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Abstract: The global malaria community has picked up the theme of malaria elimination in more
than 90% of the world’s population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in
sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving
elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but
also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns
of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen.
A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how
P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for
the global malaria community, national malaria programs (NMPs), funding agencies and relevant
stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of
malaria, including P. vivax, in sub-Saharan Africa is warranted.

Keywords: P. vivax; Botswana; malaria elimination; P. vivax biology; malaria and sinusoids

1. Introduction

The World Health Organization (WHO) Global Technical Strategy (GTS) for malaria is
elimination by 2030 in 35 countries, while a target of global eradication by 2040 has recently
been announced (https://www.who.int/publications/i/item/WHO-CDS-GMP-2019.10,
accessed on 23 June 2023) [1]. The new affirmation follows from the earlier initiative of
eradication launched in 2007 and the malERA initiative in 2011 [2,3]. The malERA elimina-
tion and eradication agenda has highlighted key challenges that need to be overcome to
achieve elimination and eradication by the global community. These include (a) Prioritizing
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how to detect the foci of the burden of disease and drug resistance, and how they spread;
(b) Ensuring a clear understanding of the operational process of surveillance and response
based on scientific evidence; (c) Ensuring that the biology of Plasmodium vivax (P. vivax)
is well understood and constitutes part of the strategies for elimination in all countries,
including those in sub-Saharan Africa; (d) Sustaining capacity building and engagement
efforts between scientists, policymakers and local actors so that the focus on elimination
and eradication is clear and upheld [2–4].

The current strategy for malaria disease surveillance across sub-Saharan Africa in-
volves using either Malaria Indicator Surveys (MIS), Demographic and Health Indicator Sur-
veys (DHIS) or Multiple Indicator Cluster Surveys (MICS) as a sampling framework [5,6].
These surveys are modeled to obtain household information on malaria intervention cov-
erage, prevalence of passive malaria cases, anemia and antimalaria drug use in pregnant
women and children under 5 years of age. The surveys are managed centrally and con-
ducted every 2–4 years because of the expenses involved, which makes them unrealistic to
conduct more frequently. In addition, these passive surveys miss asymptomatic infections
that silently increase and sustain transmission [5]. Additionally, they are not precisely
standardized for detection. This approach is thus insufficient to provide information on
disease burden and transmission, yet such information is needed to implement targeted
interventions. While these problems exist in Africa, an additional barrier to elimination
is the fact that African countries have held on to the perception that the burden of non-
falciparum malaria is minimal, which has resulted in strategies for elimination being
focused mainly on falciparum malaria. There is clear and established evidence of the
presence of P. vivax and other non-falciparum (P. malariae, P. ovale) malaria in Africa [7–9].
In addition, P. vivax has been reported to cause severe malaria disease comparable to that
caused by P. falciparum across all age groups [10]. It is, therefore, time for sub-Saharan
Africa National Malaria Programs (NMPs) to rethink strategies for elimination to include
P. vivax and other non-falciparum malaria. The good news is that for elimination, WHO
recommends the implementation of active case detection (ACD) [11]. This recommenda-
tion makes it easier for policy implementers in Africa to carefully think through malaria
elimination strategies that include non-falciparum malaria, particularly P. vivax [12]. The
focus of the current article is to provide rethinking strategies based on current information
on P. vivax biology and data on P. vivax transmission obtained over six years through active
surveys in Botswana.

2. Life Cycle of Human Plasmodium Parasites and Their Recently Discovered
Tissue Niches
2.1. Sporozoite Inoculation and Invasion of Tissues

The epidemiology of malaria depends on a complex interplay between the interme-
diate host, parasite, definitive vectors and the environment [13,14]. These factors differ
from one geographic region to another, thus the epidemiology also differs accordingly.
There are five Plasmodium species in the phylum Apicomplexa and order Haemosporidae that
cause malaria in humans: P. falciparum, P. vivax, P. ovale curtisi, P. ovale wallikeri, (P. ovale),
P. malariae and P. knowlesi [15]. An infection is initiated when a female Anopheline mosquito
infected with the parasite inoculates an estimated 15–123 sporozoites under the skin of an
individual while probing for a blood vessel to take a meal [16–20]. While under the skin,
the sporozoites get activated based on the environmental milieu, express proteins required
for gliding motility and cell traversal and travel through the blood to the liver using the
sinusoids as entry points to hepatocytes [21–24]. The sinusoids are lined with resident
macrophages, the Kupffer cells that aid in the transmigration of the sporozoites via gliding
motility [25] through the sinusoids to reach hepatocytes [26,27]. Cell traversal proteins
enable entry through the hepatocytes until one is selected for development; alternatively,
the sporozoites may use the lymphatic system to enter tissues with the help of the sinus
lining monocyte–macrophage system [28].
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2.2. Entry into Extrahepatic Tissues/Cryptic Sites

It has recently been reported that sporozoites can access and develop in extrahepatic
tissues of the body, including the spleen, bone marrow and lungs [17,29–31]. This raises
the question of how the parasites enter these non-hepatic tissues or cryptic sites. In some
vertebrates (birds and lizards), sporozoites can enter tissues and differentiate further using
the monocyte–macrophage phagocytic system, including in the skin [25]. The Kupffer cells,
which form the monocyte–macrophage system in the liver, are deficient in the production
of reactive oxygen species (ROS), fail to respond to interferon-gamma during infection, are
defective at secreting microbicidal molecules and serve as permissive hosts for intracellular
parasites [32]. These characteristics have also been seen in spleen red pulp macrophages [33].
Comparatively, it may be that the culpable cells permitting intracellular parasite migration
into non-hepatic tissues are the sinus lining monocytes/macrophages in the bone marrow,
Langerhans cells in the skin, and alveolar macrophages in lung cells (Figure 1). These
require further interrogation as they have a bearing on the role of relapses of hypnozoites
in P. vivax and P. ovale malaria transmission [31] and asymptomatic infections. These could
constitute new avenues for blocking malaria transmission using monoclonal antibodies.

2.3. Development of Asexual and Sexual Forms

The development within the tissues is impacted by the specific tissue environment.
Rapid transcriptional changes occur in each parasite depending on the tissue milieu that
determines the success of transmission [21]. In the liver, the sporozoites grow into liver
schizonts that undergo schizogony and transform into merozoites, which are the red blood
cell (RBC) infective forms [34]. The merozoites exit hepatocytes through the sinusoids and
Kupffer cells to infect RBCs in the form of merosomes, which are merozoites enclosed in a
membrane [35]. The merozoites use gliding motility similar to sporozoites for entry into
RBCs [36].
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Figure 1. (A). Plasmodium life cycle. (A) Description of the Plasmodium life cycle from the sexual stage
oocysts through sporogony to sporozoites, and migration into the salivary gland until inoculation into
the human intermediary host during feeding. Sporozoites then migrate in the asexual stage into host
tissues and development via schizogony and back to the sexual stages. (B) i. a liver lobule showing
the triads, ii. a transverse section of the spleen showing an area of the sinusoid system, and iii. the
hepatic sinus lining monocyte–macrophage system (sinusoid) Parasites seeking entry interact with
the Kupffer cells and stellate cells through proteoglycans. Cells arrive at the sinusoids from blood
flow coming through the intersection of the Portal vein and the Hepatic Artery in the liver. In the
spleen, blood flows through the splenic artery into the central artery, either through the perifollicular
zone and then through the venous sinusoids in the fast circulation, or the red pulp of the cords
(consisting of fibroblasts and reticular fibers, but without endothelial cells) in a slow microcirculation.
The slow circulation enables the mononuclear phagocyte system to remove particulate matter and
generate the requisite immune response. From the red pulp, the blood squeezes through the venous
sinusoids, which filter the blood further removing infected RBCs or intraerythrocytic bodies and
exiting through the splenic veins to the portal vein.

In P. vivax and P. ovale, some sporozoites cease replicating and enter a dormant hypno-
zoite stage [37] from which they can relapse when triggered, entering a new replication
mode and generating new merozoites [38]. Recent reports reveal that P. vivax hypnozoites
express genes towards the gametocyte stage early in their development and seem pro-
grammed to commit to gametocytogenesis upon activation [39]. In this way, they serve as
parasite reservoirs for propagation. In the RBCs, merozoites go through early ring forms,
late trophozoites and blood schizonts that expand, burst through the RBCs and initiate
a new cycle of infection as merozoites (Figure 1A). P. vivax merozoites are restricted to
the invasion of reticulocytes while P. falciparum parasites are not restricted, although they
show a preference for younger RBCs during invasion [40]. The schizonts contain about
16–32 merozoites [41]. The cycle of RBC invasion by merozoites leads to a paroxysm of
fever that repeats every 24 h in P. knowlesi, 48 h in P. falciparum, P. vivax and P. ovale and 72 h
in P. malariae [41]. These paroxysms give the respective descriptors of quotidian, tertian
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and quartian malaria, respectively, to the disease. During the asexual RBC cycle, some of
the merozoites develop into immature male and female gametes called gametocytes, which
mature to initiate the sexual cycle [42]. The immature forms, which are not visible in the
peripheral circulation, are present in the bone marrow and spleen where they mature and
re-enter the circulation [34]. In P. falciparum, five developmental forms have been observed
and characterized as stages 1-V, although only the stage V form is seen in the peripheral
circulation [43]. In P. vivax, however, all the asexual and sexual stages of the parasite can be
seen in the peripheral circulation [44]. The mature gametocytes are taken up during feed-
ing by anopheline mosquitoes and develop through gametocytogenesis to produce male
microgametes and female macrogametes. The microgametes undergo exflagellation before
fertilization with the macrogametes into zygotes [45] in the mosquito midgut (Figure 1A).
Genetic recombination occurs during this period, leading to a diploid genome. The zygotes
develop further into motile ookinetes in the midgut. Subsequently, the ookinetes move
from the midgut epithelium to the basal lamina and develop into oocysts via a sporogonic
cycle. Sporogony continues in the oocysts, generating numerous sporozoites [46,47]. Once
mature, the sporozoites are released from the oocysts, after rupture, into the hemolymph
and migrate into the salivary gland ready for a new cycle of inoculation and infection of
humans [48] (Figure 1A). The genes expressed in the developmental cycle of the parasite
appear to be species-specific based on the host and vectors that the parasite interacts with
during the life cycle [48]. These differences are very important in the life cycles of P. vivax
and P. ovale, which have hypnozoite stages. The gene expression pattern in the parasites is
modulated based on host factors, allowing early release and viability of the gametocytes
and sustaining transmission [44]. P. vivax is also established to adapt very well to climatic
variations and multiple vectors, which adds to the difficulty associated with eliminating
this parasite [47,49,50].

All the blood stages of P. vivax have been observed in the extrahepatic tissues (bone mar-
row and spleen). The immature gametocytes are enriched in the bone marrow parenchyma
and the spleen [51–53], while the spleen is further enriched with late-stage asexual forms,
trophozoites and schizonts [31]. Schizogony in the bone marrow and spleen can also
generate merozoites for RBC infection [31]. Schizonts also accumulate in the lungs and
adipose tissues [52,53]. These extrahepatic sites seem to be reservoirs for transmission and
sources of sustenance of transmission, as they are protected from immune attack and drug
treatment and occur in asymptomatic individuals [25,31,54]. Whether these synchronize
with the liver stages to release merozoites into circulation is currently unknown.

2.4. The Reticuloendothelial (RES)/Mononuclear Phagocyte System (MPS) in the Plasmodium
Life Cycle

The term ‘RES’ was originally coined by Karl Albert Ludwig Aschoff in 1924 [55] to
reference cells involved in phagocytosis. The Reticulo referred to the tendency of these large
cells to connect via cytoplasmic projections to form a network or reticulum, while endothelial
referred to the closeness to the vascular endothelium. In later years, RES was renamed
as cells of the mononuclear phagocyte system (MPS) [56] based on their morphology and
kinetics and their ability to phagocytose. Currently, they are made up of three key cells
based on their function and phenotype: monocytes, macrophages and dendritic cells [57].
The cells may be resident in their tissues or recruited, lining the sinusoids of their respective
tissues. Macrophages are derived from embryonic progenitors, starting from the yolk sac
and fetal monocytes and are subsequently distributed throughout the developing tissue
through peripheral circulation [58,59]. These cells subsequently self-renew in the absence
of adult hematopoiesis [60]. Monocytes, on the other hand, are derived from monocyte
progenitor cells and dendritic cells from a dendritic cell precursor (adult hematopoietic stem
cell precursors) [60]. Based on this classification, the previously classified RES cells—Kupffer,
microglia, alveolar macrophages, splenic red pulp macrophages, Langerhans cells and
lymphatic cells—are all considered as belonging to the macrophage type of cells as they
are embryonically derived [60] (Figure 1B). An important point, though, is that while their
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origins are the same, the gene expression patterns are dependent on the tissues in which they
are resident [61]. Interestingly, in all the indicated tissues, Plasmodium sexual and asexual
parasites have been observed as discussed below, but much more studied in P. vivax.

2.5. RES/MPS as Host Sites of Cryptic Infections by Plasmodium Parasites

Blood and Liver: Sporozoites enter the bloodstream in the peripheral circulation using
gliding motility [36], a process that is unique to Apicomplexan parasites. The parasites
stay in the blood until they reach liver sinusoids, where they are initially sequestered.
By interacting with heparan sulphate proteoglycans from Kupffer and stellate cells, they
enter hepatocytes enclosed in a parasitophorous vacuole of host origin, via gliding motility,
through the Kupffer cells [26,47,62] (Figure 1B). They finally settle in one hepatocyte to
signal an end to the migration and continue to develop into schizonts. It has been suggested
that cell entry within a parasitophorous vacuole limits cellular damage during migration,
reduces the risk of an inflammatory response to the parasite and is used by the parasite
for nutrient intake and efflux of waste materials [24,63]. Sinusoids present in tissues of the
RES have been reported to harbor sexual and asexual forms of the Plasmodium parasites
following human autopsy studies and rodent experiments [52,53]. A question that needs
further interrogation is: do Plasmodium asexual and sexual forms have a preference for the
use of sinusoids to enter tissues because of the peculiar role played by macrophages in
sinusoid entry?

Bone marrow and the spleen: The bone marrow is a major site for erythropoiesis,
while the spleen filters blood to remove old and damaged erythrocytes, particles and
pathogens [64,65]. The spleen can contribute to erythropoiesis in a time of need, such as
blood loss or trauma. The macrophages of the sinusoids and fenestrated endothelial cells
play key roles during erythropoiesis and the filtering function of the spleen [66]. Bone
marrow macrophages modulate erythropoiesis by close apposition to the developing ery-
throblasts, while during blood filtration in the spleen, macrophages recognize pathogens
using pattern recognition receptors and pathogen-associated molecular patterns and re-
move them during the open and slow microcirculation through the sinusoids [67]. Parasite
entry into the bone marrow and spleen is also suggested to be through gliding motility, like
that of leukocytes during their transit to sites of acute inflammation, aided by tissue sentinel
macrophages and molecular signals from the pathogens and damaged cells [68–72]. There-
fore, a role for macrophages assisting in parasite entry, as mentioned previously, would be
highly significant in the life cycle of the parasite. It has also been observed that merozoite-
infected RBCs could home into the bone marrow and spleen in a receptor-mediated process
due to vascular leakages that provide signals for invasion [53]. These observations were
seen in both the rodent P. berghei parasite and the human P. falciparum, indicating that the
bone marrow and spleen are major sites for parasite development during the Plasmodium
life cycle. The unique biology of P. vivax and P. ovale, i.e., having hypnozoite stages, presents
an even greater intriguing scenario considering that this stage can cause relapse after sev-
eral years [73–75]. Although malaria relapses are attributed to a hypnozoite source in the
liver, the current understanding of the life cycle may point to there being additional sources
of cryptic ‘non-liver rejuvenants’ of dormant parasites [76]. A large proportion (>90%) of
chronic P. vivax infections are asymptomatic, subpatent and submicroscopic [74]. These
non-tangible infections have been observed to be present in the spleen and form the largest
biomass of P. vivax infections, accounting for close to 98% of the biomass [31]. In addition,
P. vivax genes involved in sequestration and cytoadherence are spleen-dependent [77,78].
Therefore, the spleen and bone marrow, in particular, serve as important sites in the life
cycle of P. vivax. These cryptic infections must be considered carefully in surveillance
strategies to ensure that tools for intervention are optimal. The use of passive case detection
as currently conducted in most malaria-endemic countries in sub-Saharan Africa, focusing
only on P. falciparum malaria, would fail to lead to malaria elimination.

Lymphatic system: The lymphatic system maintains tissue fluid homeostasis and coordi-
nates the transport of immune cells to tissues [79]. The system harbors asexual Plasmodium
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parasites of all stages, including merozoites [18,80]. The source of the parasites could be
sporozoites at the time of inoculation or directly from infected RBCs in the circulation [18],
considering that the lymphatic system is closely linked with the hepatic sinusoids [81].
Parasite development could occur in the lymphatic system, leading to the generation of
merozoites that can stay latent for some time before joining the peripheral circulation to
invade new RBCs, hence sustaining the life cycle [80]. The subscapular macrophages of the
lymph nodes may be the main cells permitting the entry of intracellular pathogens; this has
been seen for viruses as well [82].

2.6. Plasmodium vivax Conundrum and Strategic Activities in an Infection

A pathogen’s ability to enable easy uptake by host phagocytes is described as the
Trojan Horse model [83]. It appears that cells of the MPS are frequently used by intracellular
parasites as Trojan Horses for entry into host tissues [84]. Prolonged environmental changes
and interactions between pathogens and host cells are key drivers of adaptation and
enablers of the spread or resilience during an infection [85,86]. These changes ensure some
level of disengagement with or manipulation of the host immune system to ensure survival.
The Plasmodium sporozoite has three main biological characteristics: to be motile, traverse
cells and invade host cells [87]. For these functions, the sporozoites and merozoites have
characteristic secretory granules: dense granules for modifying host cells, rhoptries for
forming the parasitophorous vacuoles and micronemes for RBC invasion [88]. Sporozoites
have been shown to contain rhoptries and micronemes, while merozoites have all three
granules. Gliding motility is the main enabler of the three characteristics [88]. These
characteristics are shared by Plasmodium parasites. These biological characteristics and
cryptic infections will be discussed, taking into account malaria elimination and data
obtained from Botswana from 2012 to 2018.

3. Trends of Malaria Transmission in Botswana from 2008 to 2018

The defined malaria elimination and eradication strategy is for countries to identify
the foci of Plasmodium infections, treat the population and sustain surveillance to track any
local transmission. From 2012 to 2018, we carried out systematic active studies of malaria
transmission profiles in Botswana in collaboration with the National Malaria Program
(NMP) to understand epidemiological outbreaks and provide data that could allow the
NMP to target hotspots of infections covering all Plasmodium species. We present the
findings together with the epidemiological outbreaks of malaria documented by the NMP
from 2008 to 2012 and the predicted outlook for 2018. The findings from these studies
reveal a profoundly complex transmission pattern of P. vivax and its interaction with
P. falciparum for survival [89,90]. The observations are important and should be considered
and factored into planning strategies for malaria elimination [14].

Botswana is a member of the Elimination 8 countries in Southern Africa and is one of
the front-line countries that targeted malaria elimination in 2015 after concerted efforts to
reduce the malaria disease burden to <1 per 1000 population by 2012 [91,92].

These efforts included increased awareness campaigns towards the uptake of the use
of long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), increased
use of rapid diagnostic tests (RDTs) for diagnosis [93] and introduction of artemisinin com-
bination therapy (ACT) for treatment. Unfortunately, the projected target for elimination
could not be achieved because of challenges in detecting asymptomatic infections and
sporadic cases of malaria localized in the north, eastern, southeastern and parts of the
southern regions [93] (Figure 2). The failure was partly because the surveillance strategy
was based on passive case detection, which did not account for asymptomatic infections
and non-falciparum malaria [94]. The burden of malaria disease has traditionally been in
the northern part of the country, which is wetter and warmer compared to the southern
part of the country. Occasionally, the relatively wetter parts in the eastern, southeastern and
southern parts of the country also experience sporadic transmission, depending on the rain-
fall patterns [93]. Rainfall is seasonal and occurs between November and May [93,95], thus
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the transmission season occurs over the same period. Anopheles arabiensis (An. arabiensis)
accounts for most of the malaria transmission in Botswana, seen in all districts with noted
malaria transmission [96]. Within the An. gambiae complex, it is described as partially
zoophilic, exophagic and exophilic. The P. falciparum parasite rate of the vector in Botswana
can be up to 3% in pyrethrum spray catch collections, depending on the region, time of year,
annual rainfall and human parasite reservoir [97]. It is known to transmit both P. falciparum
and P. vivax in Ethiopia [98]. Surveys in Botswana and surrounding countries have also
revealed the presence of An. funestus s.l., the second most important taxon of malaria
vectors in Africa [96,97,99]. Within the An. funestus group, a study in 2017 confirmed
the presence of An. parensis in Okavango, Ngami, Chobe and Bobirwa districts, while
An. longipalpis type C was found in Ngami and Boteti districts [97]. An. quadriannulatus,
which is predominantly zoophilic, has been found in Ngami, Chobe, Bobirwa and Kweneng
West districts [97]. An. funestus transmits all four Plasmodium species in Kenya [100]. The
roles of other Anopheles species in malaria transmission in Botswana have not been well
documented [96,99].
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3.1. Recorded Annual Trends

In 2008 and 2009, the foci of malaria disease burden were in three districts: Okavango,
Chobe, and Ngami in the north (Figure 2). By 2010, the burden in Okavango had dimin-
ished marginally, with the foci remaining localized in Ngami and Chobe (Figure 2). At the
same time, a small node of transmission emerged, running from Ngami towards Boteti;
this became significant in 2011 (Figure 2). By 2012, the entire geographical area from the
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northeastern section towards the southeastern border regions was experiencing significant
and sporadic malaria outbreaks. These outbreaks were seen despite a general reduction
in malaria disease burden to <1 per 1000 populations, with reference to P. falciparum as
the main causative parasite. It was a puzzling occurrence and after several discussions
on the way forward, it was decided that an active survey was needed to unravel some
elements of the puzzle. In 2012, and considering that the target for malaria elimination
was 2015, an active survey was conducted across the country within the transmission
period and species-specific nested PCR was used for detection of all Plasmodium species
and asymptomatic infections. The result of this survey was profound, as previously pub-
lished [89]. We confirmed that P. falciparum was mainly localized in the Kavango and
Ngami regions (no samples were collected in Chobe at the time), with some asymptomatic
infections. However, we observed, for the first time, that asymptomatic P. vivax infec-
tions were present and localized at hotspots across the country [89]. Areas where the
asymptomatic P. vivax burden was found mirrored the observed outbreaks in a way that
suggested that they were part of the recorded epidemic outbreaks. In addition, areas in
the South (Kweneng) that had experienced occasional outbreaks but were deemed to be
unimportant (Figure 2) were identified as major foci of asymptomatic P. vivax infections.
These findings corroborated the observed characteristics of P. vivax transmission, which is
that asymptomatic P. vivax infections contribute to significant transmission and account
for the majority of transmissions in low-endemic settings, as observed elsewhere [101,102].
In addition, they were highest in areas where P. falciparum was not detected by nested
PCR, indicating a reciprocal interaction between the two parasites, as has been generally
observed. Since samples were collected during the transmission season, we could not claim
relapsing P. vivax hypnozoites. Two questions were on our minds: if these were partly
hypnozoites that relapsed, (a) what triggered the activation and (b) were these relapses
from liver hypnozoites only? Since the outbreaks were spread out over a large area but
within the same period, we wondered whether the trigger/triggers was/were something in
the environment that led to a physiological response and activation or whether it was due
to an innate biological clock that spontaneously induced an activation. We also wondered
whether parasite responses to a trigger were spontaneous within a given geographical area
(what we would term a ‘Spoke wheel effect’) (Figure 3) or ‘relayed’. Following the extension
of the elimination agenda to 2018, to gain insights into the nature of the observed P. vivax
parasites, in 2016 we embarked on another survey at the same sites but included Chobe,
which we had previously missed. This time we collected samples all year round, from
August 2016 to October 2017, and added qPCR to increase the sensitivity of detection. The
findings were particularly interesting. We noted that not only was P. vivax still present
in the sites where they were previously identified, but for some unknown reasons, P. fal-
ciparum had re-appeared in all the places where P. vivax had been observed. In addition,
with the return of P. falciparum, the burden of P. vivax diminished but did not disappear,
allowing for coexistence within the communities. Interestingly, we identified P. vivax in the
non-transmission season, indicating a role in the relapse of hypnozoites in the population.
The active survey reflected the epidemic outbreak in the 2016/2017 period, showing an 80%
increase in malaria transmission in that period [96,103]. In 2018, the NMP mapped areas of
active malaria transmission across the country using a modeling approach (Figure 4). It
was evident that the predicted active sites were consistently in areas where asymptomatic
P. vivax infections had been detected. Not surprisingly, the elimination date was revised to
2025 following a 2021 review by the Malaria Elimination Oversight Committee (MEOC) of
the WHO to include Botswana in the Elimination 2025 (E-2025) countries [104].



Trop. Med. Infect. Dis. 2023, 8, 392 10 of 17

Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 10 of 16 
 

 

Oversight Commi ee (MEOC) of the WHO to include Botswana in the Elimination 2025 
(E-2025) countries [104]. 

  
Malaria infections 2012 Malaria infections 2016 

Figure 3. Malaria infections in 2012 and 2016–2017. The sizes of the circles represent Plasmodium 
parasite prevalence at the sites. 

 
Figure 4. Predicted malaria prevalence in 2018. The red circles indicate active expected incidences 
in the respective areas, while the green circles indicate areas expected to be free from malaria. The 
size of the circles is only an indicator and does not reflect intensity. The color on the map reflects 
transmission: red (high) and blue (low). Source: NMP Botswana. 

Figure 3. Malaria infections in 2012 and 2016–2017. The sizes of the circles represent Plasmodium
parasite prevalence at the sites.

Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 10 of 16 
 

 

Oversight Commi ee (MEOC) of the WHO to include Botswana in the Elimination 2025 
(E-2025) countries [104]. 

  
Malaria infections 2012 Malaria infections 2016 

Figure 3. Malaria infections in 2012 and 2016–2017. The sizes of the circles represent Plasmodium 
parasite prevalence at the sites. 

 
Figure 4. Predicted malaria prevalence in 2018. The red circles indicate active expected incidences 
in the respective areas, while the green circles indicate areas expected to be free from malaria. The 
size of the circles is only an indicator and does not reflect intensity. The color on the map reflects 
transmission: red (high) and blue (low). Source: NMP Botswana. 

Figure 4. Predicted malaria prevalence in 2018. The red circles indicate active expected incidences
in the respective areas, while the green circles indicate areas expected to be free from malaria. The
size of the circles is only an indicator and does not reflect intensity. The color on the map reflects
transmission: red (high) and blue (low). Source: NMP Botswana.



Trop. Med. Infect. Dis. 2023, 8, 392 11 of 17

3.2. Malaria Elimination Successes in the WHO Regions of Africa and the Americas

A key question that naturally comes to mind is what strategies would be required to
ensure successful malaria elimination in a low endemic setting such as Botswana, taking
lessons from countries within the E-2020 group that succeeded and where P. vivax co-
existed with P. falciparum. Two regional examples will be briefly examined here for lessons:
Algeria in the WHO Africa Region and Belize and El Salvador in the WHO Region of the
Americas. The key lessons that were gleaned from the success in Algeria, which is the
country where the Plasmodium parasite was detected by Alphonse Laveran in 1880 [105]
were: a well-trained malaria disease workforce, rapid response to disease outbreaks,
political commitment to the provision of domestic funding to ensure effective case-based
surveillance, robust data management systems, easy access of the community to care and
community engagement [106]. These fundamental principles and activities were owned
and sustained continually until elimination. El Salvador had the highest cases of malaria
in Central America in 1965 but was certified malaria-free in 2021; the first country in
Central America to eliminate malaria [106]. Belize has followed suit in Central America
and was certified malaria-free in early 2023. The countries used approaches similar to
those enumerated for Algeria, based on WHO-prescribed procedures and support, while
also adding local initiatives in innovation that fitted their local conditions to facilitate the
elimination process. We think that part of the innovative activities would be coupling NMP
surveillance of all Plasmodium parasites and asymptomatic infections with diagnostics and
detection, disease mapping and modeling by institutions that have established strengths in
these areas.

4. Discussion

We have presented the pattern of malaria disease outbreaks in Botswana and their
congruence with the foci of P. vivax infections across the country [87,88]. This pattern has not
been seen previously, raising the need for critical thinking about trends of malaria disease
outbreaks in Botswana and areas with low endemicity in Africa, taking into consideration
the probable role of P. vivax. We have shown here that an active malaria survey under
low transmission or elimination agenda is a powerful tool that can presage epidemic
outbreaks. Of all the surveys presented here, asymptomatic parasites detected using the
active surveys precisely mirrored the epidemic outbreaks that followed. This confirmed
previous observations that asymptomatic P. vivax infections contribute to malaria disease
transmission [74,107–109]. We also observed, for the first time, that asymptomatic P. vivax
infections can drive the re-emergence of P. falciparum in an area; however, the mechanism
through which this occurs is currently unknown. It is clear that once established in an
area, P. vivax parasites become entrenched and require a vigorous test-and-treat approach
using anti-blood-stage and tissue-stage drugs to eliminate them. A P. vivax strategy using a
serodiagnostic tool, as proposed recently, will be needed in the elimination agenda [110].
Considering that all African countries that have reported the presence of P. vivax have
also reported the presence of infected Duffy-negative individuals, the road to malaria
elimination in Africa will not be easy [7] and will demand a rethinking of strategies that
consider all malaria species as targets for elimination as a must-do activity [12]. The success
stories from previously mentioned WHO regional countries provide primary leads for
NMPs, including in Botswana, to follow. These include innovative activities that are locally
tailored to ensure that the goal of malaria elimination is achieved.

The new biological characteristics identified in the P. vivax life cycle with cryptic
infections detected in extrahepatic sites (spleen, bone marrow and the lymphatic system)
present a new conundrum. It is of interest that in all the cryptic sites, the sinusoidal
system is used by the parasites to enter tissues. The sinusoids have a unique anatomical
structure that includes a monocyte–macrophage system in addition to the fenestrated
endothelium [35]. All the tissues are therefore involved in defending the body, particularly
the spleen, where the largest biomass of P. vivax infection has been found. Could it
be that the Trojan Horse model approach described previously is a parasite strategy of
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infection that has not been duly considered? [83]. If the parasites adapt successfully to
using the defense tools in tissues as a way of escape, then effective countermeasures
such as anti-blood-stage and tissue-stage drugs that are not restricted—as is the case with
the 8-aminoquinolines in G6PD deficiency—are needed. Leishmania donovani and related
species that cause visceral leishmaniasis are known to spread throughout the body using the
mononuclear phagocyte system [111,112]. Growth in the MPS is vigorous in the case of these
parasites, leading to the destruction of tissues and their dissemination in the body. In the
spleen, splenomegaly is seen before tissue destruction [113]. The initial immune response
to an infection in mice is TH1-dependent, which subsides from TH2 responses to reduce
inflammation but leads to a chronic infection and tissue destruction [114,115]. It appears
the TH1/TH2 balance fails in humans such that growth continues vigorously, leading to
death [116]. It is interesting that the two tissues in which high numbers of P. vivax parasite
biomass have been observed (spleen and bone marrow) are also hematopoietic. When
one considers that P. vivax is restricted to using reticulocytes, it may be that the parasites
modulate the hematopoietic tissues to increase erythropoiesis to enable them to thrive. This
mechanism of infection has been demonstrated in L. donovani infections in hamsters [117].
The spleen is known to supplement hematopoiesis under trauma and stress [66]. In a study
conducted in Colombia, under low endemic settings where P. vivax and P. falciparum exist,
all patients with uncomplicated malaria who had hepato-splenomegaly were infected with
P. vivax [118]. The frequency of pallor and hemoglobinuria were higher in P. vivax than in P.
falciparum infections [118]. These clinical signals in uncomplicated P. vivax malaria should
be documented in clinical presentations to facilitate the diagnosis of P. vivax infections
in low-endemic settings. The mechanism of infection of extra-hepatic tissues by P. vivax
parasites warrants thorough investigations.

5. Conclusions

We have shown that the presence of P. vivax appears entrenched in low transmission en-
vironments in Botswana. This could be attributed to the complex biology of the parasite in
the human host. The global health community needs to have a discourse on this and provide
guidelines for NMPs to follow. Without such input for African NMPs, the path to elimina-
tion will be formidable. This engagement should also consider available diagnostic options,
active case detection and treatment with 8-aminoquinolines. Bottlenecks and challenges
that program implementors face to put WHO drug recommendations for the radical cure
of P. vivax infections into practice must also be assessed and recommendations provided.
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