21 0.21 1 33 7.14 0.10 0 55 4.76 0.09
Las Ferias 86 0 163 14.29 0.49 0 15 2.78 0.07 0 108 9.44 0.21
Libertador 583 1 410 15.93 0.47 0 145 8.33 0.33 0 138 4.70 0.15
Limonar 163 0 0 0.00 0.00 0 0 0.00 0.00 0 14 2.50 0.05
Modelo 369 0 124 8.25 0.22 0 69 9.52 0.22 0 282 11.55 0.42

Olaya Herrera 1461 0 98 3.27 0.09 3 124.5 7.92 0.17 0 224 7.32 0.18
Pablo VI–Parte I 187 0 0 0.00 0.00 0 0 0.00 0.00 0 61 5.95 0.12
Pablo VI–Parte II 513 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00

Popular 294 2 110 7.25 0.21 0 0 0.00 0.00 1 99 5.17 0.14
Postobon 717 0 114 6.23 0.16 2 15 1.43 0.03 0 60 3.66 0.07

Prados del Norte 327 1 33 2.38 0.12 0 42 11.21 0.20 1 77 5.14 0.14
Puerto Nuevo 198 0 60 5.81 0.23 0 0 0.00 0.00 0 21 1.96 0.06

Versalles 130 0 48 5.56 0.17 0 18 3.33 0.08 1 33 4.58 0.11
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4. Discussion

This study modelled dengue data in the department of Cauca (Colombia) using spatio-
temporal models, correlating the number of cases to environmental variables and estimating
the relative risk at the municipality scale. Global and local measures of autocorrelation
performed better than spatio-temporal measures when analysing the incidence rate of
dengue. Dengue infection risk maps indicated the municipalities were above and below
the reference risk, which allows the identification of how elevation and temperature can be
used to estimate the probability of disease incidence.

4.1. Epidemiological Behaviour of High-Risk Clusters for Dengue in Cauca

Spatio-temporal clusters using the discrete Poisson model and the Getis Ord-Gi*
spatial analysis technique have some similarities and differences. The identification of four
clusters through retrospective spatio-temporal analysis limited the search for clusters with
high rates to the municipalities of (1) Piamonte; (2) Patía and Sucre; (3) Miranda, Puerto
Tejada, Villa Rica, Padilla, Corinto, Caloto, Santander de Quilichao and Guachené; and
(4) López de Micay, Timbiquí, Suárez, El Tambo and Argelia. While this analysis allowed
the relative risk of the clusters to be determined, the analysis of hot spots was not only
consistent with the incidence rate patterns and identified the years when the rates were
significantly high (≥90% confidence).

In 2018, Mutheneni et al. conducted a spatial analysis with Getis-Ord Gi*, as this was
the method that showed the best autocorrelation [41]. The G Index of Getis and Ord [42]
help to identify the degree to which the units of analysis with high values (hot spots) or
low values (cold spots) are grouped; that is, it prioritized the formation of clusters.

The spatial distribution pattern of dengue cases was significantly clustered and identi-
fied dengue hot spots in the department of Cauca. A consistent dengue hot spot during
the study period was identified in the municipality of Patía (≥95% confidence). The other
significant hot spots (Miranda, Puerto Tejada and Villa Rica) were mainly located in the
northeastern regions of the department near the Valle del Cauca, as Cali is the third most
important city in Colombia and is a place with hyperendemic transmission of dengue [39].
The size of the region is related to the geographical characteristics of the territory, since the
hot spots lie in highly transited areas along the Pan-American Highway, a commercial and
human corridor that connects the departments of southwestern Colombia.

Regarding the space-time scan statistic and Getis-Ord technique, most proposed tests
for spatial clustering are tests for global clustering. Some of those methods test for clustering
throughout the study area without the ability to identify the location of specific clusters. As
such, these tests and the spatial scan statistic complement each other, since they are useful
for different purposes.

Additionally, it was observed that in the population of the municipality of Patía, the
number of cases of dengue infection was slightly higher among men than among women.
These results are similar to those of other studies [41,43–45] and contrast with those found
in Molineros et al. and Restrepo et al. [46,47]. Additionally, the highest number of cases was
found among those aged 27 to 59 years, followed by those aged 19 to 26 and 6 to 11 years.
This could be because there was a higher number of cases reported in these age groups in
this population. Additionally, the greater number of cases in these age groups may be due
to the circulating dengue virus serotype and its mobility patterns.

4.2. Importance of the Environmental Variables Elevation and Minimum Temperature in the
Prediction of Dengue

Elevation was the variable with the strongest relationship with the incidence of dengue
(µ α1 = −0.02165). Mena et al. and Gyawali et al. (2021) showed that elevation is negatively
associated with the incidence of dengue in Costa Rica and Nepal, respectively [48,49].
In Colombia, similar results have been reported. Vásquez found that altitude is a major
environmental variable in the incidence of dengue, as increased altitude decreases the
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risk of dengue by between 60 and 89% within the altitudinal range in Cundinamarca,
Colombia [50].

In Colombia, the vector Ae. aegypti has been reported at up to 2302 m.a.s.l. However,
its infection with dengue virus has been indicated at a maximum height of 1984 m.a.s.l.,
in Bello, Antioquia [7]. In the municipality of Patía, the altitude ranges from 536 to
3264 m.a.s.l., and the areas with the highest probability of infection are located at El Bordo
and El Estrecho, which is consistent with lower elevation values. Altitude has been in-
dicated as a macroenvironmental factor that limits and influences the development of
the vector and the virus [51]. Additionally, altitude is a modifying agent of the microcli-
mate [50,52].

In this study, the minimum temperature was significantly associated with the inci-
dence of dengue in the time window (µ α2 = −3.194), and 2016 and 2018 had minimum
yearly temperatures of 17.68 and 17.62 ◦C, respectively. Other studies have associated the
minimum temperature with a higher incidence of dengue. Tuladhar et al. found a greater
correlation of dengue incidence with the minimum temperature than with the maximum
temperature in Chitwan, Nepal [53]. Similar results were obtained in southern Taiwan [54];
in Mexico, where there is a rapid increase in risk when the average minimum temperatures
rise above 18 ◦C [55]; and in Cali, Colombia, where a strong association has been established
between minimum temperature and dengue outbreaks. These studies suggest that periods
in which extreme daily temperatures are limited to the range of 18–32 ◦C promote the
growth of the vector population, the amplification of the virus, increased vector feeding,
and increased contact with the human host [56].

Carrington et al. performed a vector competence experiment that showed that tem-
perature fluctuations between 18 ◦C and 20 ◦C promote more rapid dissemination of the
dengue virus than constant temperatures of 20 ◦C, as only 18.9 days are required for 50% of
the mosquitoes exposed to the virus to develop a disseminated infection [57]. These results
indicate a greater potential for dengue virus transmission at low temperatures with natural
fluctuations and an accelerated rate of dissemination. Although constant temperatures
of 26 ◦C showed similar dissemination results, mortality at this temperature was higher
than that at the fluctuating temperature. An increase to a temperature of 30 ◦C becomes
harmful for the mosquito because such temperatures can increase mortality and affect the
reproductive function of adults [58].

According to the climatic classification established by the Caldas–Lang climate zoning
guidelines, the 50.9% of the municipality of Patía is located in the warm semi-humid
climate, 17.4% in the temperate semi-humid zone, 12.7% in the warm semi-arid zone,
12.3% in the temperate wet zone, and the remaining percentage is distributed between cold
wet, cold superhumid, and highly cold superhumid climates typical of altitudes above
2000 m.a.s.l. Based on these characteristics, it can be suggested that warm semi-arid and
warm semi-humid climates, which are in altitude bands below 1000 m.a.s.l, are directly
related to a high probability of dengue transmission. Additionally, the 125.6 km2 extension,
in which the temperature ranges from a temperate semi-humid climate between 17.5 ◦C and
24 ◦C through the altitudinal strip 1000 to 2000 m.a.s.l., could promote dissemination of the
virus more effectively. This confirms the altitudinal variation in temperature and the trends
of dengue disease transmission in warm areas, which is limited even in temperate areas, as
evidenced in the present study. Similarly, the probability of infection in 2016 and 2018 was
related to the minimum temperature (17.68 and 17.62 ◦C), which was not necessarily the
highest among the years studied, as would be expected in dengue transmission scenarios.
However, it was consistent with the optimal temperature for vector competence.

Finally, although the relationship between precipitation and dengue was not signifi-
cant, the minimum temperature, maximum temperature, and precipitation values recorded
were consistent with the phases of El Niño and La Niña. The 2015 and 2019 years had the
highest temperature values, consistent with the warm phase (28.51 and 29.23 ◦C, respec-
tively), while 2017 had the highest average precipitation value (2160 mm), due to the cold
phase, among other factors.



Trop. Med. Infect. Dis. 2023, 8, 262 24 of 29

A study conducted in Mérida, Mexico, found that rainfall variation was the main
variable that explained seasonal changes in the abundance of Ae. aegypti and in cases
of dengue in this locality [59]. Similarly, precipitation is an environmental variable that
has been related to an increase in dengue cases in different countries such as Puerto
Rico, Thailand, and Venezuela [60,61]. Precipitation can influence the transmission of
dengue through its impact on the vector population, since this variable generates a greater
abundance of breeding sites and stimulates the hatching of eggs [60].

Regarding the El Niño Southern Oscillation (ENSO) climate phenomenon, which
consists of a warm phase known as El Niño and a cold phase known as La Niña, data from
the National Oceanic and Atmospheric Administration (NOAA) show that from 2015 to
2019, the year with the most intense and prolonged warm phase (El Niño) was 2015, which
began in October 2014 and ended in April 2016 and was followed by another less intense
warm phase from September 2018 to June 2019. Furthermore, the cold phases (La Niña)
during this period were shorter and less intense. The most significant phase occurred
between October 2017 and April 2018, while a less significant phase occurred between
August and December 2016. The highest precipitation within the analysed time window
was recorded in 2017.

The implementation of the spatial BYM model in estimating the RR resulted in sig-
nificant differences of dengue transmission in Patía (Cauca). This analysis also offers the
advantage of using count of disease cases when incidence is not so high. With this type of
model, the residual relative risks in nearby areas are expected to be more similar than in
faraway areas. Further research can be conducted by choosing the prior distribution with
other parameter values such as sociodemographic or entomological values.

4.3. Relationship between the Dengue Disease in the Municipal Seat of Patía and the Spatial
Distribution Pattern of the Vector

The distribution pattern disease does not appear to be significantly different than
random. However, the neighbourhoods with the highest incidence rate corresponded to
neighbourhoods with the highest number of accumulated dengue cases during the study
period: Olaya Herrera, Libertador, Postobón, and Popular. The same was not true for the
neighbourhoods Hueco Lindo and Calle Nueva, which, despite not having a significant
number of cases, had a high density of cases due to the superposition of the values of the
pixels (10 m × 10 m each), which is more noticeable in small and contiguous spaces such as
those encompassed by these neighbourhoods.

It is important to mention that the neighbourhoods that composed the risk clusters
identified using kernel density (see Supplementary Materials, Figure S2) had a greater
number of inhabitants than the neighbourhoods that did not represent any risk, which
can affect the obtained results according to the provisions of Khormi and Kumar [62].
The Olaya Herrera neighbourhood features open spaces such as cemeteries and market
squares, which could favour clustering and the presence of breeding sites, as could the
neighbourhood’s proximity to rural areas. Other explanatory factors, such as access to basic
sanitation services, water use and the disposal of water containers and the mobility of the
population, should be considered in future studies.

Furthermore, the analysis of hot spots identified neighbourhoods with extreme and
geographically homogeneous values in terms of the total number of pupae: Libertador,
Olaya Herrera, and Modelo. These neighbourhoods had higher numbers of pupae than
the other neighbourhoods; similarly, contiguous neighbourhoods had significant values,
especially in the case of Libertador. One of the most important factors in this analysis
was the critical distance of 100 m, which was defined according to the dispersal of the
vector. Although this analysis focuses on the pupal stage, the threshold is consistent
with other similar studies. Garelli et al. [63] found a clustering of pupae was found in a
maximum radius of 150 m. The concentration of the high values found is of great relevance,
since the spatial grouping of pupae is usually weak, as described by Khormi et al. and
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Garelli et al. [62,63]. In addition, this result may be associated with the presence of adult
mosquitoes, as indicated by LaCon et al. [64].

Although we did not find a peak by incremental spatial autocorrelation, this most
often happens in cases where data have been aggregated and the scale of the processes
affecting the input field variable are smaller than the aggregation scheme.

When comparing the results of the analyses of the epidemiological and entomological
data mentioned above, it is observed that the neighbourhoods of Libertador and Olaya
Herrera simultaneously present the highest density of dengue cases and the highest pupae
concentration. However, the correlation between the total number of cases and the total
number of pupae registered in the time window of 2017–2019 was weak and non-linear, as
demonstrated by the Spearman coefficient (0.1893).

4.4. Study Limitations

The findings of this study have to be seen in light of some limitations. First, in Phase 1,
some of the cases were georeferenced using the neighbourhood centroid; we recommend
to health authorities the use of tools that allow georeferencing the actual residence address
of the case. Second, in Phase 2, the effect estimates in the model are based on the basis of a
purely spatial model; even though some of the most important environmental variables
were included, they could be improved further with entomological data. Third, in Phase 3,
due to the fact that the surveillance of immature stages in the department of Cauca started
in 2017, we did not use the same timeframe for epidemiological and entomological clusters.

An additional risk worth mentioning is that of security and public order in the depart-
ment, as this may have an impact on the collection of primary information in the field. In
addition, displacement in conflict zones can be a limitation for primary data collection, so
it is recommended to have the support of stakeholders at the local level.

5. Conclusions

Previously, the dengue transmission risk stratification process consisted of the forma-
tion of socioecological and epidemiological strata, defined according to the distribution and
frequency of risk factors and the endemic and hyperendemic transmission patterns at the
local scale [8]. Currently, dengue risk stratification involves five operational scenarios that
aim to explain and/or predict how environmental, sociodemographic, and entomological–
epidemiological variables will increase or reduce the incidence of the disease [65].

This study is the first to report high-risk clusters of dengue for the department of Cauca
based on spatial analysis techniques and considering the trends of dengue disease over a
period of seven years. It also evaluated the influence of other variables, such as elevation,
minimum temperature, maximum temperature, and precipitation over dengue behaviour
in Patía, Cauca. Between the years 2015 and 2019, the main variables that were related to the
presence of dengue were altitude and minimum temperature—findings that are consistent
with the geographical and climatic conditions of the municipality. Although the effects
of elevation on the incidence of dengue are widely known, the minimum temperature is
emerging as an important variable, as it is positively related to temperature fluctuations
and infection in the vector.

At the local scale, the study established an association between dengue conglomerates
and the accumulation of Ae. aegypti pupae in the municipal seat of Patía. The neighbour-
hoods with the highest kernel density (Olaya Herrera, Libertador, Postobón and Popular)
correspond to the neighbourhoods with the highest number of cumulative dengue cases
during the study period. Similarly, the Libertador neighbourhood showed extreme and
geographically homogeneous values in terms of the cumulative total pupae.

To determine the most cost-effective intervention strategy, it is necessary to construct
operational scenarios. In this study, as a first step, the localities were stratified, taking the
municipality of Patía as an example. In addition, information was obtained for environmen-
tal variables and entomological–epidemiological antecedents. Considering that scenarios
should be based on the risks of transmission, the municipality of Patía is characterized as
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an area with high transmission of dengue virus within the department of Cauca. This is
because this municipality has: (1) urban areas with a higher-than-average incidence in at
least three of the last five years, according to the data generated by the epidemiological
surveillance system; (2) there are established populations of the vector, (3) persistent trans-
mission and (4) various outbreaks during the year, with seasonal behaviour, and (5) cases
of severe dengue have been reported.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tropicalmed8050262/s1, Figure S1: Probability of dengue in-
fection based on environmental variables altitude, minimum temperature and precipitation, years
2016–2018 (Patía, Cauca); Figure S2: Dengue fever case density and risk clusters in Bordo-Patía, Cauca
(2015–2019). Table S1. Poisson regression based on environmental factors data (original dataset).
Code S1. Computer code with the model and data used in GeoBUGS format. Code S2. Computer
code for use the package CODA and R2WinBUGS to analyse the spatial autocorrelation and kernel
density outputs.
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