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Abstract: The pandemic situation of COVID-19, which affected almost the entire civilized world with
its consequences, offered a unique opportunity for analysis of geographical space. In a relatively short
period of time, the COVID-19 pandemic became a truly global event with consequences affecting
all areas of life. Circumstances with COVID-19, which affected the territory of Slovakia and its
regions, represent a sufficient premise for analysis three years after the registration of the first case
in Slovakia. The study presents the results of a detailed spatiotemporal analysis of the course of
registered cases of COVID-19 in six periods in Slovakia. The aim of the paper was to analyze the
development of the number of people infected with the disease COVID-19 in Slovakia. At the level
of the districts of Slovakia, using spatial autocorrelation, we identified spatial differences in the
disease of COVID-19. Moran’s global autocorrelation index and Moran’s local index were used
in the synthesis of knowledge. Spatial analysis of data on the number of infected in the form of
spatial autocorrelation analysis was used as a practical sustainable approach to localizing statistically
significant areas with high and low positivity. This manifested itself in the monitored area mainly in
the form of positive spatial autocorrelation. The selection of data and methods used in this study
together with the achieved and presented results can serve as a suitable tool to support decisions in
further measures for the future.
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1. Introduction

The COVID-19 pandemic is unprecedented in modern world history and has triggered
a flurry of research activity across the health-related sciences. This effort has produced
an equally unprecedented flood of spatially referenced epidemiological data [1]. Since
2019, humanity has been threatened by the severe acute respiratory syndrome virus (SARS-
CoV-2) pandemic, which causes COVID-19. Since the first case, which was registered in
Wuhan, China, in December 2019, the global spatial dynamics of the disease infection are
changing. The disease moved very quickly from Asia to the West to Europe and the United
States, South America, and finally to the whole world [2]. As of 2 April 2023, there was
a total of 685,887,601 cases and 6,844,035 deaths registered in the databases worldwide
(https://www.worldometers.info/coronavirus/) accessed on 10 April 2020. COVID-19 is a
highly pathogenic and transmissible viral infection that, according to current research, first
appeared in the Chinese city of Wuhan [3]. Coronaviruses are a large group of pathogens,
and most of them cause mild respiratory infections. An example is a cold. Coronaviruses
can also be deadly. They include the coronavirus (severe acute respiratory syndrome) and
COVID-19 (coronavirus disease 2019) [4]. After the outbreak of the COVID-19 pandemic,
the scientific field remained active and has paid attention to this epidemic, not only at
its beginning but also three years after the first case was recorded. The rate of infectious
diseases in the world is on the rise, which can be considered a consequence of poor
hygiene measures in terms of environmental conditions. It is important to know the level
of understanding of infectious diseases, which are a reflection of the geographical area.
Therefore, it is very important to pay attention to the different factors related to health
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in different regions of the world [5]. COVID-19 has become a new subject of interest in
several scientific disciplines. Analyzing it can be complicated to a certain extent, but despite
this fact, the more and more professional public is devoted to researching this issue from
various points of view [6]. According to Rose-Redwood et al. [7], the COVID-19 pandemic
has a completely spatial nature, with value given to geographical theory and practice.
All this happens under the assumption of critical (what is happening) and normative
(what should happen). This is complemented by applying results (making things happen).
The importance of spatial perspective is very useful for understanding the nature of the
COVID-19 disease. It is documented for us by studies that are published in various regions
of the world. As an example, we present studies from Italy [8–10], Turkey [11], Algeria [12],
India [13], Indonesia [14], Kuwait [15], China [16], and Canada [17]. In the space of the V4
countries, contributions were made from the environment of the Czech Republic [18–20],
Poland [21], Hungary [22,23], and Slovakia [24–26].

Slovakia is a country with large regional differences, which result from historical,
geographical, and cultural differences, but mainly from different levels of economic devel-
opment. An important role is played by the composition of the population, which gives
rise to differences in educational level, social area, and overall economic performance of
the regions. To a large extent, it also concerns population development and its individ-
ual demographic processes and structures. It turns out that the ongoing transformation
of family and reproductive behavior has deepened many of them. Since the beginning
of the new millennium, we have witnessed the halt or termination of some established
development trends. In some cases, the opposite tendencies that the 1990s brought with
them are even being enforced. It seems that the main and most dynamically ongoing
part of the transformation of family and reproductive behavior is in the past, and the new
model of demographic reproduction is stabilizing. In addition, we are witnessing the
extension of life and an increase in the role of migration in population development, which,
together with irregularities in the age structure, is reflected in the dynamism of population
aging. As for the development of Slovakia’s urbanization, it has changed significantly in
the last decade. It manifests itself in the form of concentrated deconcentration and with
certain suburbanization tendencies when part of the population from large cities relocates
to satellites in their catchment areas [27].

One of the important aspects of the spread of diseases is predicting possible scenarios,
which Johnson et al. [28] presented using the example of the European Union. According to
the authors, it was important for countries to step up their risk communication efforts and
review their pandemic preparedness plans. The spatiotemporal aspect of the COVID-19
pandemic from the regional view of Europe and its countries was analyzed by Hass and
Arsanjani [29]. Given the global, geographic spread of the virus and its local spread in
many countries, as well as the nature of virus transmission, it is important to understand
the spatial mechanisms of spread. This depends on several factors such as distance,
demographic, and social characteristics of the infected area. The spatial analysis provides a
better understanding of infection transmission routes. Consequently, it enables decision-
makers to design and implement effective health and mitigation measures to reduce the
risks associated with the pandemic [30].

As reported by Fatima, M. et al. [31], at the beginning of the pandemic outbreak,
most of the published studies were conducted in Asia and America. Currently, there are a
sufficient number of comparable spatial studies with geographically detailed data in other
areas of the world.

One of the possibilities for analyzing the issue of COVID-19 is the use of spatial
autocorrelation techniques. According to Haider et al. [32], geographic information science
(GIS) has proven to be a unique tool that has extremely valuable insights into a variety
of research, including the monitoring of the COVID-19 disease. The importance lies in
analyzing the spatiotemporal aspect. The geographic distribution of the epidemic, which
can be analyzed using GIS and spatial statistics, is considered an important characteristic.
Disease dynamics provides geographic information about an outbreak and can provide
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insight into disease trends and outbreaks. At the same time, it provides ways to further
evaluate the associated risk. The geographical analysis of the virus is based on the question
“where is the outbreak and how is it spreading”. Epidemic studies use GIS to determine this.
At the same time, it is used for a very detailed examination of disease concentrations. This
phenomenon was clearly described by spatial autocorrelation, which is widely applicable
in the context of the spread of COVID-19 in any nation. In China, previous research on
the distribution of COVID-19 was conducted using the spatial autocorrelation technique
using the Moran Index test [33]. The findings showed that cases in one part of China were
affecting other parts of the country, suggesting that the COVID-19 pandemic was spreading
spatially. Another example of the use of descriptive and spatial analyses of quantitative
epidemiological data on the example of francophone West African countries (Benin, Burkina
Faso, Ivory Coast, Guinea, Mali, Niger, Senegal) is provided by [34]. Identification, location,
size, and risk of purely spatial and spatiotemporal clusters for high incidence of tuberculosis
in the Gurage Zone of southern Ethiopia is found in [35].

2. Materials and Methods

The development of the spatial divergence of the COVID-19 disease at the global
level, but also the growth and increase in regional differences in individual countries,
represented a rather significant problem. Slovakia could also be included among these
countries. The very nature of the available data on the disease of COVID-19, as well as the
application of analytical approaches, includes the contribution from a methodological point
of view to retrospective analytical cross-sectional studies. These are typical for spatially
oriented, epidemiological, and research areas. For the analysis, the number of people
infected with COVID-19 was converted to 10,000 residents from the registration of the first
case in Slovakia on 6 March 2020 to the present on 6 March 2023. Our observation units
for monitoring the spread of the disease with the disease COVID-19 were the districts of
Slovakia. The total number of districts in Slovakia is 79. The regional division of Slovakia
is represented in Figure 1.
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Figure 1. Regional division of Slovakia.

The relevant analytical view was applied separately for 6 time periods. We determined
the investigated periods according to the individual waves of the pandemic that were
defined in Slovakia. An important role in the analysis of individual periods was played by
measures such as closing schools, vaccinations, and others that were gradually introduced
during the pandemic. Data on the number of infected people were available from the page
of the Institute of Health Analysis-COVID-19-data [36].

First period—between 6 March 2020 and 30 September 2020;
Second period—between 1 October 2020 and 5 March 2021;
Third period—between 6 March 2021 and 30 September 2021;
Fourth period—between 1 October 2021 and 5 March 2022;
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Fifth period—between 6 March 2022 and 30 September 2022;
Sixth period—between 1 October 2022 and 6 March 2023.
There are many spatial studies on COVID-19 that use spatial statistics [37,38]. This

method is quite often used in professional research. Its history goes back to the 1940s when
the presence of positive spatial autocorrelation of cancer mortality in England and Wales
was pointed out by Cruickshank [39]. According to Jaber et al. [40], significance estimation
is important for showing spatial and transient patterns of the spread of COVID-19. The
following is an estimate of its changes over time. Demographic, environmental, and
socioeconomic fluctuations play an important role, being able to accelerate the transmission
of infection. In this state, GIS is a broad set of spatial statistics that play an important role
in planning the spatial and transient patterns of COVID-19. From a policy perspective,
this estimate is important to aid policymakers to improve their plans and strategies. The
importance of spatial autocorrelation is pointed out by Freitas, W.F. et al. [41]. The authors
state that spatially correlated data are geospatial data with spatial autocorrelation and
variability that originate from each region and have adjacency to another region. Mortality
rates from COVID-19 and their geographical associations with various socio-economic and
ecological determinants in Tehran through the use of spatial techniques apply [42]. There is
also a cross-sectional study from the Iranian environment that examined spatiotemporal
patterns in northeastern Iran from 2016 to 2020. Statistical, spatio-temporal scans and
spatial interaction analysis were used in it. The evaluation was carried out using geographic
information systems [43].

The exploratory spatial data analysis method was used to verify whether the observed
value of a unit has a spatial correlation with the observed values of its neighboring units [44].
The global Moran’s I index is used to measure the global spatial correlation, while the local
Moran’s I index in LISA (local indicators of spatial association) was used to measure the
local spatial correlation [45].

According to Nazia et al. [17], the global and local Moran’s I tests were run using the
first-order Queen’s contiguity spatial weights matrix that uses the values from all first-order
neighboring neighborhoods to determine whether the area has a higher or lower mean
assessing the degree of spatial autocorrelation.

When there is a grouping of significantly different values, we speak of negative spatial
autocorrelation. When similar phenomena or attributes are located closer in space, we
speak of positive spatial autocorrelation. When the data are located in space so that nearby
values are not in any relationship, the analyzed values are statistically insignificant [46]. In
this study, we analyzed the variable using Moran’s index. For Moran’s index:

I =
n
(
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j=1 wij
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)(

xj −
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Moran’s index (I) values range from (−1) (perfect variance) to (+1) (absolute correla-
tion). The closer the value of I is to 1, the more positive spatial autocorrelation is indicated.
The closer the value of I is to (−1), the more negative spatial autocorrelation is indicated.
Different degrees of spatial autocorrelation can be present within the same ensemble. At
the same time, both positive and negative autocorrelation can occur in the same dataset.

Xie Z, et al. [47] developed the mentioned global test of spatial autocorrelation into a
series of local indicators called LISA (local indicators of spatial association). It is used to
detect local clusters of positive and negative autocorrelation. Within LISA, five different
groupings can be identified (high–high, low–low, high–low, low–high, and not significant).

For the analysis of the detection of specific spatial clusters, the local version of Moran’s
I criterion was used. It evaluates the level of autocorrelation of a spatial statistical quantity
between a given point in space and its surroundings. The relevant indicator is suitable
for locating units with relevantly high (i.e., above average)/resp. low (i.e., below average)
values (so-called positive spatial autocorrelation). Another case occurs if it is characterized
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by sudden level breaks in the spatial distribution of the phenomenon (negative spatial
autocorrelation). The statistical interference of all three applied indicators (general G-
statistics, Moran’s I criterion, and local Moran’s I) is based on the calculation of the Z-
statistics concept [48].

MoranI:
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This study used different spatial techniques from spatial autocorrelation using global
Moran’s I and Hotspot analysis using Getis-Ord Gi statistics. At the same time, analytical
tools were also used in the contribution of the basic processing of a statistical dataset and
its subsequent analysis, methods of thematic cartography, comparative data analysis at the
level of the districts of Slovakia, spatial autocorrelation, and deduction and synthesis of
acquired knowledge.

3. Results

Since 2020, the world has experienced a pandemic, the consequences of which have
been unprecedented in the last century. Life in the world, including in Slovakia, slowed
down significantly for some time. Globalization played one of the important aspects in
the spread of this disease, which, in addition to its positive effect, also has its risks. We
detected the first case of COVID-19 in Slovakia on 6 March 2020. It was 4 months after
its first discovery in China. The disease was imported to Slovakia from 52 countries.
Most cases were from Austria, the United Kingdom, and Germany. Due to the threat
to public health, the government of the Slovak Republic declared a state of emergency
on the territory of Slovakia on 11 March 2020. As of 6 March 2023, since the beginning
of the pandemic, 1,860,013 residents in Slovakia had been infected and registered (https:
//covid-19.nczisk.sk/sk) [49]. In the development of the number of people infected with
the disease COVID-19 in Slovakia, we recorded alternating waves of infection with higher
and lower values over three years. Officially, three waves of infection were recorded in
Slovakia. The first wave (March 2020 to June 2020), the second wave (August 2020 to May
2021), and the third wave (September 2021 to May 2022). For a more detailed analysis of
the infection development, we evaluated the overall situation over six periods chosen by
us, which were divided into equal periods. Figure 2a–f documents the development of the
infection in the observed periods from the point of view of regional differentiation in the
districts of Slovakia.

https://covid-19.nczisk.sk/sk
https://covid-19.nczisk.sk/sk
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The indicator of the number of infected with COVID-19/10,000 inhabitants in Slovakia
shows significant spatial differences. These are related to the period in which we monitor
the indicator. It is important to note the fact that the monitored values of the indicator
differed significantly in the monitored periods. We recorded the lowest values of infected
in the first and sixth periods. In the first period, a very important role was played by strict
measures that were introduced, such as curfews, closing schools and restaurants, closing
airports, traffic restrictions, and others. The first wave was handled well with few infected
and casualties. By introducing hard lockdowns at the very beginning, the rapid onset of the
pandemic was caught. The catastrophic scenario of the Ministry of Health’s analysts, that
the healthcare system would need five times more lung ventilation than it had available,
did not come true. At the same time, human solidarity helped. From the provincial point of
view, the highest concentration of infected people was recorded in the districts of Bratislava,
Pezinok, Námestovo, Tvrdošín, and Sobrance (Figure 2a). The number of infected residents
in Slovakia gradually increased. In the second stage of monitoring, the highest values



Trop. Med. Infect. Dis. 2023, 8, 298 7 of 15

(600 infected/10,000 inhabitants) were recorded mainly in the districts of northern Slovakia.
This wave had a worse impact, collapsing healthcare, and many infected and dead, despite
the already available vaccination against the virus. The management of the pandemic was
unmanageable, as preparation, planning, routing, and testing were neglected. During the
wave, there were many chaotic political decisions that were often without a scientific basis.
As an example, we present widespread testing, permitted numbers of people at cultural and
other events. At the same time, these decisions were often inappropriately communicated
to the public (Figure 2b). The third observed period is more favorable from the point of
view of the number of infected people because the maximum number of infected people
reached more than 200 infected people/10,000 population. This period is the third wave of
the pandemic in Slovakia. Despite the fact that a vaccine was available, the situation was
still catastrophic with a high death toll and a strain on hospitals. The politicization of the
pandemic and vaccination was also a problem. Vaccination has had mixed support across
the political spectrum, with many hoaxes and misinformation (Figure 2c).

The highest values of the number of infected in the period between 1 October 2021
and 5 March 2022 reached 2200.1 infected/10,000 inhabitants (Figure 2d). The highest
concentration of these values was recorded in the districts of the northwestern part of
Slovakia. We are following the trend of moderate decline for the next period (Figure 2e).
Figure 2f documents the situation in the last period. As of 2023, the COVID-19 measures
have been lifted, the vaccination campaign is minimal, and hospitals are handling the rush
of patients. Despite this, the coronavirus pandemic still exists.

3.1. COVID-19 in Slovakia
Spatial Autocorrelation

Knowing when and where outbreaks occur can lead to understanding the underlying
causes of the COVID-19 virus and potentially predicting future outbreaks. There are
various methods or techniques to reveal spatial patterns of disease, including cluster
detection, hotspot analysis, and regression models. Various spatial statistical techniques for
uncovering clusters are included in some geographic information system (GIS) software
packages, as well as in various stand-alone programs. These programs include, for example,
GeoDa. Global spatial cluster analysis and spatial correlations of the epidemic of COVID-19
between the districts of Slovakia were defined according to Global Moran I calculations,
the values of which were higher than 0 (positive) for COVID-19 for all monitored periods
(Figure 3). Moran’s indices took on values from 0.433283 to 0.591291. This is documented
in Figure 4. The Z-score and Moran’s I indicate that the incidence of COVID-19 was
positively and spatially correlated between regions. Moran’s I results show that positivity
for COVID-19 was spatially clustered in the study area.

Local spatial cluster analysis: The results of Local Moran′s I analysis revealed statisti-
cally significant locations. Figure 4 documents the results as a geographical distribution
of occurrence. In general, the Local Moran I maps indicated that most counties exhibited
high–high or low–low clustering types. There are several outliers that show low–high and
high–low local spatial autocorrelation over the entire time span of the study. We present a
more detailed analysis of the results below.

In an attempt to investigate and explain the spatial patterns of the COVID-19 infection
in Slovakia, we used spatial autocorrelation techniques. These were specific techniques—
global and local. The results showed that there is a relatively large geographical difference
in significant clusters of the incidence rate of COVID-19 infection between the districts of
Slovakia. This study demonstrated the great importance of research on how a public health
emergency can affect the lives of the population. Our contribution should be a starting
point for research in the given issue. Health–geographical approaches will continue to
play a critical role even after this pandemic is over. At the same time, it is important to
realize the dynamics of the disease’s development and emerging new mutations. Like
many phenomena, the COVID-19 pandemic has shown us its geography. In this paper, we
analyzed the cumulative number of confirmed cases of COVID-19/10,000 inhabitants as a
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variable in the districts of Slovakia. A spatial weight matrix was selected on the basis of
geographical proximity, global Moran’s I index, p-value, and z-score.
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The number of confirmed cases of COVID-19/10,000 population was calculated using
GeoDa software to clarify global spatial correlation characteristics. The use of spatial
reference data on the number of people infected with the disease COVID-19 in Slovakia
offers us an understanding of spatial-analytical links in this area of interest. With the
spatial autocorrelation method, clusters of regions can be defined from the point of view
of the monitored indicator. On the territory of Slovakia in the first period, we identified
one compact region in the low–low quadrant, which is made up of 12 districts in the
southern part of central Slovakia. Isolated in the next quadrant (high–high) are the districts
of Námestovo, Tvrdošín, and Dolný Kubín. In the western part of Slovakia, they are
joined by the districts of Senec and Bratislava I–V. By analyzing the monitored indicator in
this period, we identified 14 districts, mainly in the southern part of Slovakia, which we
classified in the low–low quadrant. The manifestation of positive spatial autocorrelation is
also observed in the districts of Ilava and Košice I–IV, which belonged to the high–high
quadrant. The negative spatial autocorrelation is in the Košice-okolie district and belongs
to the low-high quadrant. In the next monitored period between 6 March 2021 and 30
September 2021, the situation from the point of view of the monitored indicator changed,
primarily in the localization of the created clusters. In the western part of Slovakia, a
rather significant low–low cluster was formed, which included 20 districts of Slovakia.
Positive spatial autocorrelation was observed in the districts of Žilina, Kysucké Nové
Mesto, Bytča, Považská Bystrica, and Košice I–IV. The given group of districts was included
in the high–high quadrant. Changes were observed in analyses of the phenomenon of
spatial autocorrelation in the given period. We can conclude that on the basis of the spatial
autocorrelation created in this period, the districts of Ilava and Košice I–IV were located
in the high–high quadrant. Isolated in the next quadrant (low–low) are three districts
in the western part (Nitra, Levice, Nové Zámky). Towards the east, they are joined by
the districts of Rimavská Sobota, Revúca, Rožňava, Gelnica, and Trebišov. Prešov district
appears separately in the high–low quadrant and the Košice-okolie district in the low–
high quadrant. In the period between 6 March 2022 and 30 September 2022, we observed
manifestations of positive but also negative spatial autocorrelation. The first cluster of the
high–high type in this period is located in the districts Košice I–IV, Bratislava I–V, Pezinok,
and Senec. The localization of the districts that were included in the low–low quadrant is
represented in a mosaic. These were eight districts, mainly in the eastern part of Slovakia.
High–high cluster with districts Bratislava I–V and Košice I–IV. Districts located in several
parts of Slovakia (Tvdošín, Poprad, Stará L’ubovňa, Stropkov, Humenné, Rožňava, Revúca,
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Rimavská Sobota) are characterized by positive spatial autocorrelation, specifically by
representation in the low–low quadrant (Figure 5a–f).
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4. Discussion

The aim of this study was to reveal the spatial patterns of cases of COVID-19 at
the level of the districts of Slovakia. Our primary goal was to identify clusters spatially.
According to our knowledge, this is the first ever study carried out in Slovakia. Influenza
pandemics were and remain part of the life of the population. However, when, where, and
in what strength it will reappear cannot be seriously predicted on the basis of the current
knowledge. The viral outbreak of COVID-19, which is declared a global pandemic, has
overwhelmed the healthcare system with an increasing number of patients. The rising rate
of infection presented its own challenges, which burdened the health sector as well as the
global economy [49]. It is quite likely that COVID-19 was already here before the first case
was registered on 3 June 2020. The problem arises when identifying because the so-called
severe, protracted infections were considered influenza. Looking back shows that many
cases showed all the typical signs of coronavirus infection, but the tests were not done
then [50]. The genetic pandemic of COVID-19 is a powerful reminder that urbanization has
changed the way people live and work. Therefore, there is a need to strengthen systems and
local capacities to prevent the spread of infectious diseases [51]. According to Suligowski
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and Ciupa [52], several waves of COVID-19 caused by different variants of SARS-CoV-2
have been recorded around the world. During this period, many publications have been
published describing the influence of various factors such as environmental, social, and
economic factors on the spread of COVID-19. The COVID-19 pandemic has seriously
affected European countries and their healthcare systems. Country risk assessment is an
integral part of pandemic preparedness and response. The key EU body that assesses the
risk of virus spread and the impact on public health is the European Center for Disease
Prevention and Control. One of the ways to prevent these risks is to identify risk regions.
Spatial autocorrelation also offers this possibility. Many health services in severely affected
countries are undergoing decentralization and fragmentation [53]. The COVID-19 virus has
caused widespread health problems in all countries. The database of Covid19 diseases in
the world and in Slovakia was available from sources [54,55]. The findings showed that the
spatial distribution of COVID-19 in Slovakia is heterogeneous, and cases were concentrated
in all regions depending on the period in which they were monitored. In addition, our
research shows that geographic and temporal analyses will be very important in the future.
Similarly, surveillance-based disease data will benefit the management of viral infections
such as COVID-19. In addition, this strategy takes into account the determination of the
so-called different zones throughout the country. Likely, COVID-19 was here before we
first noticed it, except we thought of those severe, protracted infections as influenza/flu.
However, in retrospect, many cases showed all the typical signs of coronavirus infection,
but the tests were not done at the time [51].

According to the global Moran’s I values, we can conclude that there is a spatial
pattern throughout the country. The values remained stable at the beginning, but in
subsequent periods, the cases increased and decreased again with the blockade. Local
spatial autocorrelation analysis makes it possible to find outliers and local correlations in
Slovakia. Low–low and high–high clusters were dominant throughout the weeks, with a
few outliers. The local correlation characteristics varied over time and space, which was
stable for several weeks at the beginning of the time period. Low–low and high–high
clusters moved across the western and eastern parts of the country. During the monitored
period, an increase was observed throughout the country due to the activation of intercity
mobility and the relaxation of quarantine measures. This situation actually reveals the
importance of the applicability and traceability of the measures rather than their strictness.
The introduced measures were adapted to individual countries and to the general personal
characteristics of the country’s inhabitants. Measures should not detract from their main
purpose and, most importantly, measures should be traceable.

The Moran’s I measurements also directly overlap with the development in the time-
line of the COVID-19 pandemic in Slovakia and provide important information for the
spatial analysis of the pandemic. Moreover, the first-degree neighbors were statistically
significant. It was found that national measures, rather than regional measures, signifi-
cantly reduced the rate of spread in certain periods. As a result, city-level policies may
not produce the expected results. The COVID-19 pandemic, the spatio-temporal effects of
which were discussed in this study in Slovakia, affected the population in various areas.
Spatial assessment of a pandemic that affects sustainable development goals and hinders
sustainability, especially health and economy in countries, can influence decision makers.
Thus, the problem can turn into an easy-to-solve local problem instead of a difficult-to-solve
national problem.

5. Conclusions

Using spatial methods for modeling the occurrence of COVID-19 in Slovakia is impor-
tant for improving current strategies and predicting the future. We found several high-risk
clusters in different regions of Slovakia, and the socioeconomic conditions of the affected
districts could be important factors for the grouping of cases. In the future, the findings of
our study could enable a narrower focus on the incidence of COVID-19 and socioeconomic
predictors to mitigate the risk of the disease and control it in risk regions. The rate of
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spread of the COVID-19 epidemic in Slovakia has obvious spatial differences. Population
distribution, transport accessibility, average temperature, and conditions of medical facili-
ties had a significant impact on the rate of spread of the epidemic. The analyses confirm
the significant spatial aspect of the distribution of the monitored indicator, which is also
manifested at the regional level. This fact is also reflected in the specification of significant
differences in several areas or from the social, economic, and economic aspects, especially
in the area of east and west. Much research on COVID-19 still needs to be done in Slovakia
to better understand the dynamics of the pandemic, appropriateness, and adaptation to the
national context.
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