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Abstract: Tuberculosis (TB) is a major public health concern in low- and middle-income countries
including Ethiopia. This study aimed to assess the spatiotemporal distribution of TB and identify TB
risk factors in Ethiopia’s Oromia region. Descriptive and spatiotemporal analyses were conducted.
Bayesian spatiotemporal modeling was used to identify covariates that accounted for variability in
TB and its spatiotemporal distribution. A total of 206,278 new pulmonary TB cases were reported
in the Oromia region between 2018 and 2022, with the lowest annual TB case notification (96.93 per
100,000 population) reported in 2020 (i.e., during the COVID-19 pandemic) and the highest TB case
notification (106.19 per 100,000 population) reported in 2019. Substantial spatiotemporal variations in
the distribution of notified TB case notifications were observed at zonal and district levels with most
of the hotspot areas detected in the northern and southern parts of the region. The spatiotemporal
distribution of notified TB incidence was positively associated with different ecological variables
including temperature (β = 0.142; 95% credible interval (CrI): 0.070, 0.215), wind speed (β = −0.140;
95% CrI: −0.212, −0.068), health service coverage (β = 0.426; 95% CrI: 0.347, 0.505), and population
density (β = 0.491; 95% CrI: 0.390, 0.594). The findings of this study indicated that preventive
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measures considering socio-demographic and health system factors can be targeted to high-risk areas
for effective control of TB in the Oromia region. Further studies are needed to develop effective
strategies for reducing the burden of TB in hotspot areas.

Keywords: tuberculosis; TB case notification; spatiotemporal; Oromia; Ethiopia

1. Introduction

Tuberculosis (TB) continues to pose a significant global health challenge despite
being a preventable and treatable disease [1]. It is the leading cause of death from an
infectious disease, claiming the lives of over one million people annually. The World
Health Organization (WHO) reported an estimated 10 million cases of TB and 1.6 million
TB-related deaths worldwide in 2021 [1]. While the magnitude of the disease varies across
countries, low- and middle-income countries account for the highest burdens of the disease.
Remarkably, around 87% of TB cases occur within the 30 high-TB-burden countries [2]. The
African continent accounts for a quarter (25%) of the global TB cases and has the highest
incidence of TB and HIV co-infection [1].

Ethiopia is one of the thirty designated high-TB-burden countries in the world, with
an estimated 170,000 cases and 25,000 deaths due to TB in 2022 [1]. To combat the disease,
the country has been implementing the directly observed treatment short-course (DOTS)
strategy since 1994 and achieved 100% national coverage in 2006 [3]. Additionally, Ethiopia
has adopted global end-TB targets aimed at reducing the TB burden. However, TB continues
to be a major challenge in the country [1,4].

To accelerate progress and tailor effective interventions, it is crucial to have accu-
rate and up-to-date information regarding areas with the highest TB burden. Previous
studies conducted in Ethiopia reported spatial or spatiotemporal clustering of TB at the
sub-national level and identified ecological factors associated with TB clustering [5–10].
However, these studies were limited to pre-COVID-19 pandemic data and did not assess
the impact of health service coverage, including TB diagnosis services, and climatic factors
on TB clustering. Furthermore, there is a lack of recent information regarding the spatial
distribution and temporal patterns of TB case notifications in the Oromia region of Ethiopia.

Therefore, the objective of this study is to assess the spatiotemporal patterns in notified
TB cases at the district level in the Oromia region using a Bayesian statistical framework. Ad-
ditionally, this study aims to investigate the influence of environmental, socio-demographic,
and health service coverage factors on the distribution of TB in the region. By showing the
spatial and temporal distribution and underlying factors associated with TB distribution,
this study can inform targeted interventions and guide preventive and treatment measures
in the Oromia region of Ethiopia.

2. Materials and Methods
2.1. Study Setting

This study was conducted in the Oromia region of Ethiopia, one of the largest regions
in the country by area with a total area of 0.2 million square kilometers (Figure 1). According
to the most recent estimates, the population of the Oromia region was 40 million people in
2022 [11]. Climate conditions in the Oromia region are very diverse ranging from highland
(cold), midland (temperate), and lowland (hot) areas. The climate in the region experiences
four distinct seasons with hot and dry summers and mild and rainy winters. Average
annual rainfall varies across the region. The districts are the lowest administrative divisions
with legal autonomy.
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Figure 1. Map showing the study area, Oromia region, Ethiopia.

2.2. Data Sources

We used different data sources for the primary outcome and exposure variables.
Our primary outcome measure was the number of reported pulmonary TB cases at the
district level for the period between 2018 and 2022. The TB data along with HIV data
were obtained from the Health Management Information System (HMIS) [12,13] and a
web-based District Health Information System (DHIS). In the HMIS and DHIS, TB cases
are registered daily as the patients are diagnosed and start treatment, but they are reported
quarterly in each of the health facilities that provide TB diagnosis and treatment. The
data set comprises sociodemographic information on age and sex along with clinical data
about the classification of TB cases [14]. Data for climatic variables such as temperature,
precipitation, humidity, and wind speed were obtained from the power database [15].

Population data for the five-year study period (the number of people in each district),
health service coverage, and laboratory diagnostic coverage were obtained from the Oromia
Region Health Bureau (Oromia Health Bureau 2021/22 annual report). A polygon ESRI
shapefile for the Oromia region at the district level was obtained from the Oromia Regional
Land Bureau. The dependent variables (TB cases) were geo-referenced, and covariates were
linked to the dependent variable using ArcGIS (ESRI, Redlands, CA, USA) geographical
information system (GIS) software version 10.8.1.

2.3. Measurement

The spatial-specific population density was calculated by dividing the total number of
people in each district by the land area of the district in square kilometers.

Health service coverage was calculated by dividing the number of health centers (a
primary healthcare unit) by the catchment population in a specific year. The Ethiopian
Ministry of Health suggests that one health center should cater to a population of 25,000 [16].

Laboratory diagnostic coverage was calculated as the proportion of health facilities
providing TB diagnosis to the total number of health facilities in the district.

2.4. Data Analysis

TB case notification: As a descriptive analysis, the TB case notification for the Oromia
region was calculated by sex and year. TB case notifications were calculated by dividing
the total number of new TB cases by the population of the same year and sex in the
corresponding district, multiplied by 100,000 to obtain a rate per 100,000 population.
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Standardized incidence ratio: Standardized incidence ratios (SIRs) were calculated for
each district by year. For each district i, i = 1. . .n, the SIR was calculated as the ratio of the
observed number of TB cases in the district (Yi) to the expected number of TB cases (Ei) in
the district across the study period, t = 2018,. . .., 2022:

SIRit = Yit/Eit

The expected count Eit represents the total number of TB cases that one would expect
if the population of district i has the same risk as the regional population during the same
year. The expected number of TB cases for each district (Eit) was computed as:

Eit = r(s)t nit ,

where r(s)t is the overall crude TB case notification for the Oromia region (i.e., the total
number of TB cases in a specific year divided by the total population of the region during
the same year) and nit is the population of each district i during a year.

Spatial autocorrelation analysis: The global Moran’s I and the Getis–Ord statistics
were used to identify clusters of high TB incidence at the district level across all regions
of Oromia. The global Moran’s I statistic was used to assess the presence, strength, and
direction of spatial autocorrelation over the Oromia region and to test the assumption of
spatial independence in implementing the spatial pattern analysis. The Getis–Ord statistic
was used to detect the local clustering of TB infection. Maps produced using Moran’s I
statistics and the Getis–Ord statistics show the existence of TB clusters and identify the
locations of potential hotspot areas.

Bayesian spatiotemporal analysis: The spatiotemporal model was constructed using
covariates. The observed numbers of TB cases Yi in the district i for the five-year observa-
tion period were modeled using a Poisson distribution with mean Eitθit, where Eit is the
expected number of TB cases and θit is the relative risk in the district i for a given year.
The logarithm of the relative risk θit was expressed as the sum of an intercept, a vector of
covariates and their coefficients, and random effects to account for extra-Poisson variability.
The model for the spatiotemporal data is expressed as follows:

log(Yit) = ditjβ j +
(

β0 + δi

)
T + log(nit) + ui + vi

where β j represents the coefficient vector of the covariates, ditj = (1, dit1, . . . , ditp) is the
vector of p covariates corresponding to district i during a year, T corresponds to the year, β0

is a measure of the significance of the regional trend in TB notification rate, δi is a measure
of space–time interaction, nit represents the population size of districts during a year, ui is
a random effect specific to the district i to model spatiotemporal dependence between the
relative risks, and vi is an unstructured exchangeable component that models uncorrelated
noise. The unstructured component vi was modeled as an independent and identically
distributed normal variable with zero mean and variance σ2

v [17,18].
Before fitting the model, all covariates were checked for multi-collinearity using vari-

ance inflation factors (VIFs) (Table S1). Those variables with a VIF greater than 6 were
excluded from the final model. Variables with a p-value less than 0.2 in the bivariate regres-
sion model were selected for the final model. Health service coverage, population density,
temperature, precipitation, and wind speed were eligible covariates to be included in the fi-
nal model. Since these independent variables had different units and scales of measurement
that would have unknown threshold effects, the variables were normalized using their
mean and standard deviation ([X-mean]/SD). This method also helped with identifiability
in the estimation of the posterior distribution of the coefficients. All the analyses were
conducted using R software version 4.3.0 and ArcGIS Pro software version 10.8.1.
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3. Results

Table 1 shows the summary statistics for notified TB in the Oromia region reported
from 337 districts to the regional TB surveillance system through the HMIS for the period
January 2018 to December 2022. A total of 206,278 pulmonary TB cases were reported
during the study period. Of these TB cases, 114,458 (55.5%) were males. Precisely, 51.4%
(106,119) of the new pulmonary TB cases were in the age group between 15 and 34 for both
sexes (Figure S1). During the study period, a total of 65,372 people tested positive for HIV;
the crude HIV positivity rate of five years was found to be 0.38%. The positivity rate for
HIV among tested people decreased from 0.61% in 2018 to 0.34% in 2022.

Table 1. TB and HIV case notification per 100,000 population in the Oromia region of Ethiopia,
2018–2022.

Years
TB Case Notification per 100,000 Population ˆ HIV Case Notification per

100,000 Population *

Male Female Total Total

2018 111.63 94.66 103.21 608.33

2019 118.01 94.20 106.19 373.68

2020 105.92 87.80 96.93 278.24

2021 116.65 94.16 105.49 344.18

2022 111.91 88.90 100.49 343.19

Five years 564.10 459.38 512.13
ˆ TB case notification was calculated by dividing the total number of TB reported in the region by the total
population in the region; * HIV case notification was calculated by dividing the total number of HIV-positive
individuals by the total number of people tested for HIV.

3.1. Case Notification

The overall TB case notification of notified TB across the study years in the Oromia
region was 117.8 (95% CI 107.3–128.4) per 100,000 population. The annual TB case notifica-
tion of notified TB was higher in males (ranging from 16.5 to 1201.9 per 100,000) than in
females (ranging from 14.9 to 746.6 per 100,000 for females). The TB case notification of
TB also varied by year, with the lowest TB case notification (96.93 per 100,000 population)
reported in 2020 (i.e., during the COVID-19 pandemic) and the highest TB case notification
(106.19 per 100,000 population) reported in 2019 (Table 1).

TB cases displayed seasonal variations with the highest number of cases reported
from January to March (n = 53,689; 26%) and the lowest number of TB reported from July
to September (n = 49,206; 23%). The notified TB cases by year and season as a region are
presented in the Supplementary Materials (Table S3). The TB case notification of notified
TB varied substantially at the zonal level, ranging from 304.71 in the Horo Guduru zone to
2069.70 in Dukem town per 100,000 population. The TB case notification of notified TB at
the zone level is presented in Supplementary Materials (Table S4). Spatial variation in the
notified TB case notification was also observed at the district levels with a standardized
incidence ratio (SIR) varying from 0.16 in Horro district in the Horro Guduru Wollega zone
to 9.6 in Kercha District in the West Guji zone. Figure 2 shows the distribution of TB SIR at
the district level in the Oromia region. The highest SIR of TB was found in districts located
in the southern part of the region and in districts near the Somali region. The SIR of notified
TB was relatively low in the western part of the region.
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Figure 2. Sex- and year-standardized TB case notification (SIR) of TB cases at the district level in
the Oromia region, 2018–2022. In districts with an SIR around one (color yellow), the number of TB
cases observed is the same as the number of expected cases. In districts where SIR > 1 (color red), the
number of TB cases observed is higher than the expected cases. Districts where SIR < 1 (color blue
and gray) have fewer observed TB cases than expected.

3.2. Spatial Clustering of TB

The global Moran’s index statistic value for PTB notifications in each year between
2018 and 2022 was consistently positive, ranging from 0.0657 to 0.1604 (p-value < 0.001).
Furthermore, a significant spatial autocorrelation (Z = 5.785, p < 0.001) was observed in the
average annual PTB notifications, indicating the presence of significantly positive spatial
autocorrelation in the TB notification rate over the whole study area (Table 2). These
findings suggest that the distribution of TB in the Oromia region was not random but
exhibited significant spatial autocorrelation over the five years.

Table 2. Global spatial autocorrelation in the TB notification rate in Oromia region, Ethiopia, 2018–2022.

Year Moran’s Z-Score p-Value Pattern

2018 0.084146 3.995610 <0.001 Clustered
2019 0.065740 3.217874 0.0013 Clustered
2020 0.089804 4.292228 <0.001 Clustered
2021 0.155662 7.454590 <0.001 Clustered
2022 0.160383 7.759326 <0.001 Clustered

Annual Average 0.121247 5.785267 <0.001 Clustered

Based on our clustering analyses using the Getis–Ord Gi statistic, some districts were
identified as hotspots and cold spots (Figure 3).

The hotspot districts, indicating a higher-than-expected TB case notification compared
with the regional average, were in the northern and southern parts of the region, while
the cold spot districts were located in the western parts of the region. Over five years, the
hotspots in the southern parts of the region experienced significant expansion, resulting in
the spread of TB to neighboring districts.
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Figure 3. Hotspot maps showing the spatial clustering of tuberculosis incidence in the Oromia region,
based on the Getis–Ord Gi* statistics, between 2018 and 2022.

In the local Moran’s I analysis, districts located in the southern and northern parts
of the region such as Bule Hora town in West Guji zones showed a high–high type of
relationship, meaning that these districts had a high notification of TB cases and the
surrounding district also had high TB case notification (Figure 3). Some districts in the
western part of the region had a high–low type of relationship, indicating that there was
a high TB case notification in these districts, which were surrounded by districts with a
low TB case notification. Low–low clusters of TB were found in Begi districts in the West
Wollega zone (Figure 4).

3.3. The Result from the Non-Spatial Univariate Bayesian Regression Model

According to the result of univariate analysis, all the variables examined in this study
exhibited a significant association with TB notification (Table S2). However, to address the
issue of multicollinearity among covariates, the variable humidity was excluded from the
final model since its VIF value exceeded 6.

3.4. The Result of the Spatiotemporal Bayesian Regression Model

Table 3 shows the Bayesian multivariable Poisson regression model for ecological-level
factors associated with TB in the Oromia region. Variables including HIV positivity rate
and wind speed were negatively associated with notified TB.

All variables included in the final model were significantly associated with TB inci-
dence in the Oromia region except annual mean precipitation. After accounting for the
ecological-level factors in the model, the posterior mean of spatially structured random
effects was found to be clustered in the region (Figure 5). This indicates that a substantial
amount of district-level heterogeneity in TB remained unexplained by the ecological level
factors included in our models.
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Figure 4. Cluster and outlier maps showing the tuberculosis incidence ratio in the Oromia region,
based on Anselin Local Moran’s I analysis, between 2018 and 2022.

Table 3. Bayesian spatiotemporal Poisson regression model with spatially random effects for notified
incidence of TB in the Oromia region of Ethiopia, 2018–2022.

Independent Variables Coefficient (95%CrI)

Year −0.058 (−0.071, −0.046)

HIV Positivity Rate −0.012 (−0.017, −0.006)

Population density 0.491 (0.390, 0.594)

Laboratory diagnostic coverage 0.090 (0.014, 0.166)

Health Service coverage 0.426 (0.347, 0.505)

Precipitation 0.015 (−0.009, 0.038)

Temperature 0.142 (0.070, 0.215)

Temperature (squared term) 0.066 (0.037, 0.096)

Wind Speed −0.140 (−0.212, −0.068)

DIC 16,054.71
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if (RR = 2), the risk of the district is two times the average risk in the region’s population.

4. Discussion

This study conducted a comprehensive analysis of the spatiotemporal trend in TB
notification within districts in the Oromia region. Its primary objectives included identi-
fying clusters of hotspots and trends in TB case notification, evaluating the influence of
socio-demographic characteristics and environmental conditions on TB prevalence, and
exploring the impact of health-related factors on the distribution of the disease. By examin-
ing these factors, this study aimed to provide valuable insights into the dynamics of TB
distribution within the region.

In our current study, we reported several significant findings regarding the distribution
of pulmonary TB in the Oromia region. First, we observed distinct trends in TB occurrences
over the study period, noting changes and patterns in both annual and seasonal occurrences.
Second, we identified hotspot areas with concentrated TB cases, providing valuable insights
for targeted interventions and resource allocation. Third, we identified a cluster of TB
cases, indicating areas with higher transmission rates and shared risk factors. Lastly, our
study revealed an association between ecological factors and TB notification, highlighting
potential drivers of transmission and risk factors within the studied population in districts
of the Oromia region.

The spatial clustering of TB showed a trend in the Oromia region. Our study also showed
that TB was found to be clustered in the southern parts of the region consistently for five
years. This clustering can be attributed to several factors. First, the presence of numerous
mining shafts in select districts of the southern part contributes to this phenomenon. More-
over, these districts share a border with Kenyan districts as there is geographical proximity,
and population movements across the border increase the likelihood of cross-border trans-
mission of TB, which further reinforces the clustering of TB cases in this particular area.
This finding emphasizes the need for coordinated efforts and strengthened collaboration
between Ethiopia and neighboring countries to effectively control TB transmission in a
cross-border context.

TB notification rates varied before and after the COVID-19 pandemic with the lowest
TB case notification reported during the COVID-19 pandemic in 2020. Similar findings
were reported in recent studies in which TB notification rates were decreased during the
COVID-19 pandemic, partly due to the collapse of the health systems regarding diagnosing



Trop. Med. Infect. Dis. 2023, 8, 437 10 of 14

and reporting TB cases and due to patients’ fear of visiting health facilities [19]. As in many
other countries, COVID-19 had a negative impact on TB control programs in Ethiopia,
which affected TB case detection, interrupted community-based interventions, and resulted
in the diversion of resources including human resources, from the TB control program to
the COVID-19 response [1,20].

We observed notable seasonal variations in the notification of TB; specifically, our
findings indicated a peak in TB cases between January and March (dry season) with a
trough from July to September (rainy season). The findings in this study corroborate with
a study conducted in Ethiopia, which showed higher and lower TB case notifications
during the dry and rainy seasons, respectively [21–24]. In Ethiopia, the dry season occurs
from January to March, immediately following the harvest season in most rural societies.
During these periods, agricultural activities become less demanding, allowing individuals
in rural societies to experience the freedom to visit health facilities, and the probability of
TB diagnosis during this time frame will be high. Conversely, the rainy season, specifically
from July to September is characterized by intensive agricultural activities among the rural
population, whose livelihoods are heavily dependent on farming. In addition, during
these months, individuals in rural communities dedicate extensive hours to working in
their fields, while the healthcare-seeking tendency is restricted due to heavy rainfall and
agricultural commitments. These situations could potentially contribute to a decreased
number of TB cases. These findings suggest the need to investigate season-specific strategies
for TB case finding in Ethiopia.

Densely populated districts were highly vulnerable to TB distribution. The spatiotemporal
distribution of TB was positively associated with demographic factors. Accordingly, our
present study revealed an association between TB notification and population density. This
aligns with previous studies that consistently indicate a relatively higher prevalence of TB
in areas characterized by higher population density, particularly in urban settings, when
compared to less densely populated rural areas [10,25–27]. In areas with high population
density, where overcrowded living conditions are common, there is an increased risk of
TB transmission due to the proximity of individuals [28]. Moreover, the limited access to
quality healthcare services and poor sanitation exacerbate the situation. The combination
of these factors, along with a higher prevalence of HIV and other risk factors, contributes
to the occurrence of high TB prevalence [4,10]. By addressing the unique challenges posed
by population density, health authorities can work toward reducing the prevalence of TB
in these areas and improving overall health outcomes.

Our study also showed that TB case notification was higher in males than females.
Similar studies conducted in different parts of the world including Ethiopia revealed that a
higher TB case notification of TB was observed in males than in females [7,9,29,30]. This
might be attributed to their strong social interactions, staying in overcrowded situations,
and the high drinking and smoking habits of males, all of which contribute to the develop-
ment of TB [31,32]. Immunological differences between males and females (which favors
women) and the impact of sex hormones on TB susceptibility and progression [33] might
also contribute to the occurrence of higher TB in males. On the other hand, health-seeking
behavior, stigma, socioeconomic determinants and barriers, and misdiagnosis (such as
poor quality of TB screening during pregnancy) [32], might be associated with lower TB
case notification of notified TB in females. Efforts aimed at mitigating gender disparities
in TB incidence should prioritize the promotion of gender equity, enhancing healthcare
accessibility, and fostering disease awareness among individuals of all genders.

Meteorological factors should be considered in TB control and prevention strategies. Our
current study revealed a significant correlation between meteorological factors and the
notification of TB cases. Specifically, we found a positive relationship between temperature
and TB case notification. These findings are consistence with many studies conducted
globally, including Ethiopia, which also reported a link between temperature and TB
notification, particularly in the case of pulmonary TB [23,34–37]. The association between
temperature and TB notification has been widely acknowledged and assumed in the
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scientific community. However, extremely high or low temperatures can elevate the
likelihood of growth and transmission of M. tuberculosis which is the causative agent for
TB [38,39]. Thus, our study further reinforces the understanding that temperature plays a
crucial role in influencing the occurrence and distribution of TB cases.

Additionally, in our present study, the variable wind speed was found to have the
opposite effect on TB notifications. A similar finding was reported in a study conducted in
mainland China [40,41]. The transmission of M. tuberculosis may be hindered by low wind
speed [42–44]. Further explorations are necessary to fully comprehend the mechanism
underlying the negative correlation observed between wind speed and TB distribution.

District-Level Primary Health Care Service Strongly Affected TB Case Notification

In our present study, district-level health service coverage was positively associated
with TB case notification. Many studies revealed a direct association between TB case
notification and health service coverage. Based on this, increased TB case notification
can be justified by improved health service coverage [28,36,45]. As part of health service
coverage, community-level health extension workers carry out the identification of TB
suspects and refer the suspects for diagnosis, which might lead to higher levels of case
identification, resulting in increased TB case notification [46]. Enhanced district-level health
service coverage and investing in community-level health extension workers can improve
TB case notification.

As part of health service coverage, increased TB case notification can be justified
with laboratory diagnostic coverage [47]. In our present study, laboratory diagnostic
coverage is positively associated with TB case notification. Many studies revealed the direct
relationship between TB notification and laboratory diagnostic coverage or access. When
there is wider access to laboratory diagnostic services for TB, more cases can be accurately
diagnosed and confirmed. This leads to an increased number of TB cases being notified to
the health system.

The variable HIV positivity ratio was found to be negatively associated with TB case
notification in our current study. This type of finding is not common as there is a direct
relationship between HIV and TB [1,48–50]. The negative association observed in this study
may be attributed to several factors, including the provision of TB preventive therapy, the
prompt or the same-day initiation of antiretroviral therapy (ART), and clinical evaluation
for individuals diagnosed with HIV. These interventions, such as rapid ART initiation and
the same-day service along with strong TB/HIV collaborative activities, potentially play a
significant role in influencing the observed negative association. Further studies are needed
to identify additional factors that could contribute to the observed negative association to
gain a more comprehensive understanding of the phenomenon.

This study made significant contributions to the spatiotemporal analysis of TB case
notification in the Oromia region of Ethiopia. All districts in the region were included
in the analysis. However, there are some limitations. Firstly, the data used in this study
were extracted from a centralized HMIS. This raises the possibility of under-reporting
TB cases in some districts. In other words, the low TB case notification rates in many
districts may not accurately reflect the actual burden of the disease in those districts as
the extrapulmonary TB case category was not included in the analysis. A wide range
of data was used as independent variables, sourced from different outlets, such as -non-
HMIS or parallel reports and websites, which were compiled by different organizations.
Consequently, the analysis of the relationship between data from these diverse sources may
introduce certain biases that can impact the obtained results. Another limitation of this
study is that age-specific analysis was not performed.

5. Conclusions

Substantial spatial variations in the distribution of notified TB case notifications were
observed at zonal and district levels with most of the hotspot areas detected in the northern
and southern parts of the region. The spatiotemporal distribution of notified TB incidence
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was positively associated with population density. Efforts aimed at combating TB should
extend beyond simply halting its transmission. It is important to proactively assess the
potential distribution of diseases by analyzing past occurrences concerning diverse eco-
logical factors. Implementing preventive measures that account for socio-demographic,
meteorological, and health system factors can be strategically focused on areas at high risk,
resulting in effective control in the Oromia region.
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//www.mdpi.com/article/10.3390/tropicalmed8090437/s1, Table S1: Variance inflation factors;
Table S2: Univariate model for notification of TB in the Oromia region of Ethiopia, 2018–2022;
Table S3: Yearly and quarterly (seasonal) notified TB cases by sex; Table S4: The incidence sate of
tuberculosis in the Oromia region at the zone level, between 2018 and 2022.; Figure S1: Age–Sex
pulmonary TB distribution.
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Abbreviation

CrI credible interval
DIC Devian Information Criteria
DHIS District Health Information System
DOTS Directly Observed Treatment Short Course
GIS geographical information system
HIV human immunodeficiency virus
HMIS Health Management Information System
RR relative risk
SIR standardized incidence ratio
SD standard deviation
TB tuberculosis
VIF variance inflation factors
WHO World Health Organization
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