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Abstract: The adjoint method is considered as the most efficient approach to compute gradients with
respect to an arbitrary number of design parameters. However, one major challenge of adjoint-based
shape optimization methods is the integration into a computer-aided design (CAD) workflow for
practical industrial cases. This paper presents an adjoint-based framework that uses a tailored shape
parameterization to satisfy geometric constraints due to mechanical and manufacturing requirements
while maintaining the shape in a CAD representation. The system employs a sequential quadratic
programming (SQP) algorithm and in-house developed libraries for the CAD and grid generation as
well as a 3D Navier–Stokes flow and adjoint solver. The developed method is applied to a multipoint
optimization of a turbocharger radial turbine aiming at maximizing the total-to-static efficiency at
multiple operating points while constraining the output power and the choking mass flow of the
machine. The optimization converged in a few design cycles in which the total-to-static efficiency
could be significantly improved over a wide operating range. Additionally, the imposed aerodynamic
constraints with strict convergence tolerances are satisfied and several geometric constraints are
inherently respected due to the parameterization of the turbine. In particular, radial fibered blades
are used to avoid bending stresses in the turbine blades due to centrifugal forces. The methodology
is a step forward towards robustness and consistency of gradient-based optimization for practical
industrial cases, as it maintains the optimal shape in CAD representation. As shown in this paper,
this avoids shape approximations and allows manufacturing constraints to be included.

Keywords: adjoint-based optimization; CAD; geometric constraints; multipoint; CFD; radial turbine

1. Introduction

High fidelity numerical optimization methods have made substantial progress and play
an important role in modern industrial design processes. While a wide variety of algorithms have
been developed, they can be broadly divided into gradient-free and gradient-based optimization
methods. Gradient-free (or stochastic) optimization algorithms, which only require the evaluation
of the objective function, are widely used due to their robustness, simple integration into a standard
design process, and ability to handle multimodal functions of complex design problems. They have
been successfully applied to many turbomachinery applications including multipoint, multiobjective,
and multidisciplinary optimization problems [1–4]. Despite their success, gradient-free optimization
techniques are computationally expensive, especially for applications with many design parameters,
resulting in a long runtime due to the large number of required function evaluations. This constitutes
a major obstacle to industrial design processes where limited resources and time restrictions
consequently limit the range of optimal shapes. Gradient-based optimization algorithms, on the
other hand, are particularly suited for problems involving large design spaces and generally converge
to a local optimum in a few design cycles. However, the computational efficiency of these methods
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is mainly determined by the gradient calculation. For aerodynamic design problems, the adjoint
method [5,6] has emerged as the most efficient approach to evaluate gradients of the cost function
with respect to an arbitrary number of shape parameters by solving two sets of equations: the flow
equations and the corresponding adjoint equations. The computational cost is essentially independent
of the number of design variables and scales only with the number of objective and constraint functions
defined in the optimization problem.

Gradient-based optimization methods have been used in turbomachinery applications to optimize
axial compressor and turbine configurations, ranging from isolated blade rows [7–10] including
hub endwall contouring [11,12] to multi-row and multi-stage architectures [13–16]. In most cases,
the geometry is parameterized by Hicks–Henne shape functions [17], free-form deformation (FFD)
control lattices [18], or even by the surface nodes of the computational grid. These parametrization
techniques are very attractive for gradient-based optimization methods since they possess a large
degree of freedom and provide sensitivity derivatives at low computational effort. However,
they deform the computational grid without a direct connection to the computer-aided design
(CAD) model. Given that CAD systems have become an integral part of standard industrial design
processes, reverse engineering techniques would need to be utilized to recreate the CAD model from
the optimized grid, e.g., [19,20], which may impair the optimality of the design due to fitting or
approximation errors. Furthermore, the proper treatment of geometric constraints due to mechanical
and manufacturing requirements is crucial for the success of 3D realistic design problems. Using
a parametric CAD model facilitates the integration of constraints in the optimization process and
allows design parameters to be easily varied while sustaining the geometric features of the original
geometry.

The main challenge for CAD models to be included into a gradient-based optimization process is
the calculation of the sensitivity of the surface displacements with respect to the design parameters
that control the shape. However, several approaches have been undertaken to incorporate a CAD
representation directly in a gradient-based optimization loop. A closed-source commercial CAD
tool was used by [21] for a 3D air duct and by [22] to optimize a compressor stator under geometric
constraints at multiple operating points. In both cases, the gradient information from the grid to the
CAD parameters was calculated by finite-difference approximations. To overcome the limitations
that are associated with finite-differences, an open-source CAD system was differentiated by [23]
using algorithmic differentiation (AD), which was then applied to optimize a U-Bend shape found in
high-pressure turbine blades as cooling devices. A trivariate B-spline parameterization was used by [24]
for the same test case that allows a rapid meshing of the domain suitable for a one-shot optimization
method while the geometry maintains the link to a CAD representation. A different approach was
developed by [25,26] that employs the displacements of the control points of non-uniform rational
B-spline (NURBS) patches as design parameters, which are available in the STEP file standard used to
exchange data in a computer-aided engineering (CAE) framework. This method is not connected to
a higher-level parameterization and represents the richest design space a CAD geometry can have.
It was applied by [27] to optimize the rotor of a high-pressure turbine stage where, due to the large
degree of freedom, special attention is devoted to the treatment of geometric constraints, e.g., continuity
of neighboring NURBS patches, minimal blade thickness as well as restrictions on the trailing edge
radius for cooling ejection.

In the present work, a CAD integrated approach is presented and applied to a multipoint
gradient-based optimization of a turbocharger radial turbine. The system uses a dedicated shape
parametrization and in-house flow and adjoint solvers as well as libraries for the CAD and grid
generation. This allows (a) to incorporate geometric constraints through a tailored shape generation
and (b) the differentiation of the respective routines. The former results in a limited degree of
freedom but is essential in radial turbomachinery due to mechanical and manufacturing constraints,
e.g., flank milling processes require ruled blade surfaces, while stress limitations often dictate fully
radial blades as will be shown in this paper. The differentiation of the CAD and grid generation
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provides accurate design gradients with respect to parameters that control directly the CAD shape,
which is a significant step towards robustness and consistency of gradient-based optimization for
industrial purposes. The complex-step method [28,29] is used as proof of concept in the present work
that yields machine accurate gradients at low implementation effort [30]. However, other methods
that involve the differentiation of the CAD kernel and grid generation by AD have been tested in [31]
in order to fully exploit the potential of the current approach.

The remainder of the paper is structured as follows: Section 2 explains the optimization method
with the individual components that constitute the algorithm. The objective and constraints of the
optimization are presented in Section 3. Results of the optimization are discussed in Section 4 followed
by conclusions that are drawn in Section 5.

2. Optimization Methodology

Figure 1 shows a schematic flowchart of the optimization framework. The system uses the
optimization package SNOPT [32,33], which is a state-of-the-art optimizer for large scale constrained
optimization problems. A sequential quadratic programming (SQP) method is adopted. The algorithm
handles constraints by forming a smooth augmented Lagrangian merit function [34], which is solved
for the optimal point that satisfies the Karush–Kuhn–Tucker (KKT) [35] optimality condition by a line
search procedure. The Hessian of the Lagrangian required by the algorithm is approximated using
a limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method. The remaining
components of the algorithm shown in Figure 1 evaluate the objective and the constraints as well as
their design gradients required by the optimizer. These components are described in more detail in the
following sections.
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Figure 1. Flowchart of the gradient-based optimization methodology.
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2.1. Parameterization, Design Variables, and CAD Model

The parametrization is one of the crucial steps in every optimization process. On the one hand,
the design space should be diverse and large enough in order to include optimal designs; on the
other hand, geometric restrictions are invariably imposed due to mechanical and manufacturing
limitations. In particular, turbocharger radial turbines have to withstand the harsh environment of
high mechanical stresses at high temperatures. Therefore, as illustrated in Figure 2 (left), radial turbines
are commonly designed with radial fibered blades in order to avoid bending stresses inside the blades
due to centrifugal forces.

In the present study, the parametrization of the radial turbine is tailored to inherently satisfy this
geometric constraint through the CAD-based approach where the model is based on NURBS. The 3D
geometry is defined by:

1. the meridional flow path,
2. the camber line surface defined by a blade angle distribution and a trailing edge cutback,
3. the blade thickness distribution, which is added normal to the camber line surface, and
4. the number of blades.

Figure 2 (right) shows the parametrization of the meridional flow path, which is subdivided into
three patches: an inlet patch ¬, an intermediate patch  where the blade is located, and an outlet
patch ®. Each patch is defined by a B-spline curve at hub and shroud with an underlying set of control
points. The coordinates of the control points are the design parameters that can be modified by the
optimization program and the possible variation in axial and radial direction is indicated by arrows
in Figure 2 (right). Additionally, the diamond shaped arrows at the shroud represent dependent
parameters that are linked to the position of the control points defining the inlet and outlet width of
the meridional flow path in order ensure a straight endwall in the respective region.

The camber line surface of the radial blading is defined by a blade angle θ-distribution with
respect to the meridional plane along the machine axis (Figure 3, left). Eight degrees of freedom are
used for the blade angle distribution, which allows a large shape variation while guaranteeing the
geometric constraint of radial fibered blades.
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Figure 2. Radial fibered blade sections of the turbine wheel (left); parameterization of the meridional
flow path with three patches ¬–® (right).

Next, the blade pressure side and suction side surfaces are constructed by adding a thickness
distribution (Figure 3, right) normal to the camber line surface. The blade thickness is parameterized
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at hub and shroud in the meridional plane and its span-wise distribution is linearly interpolated.
The blade thickness can be modified during the optimization with, in total, 11 optimization parameters.
However, due to mechanical considerations, the lower limit of each parameter is restricted by a safety
margin. The cutback of the blade at the trailing edge (see Figure 2, right) is one additional design
parameter, which has a high impact on mechanical stresses in the trailing edge root. Since stresses
are not evaluated during the optimization process, this parameter is fixed in order to keep the stress
levels bounded. In total, 40 free design variables are selected for this optimization: 21 parameters for
the hub and shroud curves including the inlet and outlet width of the meridional flow path, eight for
the blade angle θ-distribution, and eleven degrees of freedom for the blade thickness distribution.
Each parameter can be modified in a prescribed range by the optimization program. The turbine wheel
diameter, its axial length, the tip clearance as well as the number of blades are kept constant due to
external constraints.

0 5 10 15 20 25-20

-10

0

10

20

30

40

50

60

70

Axial position X [mm]

B
la

de
 a

n
gl

e 
ϴ

 [
de

g.
]

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Shroud

Hub

T
hi

ck
n

es
s 

[m
m

]

Non-dimensional meridional length [-]

Figure 3. Blade angle θ parameterization (left); blade thickness distribution at hub and shroud (right).

The aforementioned procedure generates the turbine wheel geometry defined by several NURBS,
which is shown in Figure 4 for the surfaces of the blade and the hub fillet along with their control
points. The blade surfaces are skinned through ten sections in span-wise direction, whereas the hub
fillet surfaces are generated by a rolling-ball algorithm involving several CAD operations such as
surface intersection, surface off-setting, trimming, and surface lofting [36]. The endwalls at both hub
and shroud are axisymmetric surfaces revolved about the x-axis. Using the displacements of the
control points shown in Figure 4 directly as optimization parameters would result in a much larger
design space as compared to the approach followed in the present work. However, this would require
imposing many constraints to ensure a minimum blade thickness as well as geometric continuity at
the junction between the fillet and the adjoining surfaces. Furthermore, avoiding bending stresses
in the blade due to centrifugal forces requires an equal mass distribution on both sides of the radial
fiber at each cross-section along the machine axis (cf. Figure 2, left). In particular, the last requirement
would be difficult to realize, while it is inherently satisfied by the approach presented in this paper.

The solid CAD model of the turbine wheel is defined by a boundary representation (BRep) [37]
scheme. A BRep is a collection of surface elements in the boundary of the solid and is composed of
a topology (faces, edges, vertices) and a geometry (surfaces, curves, points). Each topological entity
has an associated geometry, e.g., a face is a bounded portion of a surface. Figure 5 (left) shows the
solid model of the turbine wheel in an exposed view to further illustrate that each face is indeed
a separate entity. The resulting BRep is watertight and has no overlaps, which is assured by the internal
CAD program by extending and trimming curves and surfaces such that each edge is shared by two
neighboring faces. Consequently, no repair operation is needed when the model is further processed
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in a CAE workflow. The export of the BRep model for manufacturing is realized through the STEP file
protocol. Figure 5 (right) shows the turbine wheel visualized in a CAD program.

Figure 4. Non-uniform rational B-spline (NURBS) surfaces of the blade and hub fillet with their control
points.

Periodic
boundary

Hub

Front plate

Suction side 
fillet

Suction side
blade surface

Tip plate

Back plate

Leading edge
plate

Figure 5. Exposed view of the boundary representation (BRep) of the solid turbine wheel model (left)
and exported through the STEP file protocol to a computer-aided design (CAD) program (right).

2.2. Discretization

Besides the parameterization, the grid generation is often a bottleneck in automatic shape
optimization. The process should be robust, fast, and produce high quality meshes even for large
geometry changes. In the present work, the three-dimensional multiblock structured grid of the turbine
wheel is created by stacking annular surface grids. This approach has proved to be very robust for
turbomachinery configurations, while ensuring high grid quality for blades subject to large geometry
changes during the optimization process. Additionally, the internal grid generator has direct access to
the NURBS surface model, which guarantees a tight link between the actual model and the discretized
computational domain for the CFD analysis.

In general, the automatic grid generation process consists of a two-step approach that is illustrated
in Figure 6: first, the meridional passage is discretized by a predefined grid point distribution
with a boundary layer refinement towards the endwalls at hub and shroud. Each meridional grid
line is consecutively converted into a surface of revolution, which is intersected with the blade
pressure- and suction-side surfaces. Angle-preserving conformal mapping [38] is used to transform the
(x, r, θ)-coordinates of the intersected blade profile on the surface of revolution into an equivalent
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two-dimensional (dm/r, θ)-space (cf. Figure 6, right) and vice versa. Secondly, the two-dimensional
body-conformal grids are created by elliptic grid generation [39] by solving the elliptic equations

∇2ξ i = Pi (i = 1, 2), (1)

where ξ i = ξ i(x, y) are the grid points in the transformed computational space. The source terms Pi

of Equation (1) are necessary to control the grid point distribution and several formulations [40–42]
are used to meet grid quality measures, e.g., first cell spacing and orthogonality, cell skewness and
expansion ratio.

x

r

dm/r

θ

Meridional View: Blade-to-Blade View:

m

Figure 6. Schematic diagram of the grid generation process. Meridional grid lines (left) and
blade-to-blade mesh in conformal plane (right). Mesh is coarsened for visualization purposes.

Figure 7 shows the final computational domain of the radial turbine with a close-up of the tip
clearance mesh. The computational cost is reduced by modeling only one blade pitch and using
periodic boundary conditions in circumferential direction. In total, 84 layers of cells are used in
span-wise direction, including 20 cells to model the tip clearance. Special care is given to grid
independence of the flow solution to avoid any scatter of the results due to grid dependence. To meet
common grid quality requirements, the average wall-spacing is y+ ≈ 1 and the maximum cell
expansion ratio is limited to 1.2 for 20 cells in blade normal direction.

Inlet

Outlet

Periodic 
Interface

Figure 7. Computational domain of the turbine wheel with a close-up of the tip clearance mesh with
an axial cross section through the 3D grid (every 4th grid line shown).
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2.3. Flow and Adjoint Solver

2.3.1. Flow Solver

The governing equations are the compressible Reynolds averaged Navier–Stokes (RANS)
equations formulated in a rotating reference frame using absolute flow variables. They are spatially
discretized using a cell-centered finite volume method on multiblock structured grids. Convergence to
a steady-state solution is obtained with a parallelized implicit time integration scheme accelerated by
local time-stepping and geometric multigrid. The fluid is considered as a calorically perfect gas and
the eddy-viscosity hypothesis is used to account for the effect of turbulence. The semi-discrete form of
the steady-state RANS equations can be written as

R (U) = 0, (2)

where U are the conserved flow variables and R the residual containing the spatial discretization
including the flux balances through the cell interfaces and the source term due to Coriolis forces.
The inviscid fluxes are computed by Roe’s approximate Riemann solver [43] with an MUSCL
reconstruction [44] of primitive variables for second order accuracy. Oscillations near shocks are
suppressed by a van-Albada type limiter [45], while the numerical dissipation of the scheme is
controlled with the entropy correction of Harten and Hyman [46]. Viscous fluxes are calculated
with a central discretization and the negative Spalart–Allmaras turbulence model [47] is used for the
turbulence closure problem assuming a fully turbulent flow from the inlet (Reinlet ≈ 250,000 based on
the turbine wheel diameter).

Boundary conditions are imposed weakly by utilizing the ghost cell concept [48]. Solid walls
are considered adiabatic with the no-slip velocity condition and a first-order pressure extrapolation.
Characteristic-based subsonic inflow and outflow boundary conditions using Riemann invariants are
applied. At the inlet of the computational domain the total pressure, total temperature and flow angles
are imposed while, at the outlet, the static pressure with a radial equilibrium formulation is prescribed.
For some applications, it is crucial to directly control the mass flow rather than the total pressure at the
inlet or static pressure at the outlet. In this case, the mass flow boundary conditions described by [49]
are used. Furthermore, to reduce the computational cost, periodic boundary conditions are applied in
circumferential direction. Time integration is realized with an adaption of the JT-KIRK scheme [50]
that combines Runge–Kutta time-stepping and Krylov methods inside a geometric multigrid cycle.
As illustrated in [50], the proposed algorithm enables fully converged flow solutions for some cases
where conventional algorithms would fail, and therefore extends the applicability of adjoint-based
optimization for marginally stable applications. For a basic multistage Runge–Kutta (RK) method, the
algorithm is given by

U(0) = U(n),

P[U(1) −U(0)] = −α1 R(U(0)),
... (3)

P [U(m) −U(0)]︸ ︷︷ ︸
∆U(m)

= −αm R(U(m−1)),

U(n+1) = U(n) + ∆U(m),

with the RK-stage coefficient αm and the system matrix P defined as

P =
V
∆t

I +
∂R̃
∂U

, (4)
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where (∂R̃/∂U) is an approximation to the Jacobian matrix by using a first-order Roe-scheme, to which
a fictitious time term is added in order to improve the diagonal dominance of the matrix. The linear
system of equations in every Runge–Kutta stage is solved with an ILU(0)-preconditioned GMRES
solver of the publicly available PETSc library [51]. However, for efficiency, the system matrix is
assembled in the first stage only and then held constant for subsequent stages. Mean-flow and the
turbulence model equations are loosely coupled. Equation (3) is applied to the mean-flow equations
as smoother inside a multigrid cycle, whereas the turbulence model is updated only on the finest
grid level.

2.3.2. Adjoint Solver and Gradient Evaluation

Once the flow equations are solved, the cost function J can be computed, which may be the
objective or one of the constraints of the optimization problem. A gradient-based shape optimization
method, however, requires in addition to the cost function also its gradients with respect to the
geometric design parameters α = [α1, α2, ..., αN]

T. For aerodynamic applications, the cost function
depends on both the flow solution and on the design parameters J(U(α), α) so that the design gradients
can be obtained applying the chain rule as follows:

dJ
dα

=
∂J
∂α

+
∂J
∂U

dU
dα

. (5)

The partial derivatives in this expression can be computed analytically and are computationally
inexpensive. The total derivative (dU/dα), on the other hand, requires the solution of the linearized
flow equations for every design parameter, and thus the computational cost to compute all design
gradients scales linearly with the number of design variables. For most applications, in which the
number of cost functions is far less than the number of design parameters, the adjoint method is
preferred. With this approach, the design gradients are evaluated by linearizing the cost function as

dJ
dα

=
∂J
∂α

+ ψT ∂R
∂α

, (6)

where ψ is the solution of the discrete adjoint equations[
∂R
∂U

]T
ψ = −

[
∂J
∂U

]T
, (7)

and R the nonlinear residual vector. The adjoint equations are a linear system that depends on the cost
function J, but not on the design parameters α and therefore needs to be solved only as many times as
the number of cost functions.

In practice, the adjoint equations given by Equation (7) are not solved with a linear solver due
to the stiffness of the 2nd-order Jacobian matrix and memory limitations for large three-dimensional
cases. Instead, the implemented discrete adjoint solver uses the same time-marching method as the
primal flow solver

ψ(0) = ψ(n),

PT[ψ(1) −ψ(0)] = −α1 Rψ(U, ψ(0)),
... (8)

PT [ψ(m) −ψ(0)]︸ ︷︷ ︸
∆ψ(m)

= −αm Rψ(U, ψ(m−1)),

ψ(n+1) = ψ(n) + ∆ψ(m),
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where PT is the transposed system matrix of the nonlinear flow solver (Equation (4)) frozen at the
steady-state value and Rψ the adjoint residual defined as

Rψ =

[
∂J
∂U

]T
+

[
∂R
∂U

]T
ψ. (9)

The differentiated nonlinear residual (∂R/∂U), which is a large and sparse matrix, is not explicitly
stored in memory but directly multiplied element-by-element with the adjoint vector ψ. This approach
has two main advantages: first, the resulting memory footprint of the adjoint solver is similar to the
primal flow solver, which is largely determined by the system matrix P, while the run-time of the adjoint
solver is equivalent to the primal flow solver. Secondly, since the transposed system matrix PT has the
same eigenspectra as P, the adjoint solver inherits the convergence rate of the flow solver [50,52,53],
which is illustrated in Figure 8 for a radial turbine test case. This is a desirable property as it guarantees
convergence of the adjoint problem, provided that primal flow solver converges (i.e., the system
matrix at the last iteration of the flow solver is contractive with the magnitude of all eigenvalues less
than unity).

Multigrid Cycle
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Figure 8. Convergence history of the density residual of the primal flow solver and of the adjoint solver
for a radial turbine test case.

The linearization of the cost function (∂J/∂U) and the nonlinear residual (∂R/∂U) in Equation (9)
is primarily done by hand-differentiation with selective use of algorithmic differentiation to simplify
the development of the adjoint solver, e.g., for the differentiation of the Roe scheme or the linearization
of the characteristic-based boundary condition. For this, the source code transformation tool
TAPENADE [54] was used. To further reduce the development cost, the constant eddy viscosity
(CEV) assumption is made, that is, the eddy viscosity is independent from changes of the design.
The impact of this approximation was analyzed by [55,56] and is assessed in the course of this section
for the present application.

After the adjoint equations are solved, the design gradients are calculated with an alternative
formulation of Equation (6) using a two-step approach that decouples the adjoint solver from the
geometry and grid generation:

dJ
dα

=

[
∂J
∂X

+ ψT ∂R
∂X

]
︸ ︷︷ ︸

dJ/dX

dX
dα

. (10)

The sensitivity of the cost function with respect to the grid point coordinates (dJ/dX) is obtained
at a computational cost of solving two sets of equations (the flow and the adjoint equations) while the
complementary sensitivity information of the grid to the design variables (dX/dα) is computed with
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the complex-step method [28,29], which is accurate up to machine round-off precision. Although the
computational cost to compute gradients with the complex-step method is proportional to the number
of design parameters, it is still considered reasonable given the limited number of design parameters
used in this study (40) and the relatively fast grid generation process.

The adjoint-based gradients are validated against exact gradients where the complex-step method
is applied to the entire evaluation chain. This is illustrated in Figure 9 showing non-dimensional
design gradients of total-to-static efficiency (left) and power (right). Additionally, to quantify the
error introduced by the CEV assumption in the adjoint solver, two sets of complex-step gradients are
plotted: one where the same approximation is made as in the adjoint solver (circle symbols) and one
that provides exact gradients without any approximation (square symbols). As can be seen, both the
sign and the magnitude of the adjoint-based gradients agree well with the complex-step gradients
using the CEV assumption. For example, the gradient of design variable 29, which is the exit width,
suggests that both the efficiency and power increase when enlarging the exit area. The CEV assumption
indeed affects the accuracy of the adjoint-based gradients, in particular for design parameters of the
shroud meridional contour (design variables 21–24), where this assumption may not be valid due to
the tip leakage vortex. However, they are accurate enough for shape optimization as will be shown
in Section 4.
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∇
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Figure 9. Comparison of non-dimensional design gradients of total-to-static efficiency (left) and power
(right) computed with the adjoint method and complex-step method. CEV: Constant Eddy Viscosity.

3. Objectives and Constraints

The objective of this study is to improve to total-to-static efficiency of the radial turbine at two
operating points while constraining the output power at these conditions and ensuring a sufficient
swallowing capacity of the machine at high mass flow rate. The operating points are indicated in the
performance map of the turbine in Figure 10 and the corresponding boundary conditions are listed
in Table 1.
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Table 1. Definition of boundary conditions for the optimization.

Parameter Symbol Unit OP1 OP2 OP3

Inlet flow angle 1 α1 [◦] 62

Inlet total pressure P01 [bar] - - 3.0

Inlet mass flow ṁ [g/s] 100 130 -

Inlet total temperature T01 [K] 1050

Exit static pressure 2 P2 [bar] 1.013

Rotational speed RPM [min−1] 140,000

1 With respect to radial direction; 2 Specified at the hub.
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Figure 10. Performance map of the baseline turbine wheel.

The optimization problem can therefore be formulated as follows:

Maximize

Obj ≡ 2
3

ηTS,OP1

ηTS,OP1,ref
+

1
3

ηTS,OP2

ηTS,OP2,ref
, (11)

Subject to

Constr1 ≡
∣∣∣ ẆOP1

ẆOP1,ref
− 1
∣∣∣ < 0.5%,

Constr2 ≡
∣∣∣ ẆOP2

ẆOP2,ref
− 1
∣∣∣ < 0.5%, (12)

Constr3 ≡ ṁOP3

ṁOP3,ref
− 1 ≥ 0,

where the total-to-static isentropic efficiency and power are respectively given by

ηTS =
1− T02

T01

1−
( P2

P01

) γ−1
γ

, (13)
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and
Ẇ = ṁcpT01(1−

T02

T01
). (14)

The subscripts 01 and 02 represent mass flow averaged total quantities evaluated at the inlet and
outlet of the computational domain, while the static pressure P2 is area averaged at the exit plane.
Close examination of Equations (13) and (14) reveals that, for a given mass flow ṁ and inlet total
temperature T01 at operating conditions OP1 and OP2, higher total-to-static efficiency and constant
power are conflicting design requirements. As can be seen, a lower total temperature ratio (T02/T01)
results in higher efficiency but also increased output power of the turbine. This eventually would lead
to a power imbalance between turbine and compressor of the turbocharger, and move the system to
a different equilibrium at a higher rotational speed. Therefore, in order to increase the aerodynamic
performance while limiting the power, the main task of the optimizer is to find suitable design changes
that will reduce pressure losses, and hence will increase the static-to-total pressure ratio (P2/P01).

4. Results and Discussion

The optimization converged in 16 design cycles after which no further improvement of the
objective could be found by the algorithm while satisfying the imposed constraints. This translates
to a run-time of approximately 1.5 days on a multicore workstation using an Intel R© Xeon R© E5-2690
processor with 2.6 GHz CPU rate. Figure 11 shows the evolution of the weighted objective function
as well as the power and mass flow constraints. Each design cycle comprises three flow solutions to
compute the objective and the constraints at different operating points and five adjoint solutions: two,
respectively, for the total-to-static efficiency and power functional, and one for the mass flow constraint.
For the sake of clarity, sub-iterations in which a derivative-free line search was performed to estimate
a step size for solving the optimization problem are not included in this plot. In total, the optimizer
could improve the objective by approximately 3.4% relative to the baseline geometry already after ten
design cycles with minor improvements in the following iterations. As can be seen, the mass flow
constraint was not restricting the design progress and the computed mass flow rate at operating point
OP3 always exceeds the reference value and therefore satisfies this requirement. The power constraint,
on the other hand, was indeed a limiting factor in this optimization. In particular, the power constraint
at operating point OP2 was active and reached the upper limit of the imposed bounds. This agrees
with the reasoning made in Section 3 that both efficiency and power increase due to the lower total
temperature ratio through the machine. However, the optimizer was able to improve the turbine
total-to-static efficiency and simultaneously comply with this strict design requirement. Although
the turbine geometry undergoes significant changes during the optimization process, each design
maintains smooth blade shapes, axi-symmetric endwalls, and is satisfying the geometric constraints
due to the CAD-based parameterization as will be shown in the following.

Figure 12 (left) compares the meridional contour of the baseline and the redesigned geometry after
16 design iterations. Additionally, the evolution of the inlet and outlet width during the optimization
process is presented in Figure 12 (right), in which the lower and upper limits of each parameter are
indicated. The inlet area was slightly increased by the optimization program to reduce the incidence
angle with respect to the radial blade leading edge at operating point OP2 from −5.1◦ to −1.7◦ and
from 6.9◦ to 6.6◦ at OP1. The outlet width, on the other hand, was set to its maximum possible value in
order to lower the exit Mach number and therefore reduce the exit kinetic energy and consequently
increase the turbine total-to-static efficiency.
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Figure 12. Comparison of the meridional contour of the baseline and optimized geometry (left).
Evolution of inlet and outlet width during the optimization process (right).

Figure 13 (left) shows the modification of the blade angle θ-distribution between the baseline and
the optimized geometry with the corresponding blade shapes on the right-hand side. Here, the design
changes are less intuitive to judge because the θ-angle distribution defines the angular coordinate of
the blade with respect to the meridional plane and is therefore not related to the blade metal angle,
and hence the relative flow angle. However, the design gradients of the underlying set of control points,
which are included in Figure 13 (left), provide better insight into the design problem. Each arrow in this
plot indicates the gradient magnitude and direction to higher objective function values (red with filled
head) and increased power at operating point OP2 (blue with hollow head). As can be seen, for every
design parameter, the respective pair of gradients is pointing in the same direction, which again shows
that higher total-to-static efficiency and increased output power are closely related (cf. Section 3).
In an unconstrained optimization problem, the blade would be altered until the objective design
gradients eventually approach zero. In the present study, however, the power constraint at operating
point OP2 has reached its maximum tolerated value (cf. Figure 11) and consequently the blade shape
is not further modified by the optimization program in order to fulfill this design requirement.
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The arrows show the design gradients of the weighted objective function (Equation (11)) and power
constraint function at operating point OP2. Comparison of the blade shapes (right).

From an aerodynamic perspective, the design changes of the shroud meridional contour have
a bigger contribution to the efficiency improvements than the modifications of the hub shape. This is
because most of the mass flow is passing the turbine wheel in the shroud region where the blade is
subject to the highest aerodynamic loading. Figure 14 shows the relative isentropic Mach number
distribution on the blade surface at 90% span of both the baseline and the optimized geometry at
operating point OP1 (left) and OP2 (right). As can be seen, the loading has been redistributed in
order to reduce the velocity peaks on the suction side surface and therefore the diffusion process and
its unfavorable influence on the blade losses. On the front part of the blade, the suction side peak
and subsequent deceleration of the flow is removed for the optimized blade at both operating points.
Furthermore, due to the lower pressure gradient over the tip gap in the first 20% of the meridional
length, the formation of the associated vortex has been weakened. On the rear part of the blade, the
onset of the deceleration is delayed from initially m/m0 ≈ 0.7 for the baseline geometry to m/m0 ≈ 0.8
for the optimized configuration. Combined with a lower diffusion rate between the velocity peak and
trailing edge, this indicates a shorter region in which the flow is subject to a reduced adverse pressure
gradient. Finally, the velocity peak due to incidence close to the leading edge is slightly reduced.

Similar conclusions may be drawn from Figure 15 that shows the entropy generation at 90%
span and downstream of the turbine wheel for both configurations at operating point OP1. The loss
generation is evidently reduced for the optimized design due to a redistributed blade loading and
weaker tip leakage vortex, which is visible in the attenuated wake downstream of the blade near
the shroud endwall. This could be further improved using a non-radial fibered blade that has more
degrees of freedom to adapt to the flow, but would require a stress evaluation inside the optimization
loop to limit the stress levels introduced by the additional bending stresses.
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optimized geometry (Iteration016) at operating point OP1 (left) and OP2 (right).

Table 2 summarizes the performance characteristics of both the baseline and optimized wheel
with their relative changes at the three operating points that are also indicated in the performance
map in Figure 16. The data reveals that the efficiency gains are largely due to the lower exit Mach
number and hence lower exit kinetic energy, which would otherwise be wasted and not recuperated
into static pressure by a downstream diffuser. This was achieved by maximizing the diffusion in the
turbine wheel (in the absolute frame of reference) and reducing the pressure losses while retaining the
output power of the machine at the operating points OP1 and OP2.

Table 2. Performance summary of baseline and optimized geometry.

Baseline Iteration016 Rel. Difference [%]

Parameter Unit OP1 OP2 OP3 OP1 OP2 OP3 OP1 OP2 OP3

Total-to-static efficiency [%] 77.74 73.98 68.71 80.19 76.88 71.51 +3.15 +3.92 +4.08
Power [kW] 13.29 20.21 31.71 13.28 20.31 33.48 −0.08 +0.49 +5.58
Mass flow [g/s] 100 130 178 100 130 185 0.0 0.0 +3.93
Exit Mach number (absolute) [-] 0.32 0.42 0.56 0.29 0.38 0.51 −9.38 −9.52 −8.93
Exit specific kinetic energy [m2/s2] 19,564 31,045 51,812 15,913 25,091 43,880 −18.66 −19.18 −15.31
Max. von Mises stresses 1 [MPa] 488 505 +3.48

1 Computed at 175,000 min−1.

To verify the present design approach using radial fibered blades to ensure the mechanical
integrity of the turbine in an aerodynamic optimization process, additional stress simulations were
conducted with the open source structural solver CalculiX [57] . The simulations were carried out at
a bursting speed that is 25% higher than the nominal rotational speed at design condition. The resulting
von Mises stresses in the turbine wheel are compared in Figure 17 for both the baseline and the optimal
shape, including several axial cross-sections to further illustrate that the mechanical stresses are solely
due to centrifugal forces.
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Figure 16. Performance map of the baseline turbine wheel and the optimized geometry (Iteration016).

The maximum von Mises stresses have only increased by approximately 3.5% relative to the
baseline design, from 488 MPa to 505 MPa for a nickel based alloy (cf. Table 2), which is remarkable
given that no mechanical constraint was imposed apart from the radial fibered blade approach to
avoid bending stresses in the turbine wheel. Moreover, the blades have been increased in length to
improve the diffusion in the wheel, and hence would explain the increased stress levels. The location
of maximum stresses is in the root of the blade and may be reduced by increasing the hub fillet radius
without penalizing the aerodynamic performance. The optimized turbine wheel is directly available
in a CAD representation and can be used for further vibration analysis or manufacturing without
any shape approximation or fitting error that may impair the optimality. Ongoing work, however,
will include the stress analysis in the optimization framework to allow for blades that are not radially
fibered. This will result in a much richer design space, which can only be solved efficiently by the
adjoint method.
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5. Conclusions

A CAD integrated adjoint framework is proposed and applied to a multipoint optimization of
a turbocharger radial turbine. One of the characteristic features of this approach is a tailored shape
parameterization that allows for inherently satisfying geometric constraints due to mechanical and
manufacturing requirements. The core components of the algorithm are a 3D Navier–Stokes flow
solver, its discrete adjoint counterpart, and libraries for the automatic CAD and grid generation.
The differentiation of the CAD and grid generation is realized with the complex-step method as proof
of concept in the present work that yields machine accurate design gradients while the complementary
gradient information of the cost function with respect to the grid point coordinates is computed by the
adjoint method. The resulting gradients have been validated against accurate complex-step gradients
computed by the flow solver.

A sequential quadratic programming (SQP) algorithm is used to maximize the total-to-static
efficiency of the turbine wheel at multiple operating points while constraining the output power and
the choking mass flow of the machine. The optimization converged in a few design cycles in which the
total-to-static efficiency could be significantly improved over a wide operating range. Additionally,
the imposed aerodynamic constraints with strict convergence tolerances are satisfied and several
geometric constraints were inherently respected due to the parametrization of the turbine. In particular,
radial fibered blades are used to avoid bending stresses in the turbine blades due to centrifugal forces.
The maximum stress levels in the optimized turbine wheel could be limited by this approach and may
be reduced in a post-processing step without penalizing the aerodynamic performance.

The methodology is a significant step forward in applying gradient-based optimization to
industrial relevant problems, as it maintains the optimal shape within CAD format, which eliminates
manual shape approximations and allows for including manufacturing constraints such as ruled
surfaces and radial fibered blades. Compared to gradient-free methods where typically one order of
magnitude more computational time would be required, the methodology presented here can achieve
the optimum at considerably reduced costs.
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complex-step implementation. Tom Verstraete developed the CAD kernel. Both authors were involved in the
analysis of the results. Lasse Mueller conceived the optimization and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Turbomach. Propuls. Power 2017, 2, 14 19 of 22

Nomenclature

Roman Symbols

I Identity matrix R Residual vector
J Cost function S Surface
m Meridional length t Time
M Mach number T Temperature
ṁ Mass flow U Conservative variables
P Pressure Ẇ Power
P Source term X Grid point coordinates
P System matrix y+ Non-dimensional wall distance

Superscripts

n Pseudo time step
m Number of Runge–Kutta stages

Subscripts

0 Total condition m Number of Runge–Kutta stages
1 Inlet ref Reference
2 Outlet TS Total-to-static
is Isentropic vM von Mises

Greek Symbols

α Absolute flow angle θ Camber line circumferential position
α Runge–Kutta stage coefficient ξ Grid points in computational space
α Design variables π Pressure ratio
∆ Difference σ Mechanical stresses
η Efficiency ψ Adjoint variables

Abbrevations

AD Algorithmic Differentiation
BFGS Broyden–Fletcher–Goldfarb–Shanno
BRep Boundary representation
CAE Computer Aided Engineering
CAD Computer Aided Design
CEV Constant Eddy Viscosity
Constr Constraint
FFD Free-Form Deformation
GMRES Generalized Minimal Residual Method
ILU(0) Incomplete Lower Upper factorization with zero fill-in
JT-KIRK Jacobian Trained Krylov Implicit Runge–Kutta
KKT Karush–Kuhn–Tucker
MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws
NURBS Non-Uniform Rational Basis-Spline
Obj Objective
OP Operating Point
PETSc Portable, Extensible Toolkit for Scientific Computation
RANS Reynolds-Averaged Navier–Stokes
RPM Revolutions per minute
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SNOPT Sparse Nonlinear OPTimizer
SQP Sequential Quadratic Programming
STEP STandard for the Exchange of Product model data
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