
Turbomachinery 
Propulsion and Power

International Journal of

Article

Centrifugal Compressor Polytropic Performance—Improved
Rapid Calculation Results—Cubic Polynomial Methods

Matt Taher 1,* and Fred Evans 2

����������
�������

Citation: Taher, M.; Evans, F.

Centrifugal Compressor Polytropic

Performance—Improved Rapid

Calculation Results—Cubic

Polynomial Methods. Int. J.

Turbomach. Propuls. Power 2021, 6, 15.

https://doi.org/10.3390/ijtpp6020015

Academic Editors: Francesco Martelli

and Marcello Manna

Received: 31 December 2020

Accepted: 21 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY-NC-ND) license

(https://creativecommons.org/

licenses/by-nc-nd/4.0/).

1 Principal Engineer, LNG Technology Center, Bechtel Energy, Houston, TX 77056, USA
2 Independent Researcher, Canyon Lake, TX 78133, USA; bfred614@gvtc.com
* Correspondence: mtaherim@bechtel.com or mtaher@ASME.org

Abstract: This paper presents a new improved approach to calculation of polytropic performance
of centrifugal compressors. This rapid solution technique is based upon a constant efficiency,
temperature-entropy polytropic path represented by cubic polynomials. New thermodynamic
path slope constraints have been developed that yield highly accurate results while requiring fewer
computing resources and reducing computing elapsed time. Applying this thermodynamically
sound cubic polynomial model would improve accuracy and shorten compressor performance test
duration at a vendor’s shop. A broad range of example case results verify the accuracy and ease
of use of the method. The example cases confirm the cubic polynomial methods result in lower
calculation uncertainty than other methods.

Keywords: polytropic process; compressor performance test; ASME PTC-10; piecewise cubic polyno-
mial approximation; real gas; temperature-entropy; polytropic path

1. Introduction

A highly accurate centrifugal compressor polytropic performance approximation
method has been developed that is easy to employ. This real gas method is based upon
a constant efficiency, temperature-entropy polytropic path. The elegance of this method
is its exceedingly simple way of calculating polytropic efficiency with sufficiently high
precision as required for compressor performance testing, while providing the polytropic
compression path on T-s and h-s diagrams to a high degree of accuracy. A constant effi-
ciency polytropic path can be modeled as either a single or several sequential piecewise
cubic polynomial segments affording solutions that allow for determining thermodynamic
state variables along a continuous path [1,2]. New analytic terms have been developed for
slope and curvature of temperature versus entropy along the constant efficiency polytropic
path [1]. Furthermore, a new screening method has been developed to assist in determining
how many cubic polynomial segments are required to provide sufficient accuracy for a
given application. Example cases are reported that demonstrate accuracy and compar-
isons to other polytropic performance calculation methods as well as a review of results
documented by Evans [3]. Cubic polynomial endpoint path methods are demonstrated to
achieve better accuracy than any other endpoint polytropic efficiency calculation method.
Cubic polynomial sequential segment path methods are shown to be superior to other
multi-point numerical methods described in available literature.

The Taher–Evans Cubic Polynomial method (TE-CP) provides not only overall poly-
tropic compression performance results but has the ability to predict fluid state parameters
at any arbitrary point along the polytropic compression path. The analysis is based upon
an inlet flange to discharge flange constant efficiency polytropic path for a single, uncooled,
compressor section that may contain multiple impellers. Thermodynamic state parameters
used in the calculations are based upon total conditions at inlet and discharge measurement
locations. Typically, these are pressure and temperature measurements. An Equation of
State (EOS) provides all other necessary thermodynamic state parameters based upon
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known fluid composition, total pressures and total temperatures. These guiding principles
align the TE-CP calculation method with requirements of the ASME PTC-10 [4].

1.1. Polytropic History

A compressor polytropic performance calculation method was first documented in
the 1860′s by Zeuner as discussed in the 1906 English version of his thermodynamics
book [5]. In the 1960’s, Schultz [6] documented an expanded version of Zeuner’s work
and added a correction factor to acknowledge that fluids were neither perfect nor ideal.
These polytropic analysis methods were included in the ASME PTC 10 version published
in 1965 [7], resulting in the industry accepted vernacular label of “Schultz Methods”. The
1997 version of ASME PTC 10 [4], retained the basic Schultz methods but changed the path
definition model from constant efficiency dictated by [6,8], to constant polytropic exponent,
which is an incorrect definition for the polytropic process of real gas compression. While
useful for some applications, Schultz’s methods have been shown to provide results that
are less accurate than required, especially near a fluid’s critical point and in the dense phase
region [9].

Since Schultz’s methods were first codified by ASME, analysts have published
suggested refinements, improvements and alternatives. Some notable references are,
Kent [10]; Mallen and Saville [9]; Nathoo and Gottenberg [11,12]; Huntington [13,14];
Hunseid, et al. [15]; Oldrich [16]; Sandberg and Colby [17]; Taher [18]; Wettstein [19];
Plano [20]; Evans and Huble [21,22]; Sandberg [23]; Taher [1]. The variations included
the use of several different polytropic path equations as well as a plethora of numerical
integration techniques. Evans and Huble [21] provided concise reviews of several of these
methods while a tutorial by Evans and Huble [22] provided implementation details for
some of them.

It is important for the reader to keep in mind that any calculated polytropic path is an
approximation based upon an assumed model of the actual thermodynamic process rather
than an absolute knowledge of the exact path. However, in much of the currently available
technical literature on the subject, Schultz’s methods have been described as an almost
universal default definition for “polytropic performance”. Evans and Huble [22], pointed out
the error of assuming that Schultz’s formulas represent “a fundamental truth instead of a model
used for convenience”. George Box, a statistician, said “Remember that all models are wrong; the
practical question is how wrong do they have to be to not be useful” [24]. While Schultz’s methods
are acceptable for introducing polytropic concepts in a classroom, their limitations must also
be taught. When using any mathematical model of a constant efficiency polytropic path, an
analyst must understand the limitations of the model and take care not to apply it outside
of its useful boundaries. This paper thoroughly documents the thermodynamic soundness
and superior features of the Taher–Evans Cubic Polynomial methods for calculation of
polytropic efficiency to satisfy the requirements of ASME PTC-10 [4].

In the quest to provide improved calculation methods for the PTC-10 code, the re-
ality of how OEMs operate compressor test stands was taken into account. Real time
performance analyses and results can be provided by existing, dedicated, data acquisitions
systems, which can significantly shorten testing duration and thus, lower costs. This
imposes two competing requirements on polytropic efficiency calculations within the
computing systems; namely: (1) high accuracy and (2) rapid solutions.

Many publications have documented that numerical methods satisfy the first require-
ment. However, numerical solutions typically involve significant resources and computing
elapsed time. The Taher–Evans Cubic Polynomial methods described in this paper have
been shown to uniquely satisfy both requirements stated above as well as provide a
thermodynamically sound documentation of the theory behind the solutions.
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1.2. Polytropic Process

Unlike an isentropic process, the polytropic process accounts for degradation of
energy. Converting mechanical work to gas energy in a compressor results in the useful
compression work, vdp, which is always less than the gas enthalpy change, dh, by the
amount of Tds as shown in Equation (1).

dh = vdp + Tds (1)

The polytropic compression process is defined as a reversible and non-adiabatic
process, in which the ratio of useful compression work, vdp, to the change of enthalpy, dh,
remains constant along the polytropic compression path as defined by Equation (2) and
illustrated in Figure 1.

ηp =
vdp
dh

(2)
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Since the polytropic process is defined as a reversible process, the degraded energy
can be represented by heat, which is equal to

∫ 2
1 Tds. The polytropic work, wp, as the

measure of useful compression work, is the difference between the total enthalpy change
and the area under the polytropic path on the T-s diagram between inlet and discharge, as
illustrated in Figure 2. Substituting Equation (1) into Equation (2) yields a convenient form
for compressor polytropic efficiency shown in Equation (3).

ηp = 1− Tds
dh

(3)

The compressor polytropic efficiency always deviates from unity (ηp < 1) for an
uncooled compressor section (Tds > 0).

The shape of the polytropic path on the T-s diagram, which illustrates the gas behavior
as temperature and entropy increase during the compression process, can significantly
influence the value of degraded energy,

∫
Tds. Additionally, the use of different equations

of state to predict thermodynamic conditions along the polytropic compression path can
greatly influence the results, as illustrated by example cases in Appendix D.
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2. Polytropic Path: Polynomial Approximation Methods

The constant efficiency polytropic path on the T-s diagram is a continuous real-valued
function of entropy defined on a bounded interval [s1, s2]. This actual polytropic path
can be approximated to a high degree of accuracy using a single polynomial or a series
of sequential piecewise segment polynomials. The concept is to accurately estimate the
actual unknown temperature function, T(s), by an approximating function that is simple
but accurate enough (i.e., within acceptably small error tolerances) to calculate

∫ 2
1 Tds,

which is the degraded part of energy transfer in the polytropic compression process.
Taher [1], documented the mathematics of applying sequential piecewise cubic polynomials
to approximate a constant efficiency temperature-entropy polytropic path.

The temperature-entropy relationship along the polytropic path can be approximated
using a single polynomial for the entire range from inlet to discharge. This is referred to as
an “Endpoint” method since the thermodynamic state variables at both compressor inlet
and discharge are required inputs and are known from testing. For some applications,
when a single polynomial cannot provide sufficient accuracy, a series of sequential steps
or segments of polynomials can be employed. The following sections will discuss and
compare first- and third-degree polynomial approximants as used to calculate

∫ 2
1 Tds. First

degree polynomials are described as using “steps” while third degree polynomials are
described as using “segments”. This distinction is due to the discontinuity of path slope
change for linear steps whereas sequential piecewise cubic segments possess a continuous
slope change. It will be shown that this continuity of slope at the knots gives rise to
increased accuracy while using fewer segments to achieve the desired accuracy.

2.1. Temperature-Entropy Polytropic Path Approximation: Linear Polynomial Endpoint Method

A linear straight-line approximation between inlet and discharge conditions has been
used by Kent [10] and Sandberg [23] to approximate the actual polytopic path on the T-s
diagram. Neither Kent nor Sandberg explicitly mentioned employing a linear approxima-
tion for the polytropic path on the T-s diagram, but in fact a straight-line approximation of
temperature, T, as a function of entropy, s, is used in their linear approximation method.
Since pressure and temperature are known at both endpoints, all other thermodynamic
properties at inlet and discharge can be determined by an equation of state.

Equation (4) represents temperature as a function of entropy connecting compressor
section inlet and discharge points on a T-s diagram. The form of the function is a classic
straight line.

(1)
1T(s) = ms + b (4)
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The constraints applied to Equation (4) are shown in Equations (5) and (6).

T(s1) = T1 (5)

T(s2) = T2 (6)

Equations (7) and (8) show the analytically derived values for the slope and intercept
of the straight-line approximant. These values are constant and only dependent upon the
thermodynamic parameters at the compression endpoints.

m =
T2 − T1

s2 − s1
=

∆T
∆s

(7)

b =
s2T1 − s1T2

s2 − s1
(8)

Substituting Equations (7) and (8) into Equation (4) yields Equation (9), (1)1T(s), which
is a first-degree polynomial that approximates the actual polytropic path T(s).

(1)
1T(s) ∼=

(
T2 − T1

s2 − s1

)
s +

s2T1 − s1T2

s2 − s1
(9)

The deviation of the approximated temperature from the actual temperature value
using a linear approximant is represented by the error function (1)

1ErT(S) in Equation (10).

T(s) = (1)
1T(s) + (1)

1ErT(s) (10)

As shown in Figure 3, temperature deviation varies along the polytropic path in the
interval [s1, s2] from the compressor section inlet to discharge. The actual polytropic path
may largely deviate from a straight line connecting the endpoints.
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imated with 10-segment piecewise cubic polynomials is shown. The highest temperature deviation is
4.276 K (1.0734% relative deviation), in the middle of the interval range (s = 3.409 kJ/kg-K). The error

in estimating the degraded energy is (1)
1ErTDS = 0.1054 kJ/kg (0.698% relative deviation), which is

represented by the area bounded between the two curves of (1)
1T(s) and (3)

10T(s).
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The term (1)
1ErTDS in Equation (11) shows the error in calculating

∫ 2
1 Tds using a

linear approximation for the temperature-entropy relationship between endpoints of the
polytropic compression path.∫ 2

1
Tds =

(T1 + T2)

2
(S2 − S1) +

(1)
1ErTDS (11)

The (1)
1ErTDS error can only be estimated by comparing the result against a more

accurate approximation for the polytropic path. In this paper, a 10-segment cubic polyno-
mial method (i.e., using (3)

10T(s) approximants) is used as the basis of evaluation. (See
Appendix B for confirmation of the accuracy of the multi-segment cubic polynomial
method as applied with 10 segments).

Employing a straight line as the approximant to model the actual polytropic path on
the T-s diagram overly simplifies the actual compression path resulting in reduced accuracy
of the calculation for the

∫ 2
1 Tds and thus the resulting polytopic efficiency rendering the

polytropic work values less accurate. For example, as illustrated in Figure 3, a linear
approximation for the polytropic path on T-s diagram overestimates the degraded energy
(i.e., (1)1ErTDS = 0.1054 kJ/kg) by the bounded area between the linear approximant and
the actual path as estimated with the cubic polynomial method. A linear approximant is
inherently limited to a fixed constant slope along the entire polytropic path. This is a major
factor in estimating the

∫ 2
1 Tds with large errors using a linear endpoint approximant.

2.2. Temperature-Entropy Polytropic Path Approximation: Cubic Polynomial Endpoint Method

The desire to improve the accuracy of approximating the actual polytropic path on
the T-s diagram has led to employing the approximant function as a cubic polynomial.
Polynomials of the first degree and second degree are limited since they cannot account for
path slope changes and concavity of the actual polytropic path respectively. A polynomial
of the third degree is the simplest form of a polynomial approximant, which allows
the model to account for these two important features. As explained later in this paper
(see Section 4), the slope and concavity of the polytropic path on the T-s diagram reveal
significant thermodynamic insight about the behavior of fluids during the compression
process and must be carefully studied.

Using Equation (12), the actual temperature that increases with entropy, T(s), along
the polytropic path of a compressor section can be approximated using the third-degree
polynomial (3)1T(s).

(3)
1T(s) = As3 + Bs2 + Cs + D (12)

Since thermodynamic conditions at endpoints are known, the constraints applied to
Equation (12) are shown in Equations (13)–(16).

T(s1) = T1 (13)

T(s2) = T2 (14)(
dT
ds

)
η,1

= E1 =
T1

Cp1

(
1 + ηp X1

1− ηp

)
(15)

(
dT
ds

)
η,2

= E2 =
T2

Cp2

(
1 + ηp X2

1− ηp

)
(16)

Relationships (15) and (16) determine values of the slope of the temperature-entropy
curve at endpoints of the polytropic path. For details on how these equations are derived
from thermodynamic relationships, see Appendix A.
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Coefficients A, B, C and D of the third order polynomial (3)
1T(s) in Equation (12)

are “analytically” derived from the known conditions above. The results are shown in
Equations (17)–(20).

A =
2

(s2 − s1)
2

(
E1 + E2

2
− T2 − T1

s2 − s1

)
(17)

B =
1
2

(
E2 − E1

s2 − s1

)
− 3(s1 + s2)

2
A (18)

C =
E1 + E2

2
− 3

2
A
(

s2
2 + s2

1

)
− B(s1 + s2) (19)

D =
(T1 + T2)

2
− A

2

(
s3

1 + s3
2

)
− B

2

(
s2

1 + s2
2

)
− C

2
(s1 + s2) (20)

Coefficient A accounts for the deviation of the average value of the slope at the end-
points,

(
E1+E2

2

)
, from that of the straight line, which connects the endpoints, ( ∆T

∆s = T2−T1
S2−S1

).
Coefficient B accounts for the change of slope along the polytropic path. When the polytopic
path on the T-s diagram approaches to a straight line that connects the endpoints, (e.g., in the
case of compressing an ideal gas) coefficients A and B approach zero and coefficients C and D
represent the slope and the intercept of the straight line as shown in relationships (7) and (8).

The deviation of the temperature approximated using a cubic polynomial approximant
from the actual temperature value is shown by the error function (3)

1ErT(s) in Equation (21).
The temperature deviation varies along the polytropic path in the interval [s1, s2] from the
compressor inlet to discharge.

T(s) = (3)
1T(s) + (3)

1ErT(s) (21)

As illustrated in Figure 4, the deviation of approximated temperature from the actual
temperature shows significant improvement for the cubic polynomial approximation over
the linear version, which is expected since (3)

1ErT(s)� (1)
1ErT(s).
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case of compressing an ideal gas) coefficients A and B approach zero and coefficients C and 
D represent the slope and the intercept of the straight line as shown in relationships (7) and 
(8).  

The deviation of the temperature approximated using a cubic polynomial approximant 
from the actual temperature value is shown by the error function 𝐸𝑟𝑇ଵ(ଷ) (𝑠) in Equation (21). 
The temperature deviation varies along the polytropic path in the interval ሾ𝑠ଵ , 𝑠ଶሿ from the 
compressor inlet to discharge. 𝑇(𝑠) = 𝑇ଵ(ଷ) (𝑠) + 𝐸𝑟ଵ(ଷ) 𝑇(𝑠) (21)

As illustrated in Figure 4, the deviation of approximated temperature from the actual 
temperature shows significant improvement for the cubic polynomial approximation over 
the linear version, which is expected since 𝐸𝑟𝑇ଵ(ଷ) (𝑠) ≪ 𝐸𝑟𝑇ଵ(ଵ) (𝑠).  

 

Figure 4. Temperature deviation of the cubic polynomial endpoint method from the actual polytropic
path as approximated with 10-segment piecewise cubic polynomial approximants is shown. The
highest temperature deviation is 1.185 K (0.289% relative deviation), at s = 3.414 kJ/kg-K. The error

in estimating the degraded energy is (1)
1ErTDS = 0.0237 kJ/kg (0.157% relative deviation), which is

represented by the area bounded between the two curves of (3)
1T(s) and (3)

10T(s).
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Figure 5 compares the temperature deviation of the linear, (1)
1T(s), and cubic poly-

nomial, (3)1T(s), endpoint approximants from the highly accurate polytropic path as ap-

proximated with a 10-segment piecewise cubic polynomials, (3)10T(s), for the high pressure
propane case with the endpoint conditions shown on the figure. The cubic polynomial
endpoint approximant provides a maximum temperature deviation that is less than a third
of that of the linear endpoint approximant.
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The term (3)
1ErTDS in Equation (22) shows the error in calculating

∫ 2
1 Tds using the

cubic polynomial endpoint approximation.∫ 2

1
Tds =

(T1 + T2)

2
(s2 − s1)−

(E2 − E1)

12
(s2 − s1)

2 +
(3)

1ErTDS (22)

The improved accuracy of calculating
∫ 2

1 Tds using the cubic polynomial endpoint

approximant, (3)1T(s), as compared to the linear approximant, (1)1T(s), can be calculated
using Equation (23).

(1)
1ErTDS− (3)

1ErTDS = − (E2 − E1)

12
(s2 − s1)

2 (23)

Equation (23) shows that the accuracy of the cubic polynomial approximant as com-
pared to a linear approximant increases for compression applications with a large difference
between the slopes at the endpoints. As explained in the next section of this paper, this
analytical relationship conveniently provides a means to evaluate accuracy of the linear
endpoint method.

3. Polytropic Efficiency Calculation

Since the late 19th century, various calculation methods have been proposed to esti-
mate polytropic efficiency. The polytropic efficiency can only be estimated. The accuracy of
the estimation depends upon the calculation method and the accuracy of thermodynamic
properties used in the calculation. As shown in this paper, different equations of state for a
fixed method can result in variation of polytropic efficiency values, which may be even
larger than the effect of measurement uncertainties. It is important to ensure that the same
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equation of state as used for calculating expected performance is used when calculating
polytropic efficiency based on equipment test results.

Regardless of which calculation method is used, usually five significant digits can
well serve the purpose for any compressor performance evaluation. Accuracy of measured
inlet and discharge conditions as well as of the equation of state and test data used to
obtain thermodynamic properties for the calculation method may impose to reduce the
number of significant digits. The identification of significant digits is only possible through
knowledge of the circumstances [25]. However, in this paper, the intended precision
of polytropic efficiency is chosen as five significant digits in order to evaluate different
polytropic efficiency calculation methods.

A novel approach is used in this paper to differentiate between the actual polytropic
efficiency (for a fixed calculation method and EOS) from the calculated polytropic efficiency
by using an error function, Erη. This is believed to help clarify that regardless of the
calculation method, the actual polytropic efficiency, ηp, can only be estimated with some
acceptable error, Erη, as compared to a more accurate reference method. In this paper, the
Taher–Evans Cubic Polynomial 10-segment method is used as the basis to compare the
accuracy of other methods.

3.1. Polytropic Efficiency Calculation: Linear Polynomial Endpoint Method

In the simplest case, the polytropic path can be approximated using a linear approxi-
mant, which connects the endpoints (i.e., one step) as follows:

(1)
1T(s) = ms + b (24)

The degraded energy in the polytropic compression process,
∫ 2

1 Tds, is approximated

using the linear endpoint approximant (1)
1T(s):

∫ 2

1
Tds =

∫ 2

1

(1)
1T(s) ds + (1)

1ErTDS (25)

By replacing (1)
1T(s) from (24) and analytically performing the integral

∫ 2
1

(1)
1T(s) ds using

the relationship (9), the relationship (26) emerges:∫ 2

1
Tds =

(T1 + T2)

2
(s2 − s1) +

(1)
1ErTDS (26)

Using the relationships (2) and (26), the polytopic efficiency, (1)1η , as approximated
with the linear endpoint approximation method is developed as follows:

(1)
1η = 1−

∫ 2
1

(1)
1T(s) ds∫ 2
1 dh

= 1−
(

s2 − s1

h2 − h1

)[
T1 + T2

2

]
(27)

The deviation of the approximated endpoint polytropic efficiency, (1)1η , from the actual

polytropic efficiency, ηp, using the linear endpoint approximant, (1)1T(s), is represented by

the error function (1)
1Erη in Equation (28).

ηp =
(1)

1η +
(1)

1Erη (28)

A similar relationship to (27) for calculating the polytropic efficiency was suggested
by Stepanoff [26] in 1955.
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3.2. Polytropic Efficiency Calculation: Taher–Evans Cubic Polynomial Endpoint Method

In a more accurate case, the polytropic path can be approximated using a cubic
polynomial, which connects the endpoints (i.e., one segment) as follows:

(3)
1T(s) = As3 + Bs2 + Cs + D (29)

The degraded energy in the polytropic compression process,
∫ 2

1 Tds, can be approxi-

mated using the cubic polynomial endpoint approximant, (3)1T(s):

∫ 2

1
Tds =

∫ 2

1

(3)
1T(s) ds + (3)

1ErTDS (30)

By replacing (3)
1T(s) from (29) and analytically performing the integral,

∫ 2
1

(3)
1T(s) ds,

using relationships (17)–(20), the relationship (31) emerges:∫ 2

1
Tds =

(T1 + T2)

2
(s2 − s1)−

(E2 − E1)

12
(s2 − s1)

2 +
(3)

1ErTDS (31)

Using the relationships (2) and (31), the polytopic efficiency, (3)1η , as approximated
with the cubic polynomial endpoint approximation method is developed as follows:

(3)
1η = 1−

∫ 2
1

(3)
1T(s) ds∫ 2
1 dh

= 1−
(

s2 − s1

h2 − h1

)[
T1 + T2

2
−
(

E2 − E1

12

)
(s2 − s1)

]
(32)

Equation (32) can be solved recursively by assuming an initial value for the efficiency
to calculate endpoint slopes E1 and E2, calculating the resulting efficiency from (32), and
minimizing the difference between assumed and calculated efficiency.

The deviation of the approximated endpoint polytropic efficiency, (3)1η , from the actual
polytropic efficiency, ηp, using Taher–Evans cubic polynomial endpoint approximant
(3)

1T(s), is represented by the error function (3)
1Erη in Equation (33).

ηp =
(3)

1η +
(3)

1Erη (33)

By comparing relationships (27) and (32) the efficiency deviation between the linear
and cubic polynomial endpoint methods can be developed as follows:

(3)
1Erη − (1)

1Erη = − 1
12

(
E2 − E1

h2 − h1

)
(s2 − s1)

2 (34)

As shown by the relationship (34), the deviation linearly increases with the change of
slopes, (E2 − E1), at endpoints. This analytical relationship conveniently provides a means
to evaluate accuracy of the linear methods as applied to endpoints.

Once the polytropic efficiency, (3)
1η is determined, coefficients A, B, C, and D are

calculated, and the polytopic path model on T-s and h-s diagrams can be graphically
represented using relationships (29) and (51).

Figure 6 compares the efficiency deviation of the linear endpoint and cubic polynomial
endpoint methods from the highly accurate 10-segment cubic polytropic efficiency, (3)10η ,
using different equations of state for the high pressure propane case with the condi-
tions shown on the figure. Evidently, the linear endpoint method involves significantly
larger deviations for the polytropic efficiency as compared with the cubic polynomial
endpoint method.
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Using illustrative examples in Appendix B, it is shown that Taher–Evans cubic polyno-
mial endpoint method provides the highest accuracy among all other endpoint methods.
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endpoint methods from the highly accurate 10-segment cubic polynomials polytropic efficiency, (3)10η ,
as calculated using different equation of states.

3.3. Polytropic Efficiency Calculation: Linear Multistep Method

As illustrated in Figures 3 and 6, the linear approximant, (1)
1T(s), when applied to

endpoints may introduce large deviations from the actual T-s polytropic path resulting in
reduced accuracy for the calculated polytropic efficiency, (1)1η . By applying the compos-
ite trapezoidal rule, the integral

∫ 2
1 Tds is approximated by employing piecewise linear

polynomial approximants that cover the entire path in multiple steps with smaller subin-
tervals [si, si+1].

In the linear multi-step method, temperature deviation along the polytropic path
reduces as the number of steps, j, which approximate the entropy interval [s1, s2] increases.

T(s) =
j

∑
i=1

(
(1)

j T i(s) +
(1)

j ErTi(s)
)

(35)

where for the ith step, (1)j T i(s) is defined in the sub-interval [si, si+1].
As shown in Figure 7, maximum temperature deviation along the polytropic path

reduces as the number of steps increases. As expected, linear approximation involves
larger deviation as compared with cubic polynomial approximation for the same number
of steps or segments. As reviewed in Appendix C, a maximum of five cubic polynomial
segments has been documented to provide sufficient accuracy for a broad range of example
cases by Evans [3].
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The degraded energy in the polytropic compression process,
∫ 2

1 Tds , is approximated
by dividing the path into j-steps and using a linear approximant for each step.

∫ 2

1
Tds =

j

∑
i=1

∫ i+1

i

(1)
j T i(s) ds + (1)

j EriTDS (36)

where (1)
j EriTDS shows the error in approximating the integral,

∫ i+1
i T(s) ds, by using

the linear approximant (1)
j T i(s) in the subinterval [si, si+1]. By summing up errors of all

j-steps, the total error for approximating the integral
∫ 2

1 Tds, with linear approximants
using j-steps is developed:

(1)
j ErTDS =

j

∑
i=1

(1)
j EriTDS (37)
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By applying the relationship (26) for each step, and using the composite trapezoidal
rule, the integral,

∫ 2
1 Tds, is approximated as follows:

∫ 2

1
Tds =

(
j

∑
i=1

(Ti + Ti+1)

2
(si+1 − si)

)
+

(1)
j ErTDS (38)

Using the relationships (2) and (38), the polytopic efficiency, (1)j η , is developed as follows:

(1)
j η = 1−

j

∑
i=1

(
si+1 − si
hi+1 − hi

)[
Ti + Ti+1

2

]
(39)

The deviation of the approximated polytropic efficiency, (1)j η , from the actual poly-

tropic efficiency, ηp using linear approximants, (1)j T i(s), at each step is represented by the

error function, (1)j Erη, in Equation (40).

ηp =
(1)

j η +
(1)

j Erη (40)
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Because the linear method ignores the change in slope and concavity along the com-
pression path, a large number of steps are needed to achieve the desired accuracy. Sand-
berg [23] provided no criteria to determine the required number of linear steps to approxi-
mate

∫ 2
1 Tds. The uncertainty about the required number of steps in the linear multi-step

method could possibly be overcome by applying a large number of linear steps (50 to 100+
steps) to ensure sufficient accuracy. However, pre-selecting 50 or 100+ linear polynomial
steps has been shown to be inefficient, (see Figure 11). Utilizing a large number of linear
steps significantly increases the calculation time due to the required nested iteration loops.
Figure A3b documents a comparison of elapsed time measurements for the supercritical
propane example case.

3.4. Polytropic Efficiency Calculation: Taher–Evans Cubic Polynomial Multi-Segment Method

The T-s polytropic path can be accurately approximated with a set of piecewise
thermodynamically coupled cubic polynomials. The T-s polytropic path is divided into “j”
segments over the entropy range, [s1, s2], from compressor section inlet to discharge.
Each subinterval [si, si+1] of the actual path, T(s), is approximated by a cubic polynomial
approximant, (3)j T i(s), which allows the temperature as well as T-s polytropic path slope,
(dT/ds), to be matched at endpoints of adjacent segments, thus increasing accuracy while
smoothing the overall path. The key factor in the accuracy of cubic polynomial multi-
segment method as compared with the linear multistep method is taking advantage of
applying the thermodynamic constraint, dT

ds , at each intermediate point (knot) to enable
smooth transition from one to the following segment.

The relationship (41) shows the actual temperature-entropy path, T(s), as approx-
imated with a set of “j” cubic polynomial approximants, (3)

j T i(s), and the temperature

deviation at each segment, (3)j ErTi(s) :

T(s) =
j

∑
i=1

(
(3)

j T i(s) +
(3)

j ErTi(s)
)

(41)

where (3)
j T i(s) at each segment is determined by:

T(s) = Ais3 + Bis2 + Cis + Di si ≤ s ≤ si+1
T(si) = Ti
T(si+1) = Ti+1(

dT
ds

)
i
= Ei =

Ti
Cpi

(
1+(3)

j η Xi

1−(3)
j η

)
(

dT
ds

)
i+1

= Ei+1 =
Ti+1

Cpi+1

(
1+(3)

j η Xi+1

1−(3)
j η

) (42)

The coefficients (Ai, Bi, Ci, Di), of each cubic polynomial approximant are calculated
using the relationships (17) to (20), where subscripts 1 and 2 are replaced with endpoint
conditions of the ith segment.

Similar to relationships (30) and (31), the degraded energy is calculated,
∫ i+1

i
(3)

j T i(s) ds

and its related error, (3)j EriTDS, at each segment are defined. The total error for approximat-

ing the integral
∫ 2

1 Tds, using cubic polynomial approximants is determined by summing
up errors of each segment.

(3)
j ErTDS =

j

∑
i=1

(3)
j EriTDS (43)
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By applying the relationship (32) for each segment, the integral,
∫ 2

1 Tds, is approxi-
mated as follows:

∫ 2

1
Tds =

(
j

∑
i=1

(Ti + Ti+1)

2
(si+1 − si)−

(Ei+1 − Ei)

12
(si+1 − si)

2

)
+

(3)
j ErTDS (44)

Using the relationships (2) and (44), the polytopic efficiency (3)
j η is developed as follows:

(3)
j η = 1−

j

∑
i=1

(
si+1 − si
hi+1 − hi

)[
Ti + Ti+1

2
− (Ei+1 − Ei)

12
(si+1 − si)

]
(45)

The deviation of the approximated polytropic efficiency (3)
j η from the actual polytropic

efficiency, ηp using cubic polynomial approximants (3)
j T i(s) at each step is represented by

the error function (3)
j Erη in Equation (46).

ηp =
(3)

j η +
(3)

j Erη (46)

3.4.1. Polytropic Efficiency Calculation Procedure: Taher–Evans Cubic Polynomial
Multi-Segment Method

The solution requires an initial estimate of efficiency and then recursive solutions
for segment discharge temperature. Equation (45) is solved recursively by assuming an
initial value for the efficiency, (3)

j η to calculate endpoint slopes E1 and E2, calculating
the resulting efficiency from (45), and minimizing the difference between assumed and
calculated efficiency. The step-by-step procedure is explained as follows:

Note: inlet and discharge pressures and temperatures discussed below are assumed
to be for total conditions at a given compressor section.

(1) Determine an initial estimate of polytropic efficiency by assuming (E2 = E1) in the
relationship (45) for the cubic polynomial endpoint method.
Note: for the purpose of compressor performance testing, the initial value of the
efficiency is the expected efficiency provided by the compressor manufacturer.

(2) Select the number of segments (j).
There are different ways to select intermediate knots. In this paper, the overall pressure
ratio is divided across the number of segments (j) to determine equal pressure ratio
steps as shown in the next step.

(3) Use “j” number of equal pressure ratio segments.
(

pr = j
√

p2
p1

)
.

(4) Use Equation (29) to estimate the initial value of segment outlet temperature. (This
requires a solution to the cubic polynomial endpoint method).
Note: steps 1 through 4 are only required for the initialization of the solution algorithm.

(5) Calculate segment temperature rise, (∆Ti = Ti+1 − Ti)
(6) Calculate the segment polytropic efficiency using the relationship (45).
(7) Calculate efficiency deviation from the initially estimated polytropic efficiency from

step 1.
(8) Iterate segment outlet temperature to match assumed efficiency.

Note: different root finding algorithms may be used to optimize iterations for segment
outlet temperature.
Note: the acceptable efficiency convergence should be set less than 1E−6.

(9) Move to next segment using outlet conditions of previous segment as inlet conditions.
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(10) Repeat steps 5 through 9 for each segment.
(11) Compare final discharge temperature with the given value, Td
(12) If step 11 result is not within a small tolerance, iterate efficiency and determine new

values for coefficients A, B, C and D.
(13) Repeat steps 5 through 11 until agreement is reached within the tolerance.

Note: the acceptable convergence from the given discharge temperature should be set
less than 1E−8.

In the Taher–Evans Cubic Polynomial method, intermediate points are determined by
setting one thermodynamic variable (such as pressure or entropy) at each end of a segment
and calculating other thermodynamic variables to force the segment endpoint to lie on a
constant efficiency path via nested recursive algorithms (within a small error tolerance).
Using cubic polynomial approximants, the polytropic path slope can be accurately calcu-
lated since the first derivative of each segmental polynomial can be determined at each
intermediate point (see Ei and Ei+1 in Equation (42)).

The difference between final segment calculated discharge temperature and the known
discharge temperature, Td, can be minimized by iterating efficiency. These nested itera-
tions of efficiency (inner loop) and the final segment discharge temperatures (outer loop)
converge quickly.

When a final efficiency is determined, summations of enthalpy changes and Tds losses
can be performed for the entire set of segments. The cubic polynomial multi-segment
method provides intermediate points along the constant efficiency temperature-entropy
path that have been forced to coincide with the actual path. Additionally, the path slope at
each intermediate point is equal at the end of the ith segment and the beginning of the i+1
segment. See Table 1.

3.4.2. Distinction between Cubic Interpolation and Approximation

As the final point in this section, it should be noted that the approximation of functions
is different from interpolation. In the case of interpolation, at certain intermediate points,
the value of an unknown function is given (such as measured values at intermediate points),
but the function itself is not known. Interpolating cubic splines are used to interpolate
between known intermediate points, which is irrelevant in the problem of approximating
an unknown function without any given intermediate point. Accordingly, the descriptor
“spline” is not applied in this paper as it usually is thought of as being used to approximate
a curve passing through previously known knots.
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Table 1. Cubic polynomial 5-segment method as applied for Case 10 using AspenTech Hysys V.10 [27] and PR-LK equation of state. See Table A1 in the Appendix B for gas compositions
and compressor inlet and discharge conditions for Case 10.

Segment Number
i

T p s h 5Ai 5Bi 5Ci 5Di 5Ei 5Ei+1 5ηp,i 5wp,i
∫ si+1

si
(3)
5 T i(s)ds

[K] [bar] [kj/kg-K] [kj/kg] - - - - [kg-K2/kj] [kg-K2/kj] - [kj/kg] [kj/kg]

1
Inlet 366.483 3.390 20.684 −2276.711 −184,369 1,886,535 −6,432,843 7,310,148 1499 1650 0.81147 13.28549 3.08654

Outlet 379.567 3.398 26.316 −2260.339

2
Inlet 379.567 3.398 26.316 −2260.339 151,457 −1,534,519 5,183,886 −5,838,652 1650 1831 0.81147 13.19405 3.06530

Outlet 393.341 3.406 33.480 −2244.080

3
Inlet 393.341 3.406 33.480 −2244.080 86,118 −868,526 2,921,119 −3,276,023 1831 2020 0.81147 13.03013 3.02721

Outlet 407.879 3.414 42.596 −2228.022

4
Inlet 407.879 3.414 42.596 −2228.022 −1,407,357 14,438,426 −49,373,634 56,277,303 2020 2158 0.81147 12.82697 2.98001

Outlet 423.124 3.421 54.193 −2212.215

5
Inlet 423.124 3.421 54.193 −2212.215 −4,606,378 47,325,393 −162,069,532 185,004,389 2158 2187 0.81147 12.67478 2.94466

Outlet 438.706 3.428 68.948 −2196.596

Summary of all 5 Segments 0.81147 65.01143 15.10372
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4. Polytropic Path on Temperature-Entropy Diagram

For an uncooled compressor section, entropy increases along the polytropic path.
The rate of change of temperature with entropy at each point along the polytropic path is
determined with the relationship (A10) from Appendix A.(

dT
ds

)
ηp

= E =
T
cp

(
1 + ηpX
1− ηp

)
(A10)

The change of temperature with entropy from the compressor section inlet to discharge
varies as temperature, specific heat, cp, and compressibility function, X, change at each
point along the compression path. At conditions near to the critical point, the rate of change
of cp and X is usually large. This has significant impact on the change of temperature with
entropy as the relationship (A10) suggests. The supercritical propane example case has
inlet conditions extremely close to the critical point and the thermodynamic properties
are varying rapidly as compression begins. Figures 8 and 9 illustrate the variation of
specific heat, cp, and compressibility function, X, respectively, in the vicinity of the critical
point. Each isobar has a distinct peak. The inlet conditions lie in an area on the flank of a
peak while discharge conditions (not shown) are far removed from the critical area peaks.
Equations (15) and (16) would show a large difference in slope of the T-s path between
inlet, E1, and discharge, E2, as documented in Table A2. These large differences are one
indicator of the difficulty of a compression case.
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While the change of temperature with entropy along the compression path of an un-
cooled compressor section is always positive ( dT

ds > 0), the curvature of the polytropic path
on the T-s diagram may change sign (from concave upward to downward or vice versa). A
change in sign happens when d2T

ds2 equals to zero at any point along the compression path
which indicates a change of curvature (as seen in the case of HP Ethylene in Appendix B).

The cubic polynomial endpoint method can be used to approximate the concavity of
the actual T-s polytropic path. No other endpoint methods can provide such a mathematical
and thermodynamic insight about the behavior of the actual T-s polytropic path from
known thermodynamic conditions at the inlet and discharge of the compressor section.

The concavity of the polynomial approximant can be examined using the second
derivative test of the path equation with the following criteria:

• If (−B/3A) is out of the range of [s1, s2] and 3As1 + B > 0 the upward concavity of

the cubic polynomial approximant,(3)1T(s), is unchanged along the path. See Figure 10
curve I.

• If (−B/3A) is out of the range of [s1, s2] and 3As1 + B < 0 the downward concavity of

the cubic polytropic approximant,(3)1T(s), is unchanged along the path. See Figure 10
curve II.

• If s1 < (−B/3A) < s2 the concavity of the cubic polytropic approximant,(3)1T(s),

changes at the inflection point (3)
j s in f = (−B/3A). See Figure 10 curve III.

Downward concavity is an indication of increased difficulty for the compression case
as shown and confirmed by example cases in Appendix B. See Appendix B for several
compression cases evaluated.

The actual location of the inflection point on the T-s polytropic path can be more
precisely approximated by applying the cubic polynomial multi-segment method.

The rate of change of dT
ds with entropy can be considered as a screening criterion to

determine the difficulty of a compression case.
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The curve shape of the polytropic path as predicted by the cubic polynomial endpoint
method provides an easy to apply criteria to determine how many multi-segments to
employ to assure an acceptable relative deviation. Based on 115 cases covering 22 fluids
(7 pure fluids and 15 mixtures reviewed in Appendix C) studied by Evans [3], the number
of cubic polynomial segments required to achieve ≤0.001% relative deviation for the
polytropic efficiency is three segments for Category I and five segments for Categories II
and III.
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5. Enthalpy Change with Entropy along the Polytropic Path

The relationship (2) can be rearranged to

dh
ds

=
T

1− ηp
(47)

As the efficiency of the polytropic process is constant, the slope of the tangent to the
path increases as the temperature rises along the compression path ( dh

ds > 0). Rearranging
the relationship (47) and taking the derivative with respect to ds gives:

d
ds

[
T
dh
ds

]
=

dT
ds

dh
ds − T d2h

ds2(
dh
ds

)2 = 0 (48)

By replacing T
1−ηp

with dh
ds , the second derivative of the function h(s) along the poly-

tropic compression path appears:

d2h
ds2 =

1
1− ηp

dT
ds

(49)

For an uncooled compressor section, dT
ds > 0. Therefore, d2h

ds2 > 0. As shown in Figure 1,
the polytropic compression path defined with function h(s) is always concave upward along
the compression path since the second derivative is positive in an uncooled compressor
section. Equation (A11) in Appendix A provides the thermodynamic value of d2h

ds2 at any
point along the polytropic compression path.
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The change of enthalpy with entropy at any point along the polytropic path can be
approximated by substituting the relationship of temperature from (12) to (47):

dh
ds

=
As3 + Bs2 + Cs + D

1− ηp
(50)

By integrating (50), the relationship of enthalpy and entropy can be approximated at
any point along the polytropic path:

h(s) = h1 +
A
4
(
s4 − s4

1
)
+ B

3
(
s3 − s3

1
)
+ C

2
(
s2 − s2

1
)
+ D(s− s1)

1− ηp
(51)

where, s represents any entropy value between compressor section inlet, s1 and section
discharge, s2.

6. Comparison of Cubic and Linear Polynomial Results

The Taher–Evans Cubic Polynomial 10 segment method is used as a comparison
standard to determine relative deviations in polytropic efficiency for all other methods. See
Equation (A12) for the relative deviation definition. The number of recommended cubic
segments based upon T-s path curve shapes listed in Figure 10 was developed from results
reported by Evans [3]. Figure 11 shows that determining a similar set of recommendations
for the number of linear polynomial steps required was not possible. The wide scatter of
the linear methods’ results that would yield similar accuracy to the cubic methods was
very random.
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Appendices B and C discuss example cases and compare various polytropic calculation
methods. The 19 example cases in Appendix B were selected for illustration of a range
of relatively easy and difficult polytropic efficiency calculation applications. Several of
these are used to show various characteristics of the calculation results. Appendix C is a
review of 115 example cases studied by Evans [3], and includes the 19 example cases from
Appendix B. This larger population further confirms and documents the trends discovered
when applying the multi-segment cubic and multi-step linear polynomial methods.

7. Conclusions

• The Taher–Evans Cubic Polynomial method (TE-CP), defined, described and tested
herein, illustrates that a highly accurate calculation method for real gas centrifugal
compressor polytropic performance efficiency has been developed and implemented
that employs a temperature—entropy cubic polynomial path function.

# Both endpoint and sequential segment versions are described and tested.
# Previously published polytropic efficiency calculation methods including first

degree linear polynomial methods are shown to be less accurate and/or slower
to achieve a solution than Taher–Evans Cubic Polynomial methods.

# The TE-CP methods’ superior results are due to the cubic polynomial path
having additional thermodynamic constraints applied to more accurately ap-
proximate the actual path slope at any point along the path. Determination
of path slope at the compression endpoints is independent of performance
calculation method.

# T-s polytropic path curve shapes can be determined from derivatives of the
cubic polynomial path equation and are indicative of calculation relative diffi-
culty. The curve shape is used as a criterion to select the required number of
cubic segments. No other polytropic method can provide such a mathematical
and thermodynamic insight into the fluid compression process.

# The number of T-s path cubic polynomial segments required to achieve an ac-
ceptable relative deviation ≤0.001% for polytropic efficiency is three segments
for category I and five segments for categories II and III curve shapes.

# As shown in Figure A10, the cubic polynomial methods provide low uncer-
tainty with only a few cubic segments. Uncertainty is based upon polytropic
efficiency relative deviation, and its magnitude is related to the size of the
statistical population.

# Cubic polynomial methods provide continuous equations to plot the polytropic
path on T-s and h-s diagrams. This is a very unique feature of the cubic
polynomial method that enables visualizing the polytropic path.

# The cubic path coefficients (A, B, C, and D) in Equation (12) provide mean-
ingful insights about the behavior of the polytropic path on the temperature-
entropy diagram.

# The Taher–Evans Cubic Polynomial methods are highly suitable for application
to compressor performance testing according to ASME PTC 10 [4].

• Cubic and linear polynomial calculation methods have been extensively documented
and compared.

# Polytropic efficiency calculations have been reviewed for 17 methods across
115 example cases yielding a total of 1955 independent calculations that validate
superior results are achieved when using both endpoint and sequential segment
Taher–Evans Cubic Polynomial (TE-CP) polytropic path methods. A total of
22 fluids were employed including seven pure fluids and 15 fluid mixtures to
cover wide ranges of mole weight and critical pressures and temperatures.
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# Cubic polynomial endpoint path methods were demonstrated to achieve better
accuracy than any other endpoint polytropic efficiency calculation method.

# Cubic polynomial sequential segment path methods were demonstrated to
achieve high accuracy acceptable polytropic efficiency results significantly
faster with fewer segments required than linear polynomial path methods
based upon 115 compression example cases.

# For all 115 example cases, T-s polytropic paths agreed between 10 cubic seg-
ments and 100 linear steps which confirmed the validity of using the result of
10-segment cubic polynomial approximants as the standard for comparison for
polytropic efficiency relative deviation and uncertainty.

# Cubic polynomial path methods show that the required number of segments
to achieve an acceptable result remains within a maximum of five segments
or less for all the cases studied. For the linear polynomial path method, the
required number of steps did not follow a regular pattern as shown in Figure
11. No rule or algorithm can be determined for the required number of linear
polynomial steps to achieve an acceptable result.

# While both cubic and linear polynomial methods can reach acceptable results,
the cubic methods require fewer repetitive iterations and are completed much
faster. Sequential segment cubic polynomial method calculations are typically
at least an order of magnitude faster than sequential step linear polynomial
methods. This is a clear advantage for cubic methods when processing com-
pressor performance test data in real time.

# The cubic polynomial methods provide an order of magnitude lower uncer-
tainty with significantly fewer cubic segments than linear polynomial methods.
(See Figure A10).

# The cubic polynomial methods’ uncertainty rapidly decreases as the number
of segments increases while the linear polynomial methods illustrate a much
more gradual decrease in uncertainty as they approach an asymptote. The
linear polynomial methods uncertainty asymptote appears to be more than an
order of magnitude greater than the cubic methods.

• Identical calculations for selected example cases using several different equations of
state to obtain thermodynamic state point data for application of cubic and linear
polynomial methods revealed significant differences in results for efficiency can occur
based upon the chosen EOS. See Appendix D for selective examples.

Recommendations

• When rapid, highly accurate, low uncertainty, centrifugal compressor polytropic
efficiency calculations are required, the Taher–Evans Cubic Polynomial methods (TE-
CP) should be used.

• Due to significant differences found between results when employing various equa-
tions of state, it is recommended that a project use the same equation of state through-
out the project timeline to avoid potential discrepancies.
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Nomenclature

A Polynomial approximant coefficient
B Polynomial approximant coefficient
b Linear approximant coefficient

β Isobaric expansivity, = 1
υ

(
∂v
∂T

)
p

BWRS Benedict–Webb–Rubin EOS as modified by K. E. Starling
C Polynomial approximant coefficient
CH4 Methane
CO2 Carbon Dioxide
C3H8 Propane
CP Cubic Polynomial
Cp heat capacity at constant pressure
D Polynomial approximant coefficient

E Slope of the polytropic path on the T-s diagram,
(

dT
ds

)
ηp

EOS Equation of State
Erη Deviation of polytropic efficiency
ErT Deviation of approximated temperature
ErTDS Deviation of approximated

∫
Tds

EOS Equation of State
h Specific enthalpy
HP High pressure
OEM Original Equipment Manufacturer
PR Peng-Robinson EOS

PR-LKP
Peng-Robinson EOS and the Lee-Kesler EOS for the calculation
of enthalpies

LP Linear Polynomial, or Low Pressure
LKP Lee-Kesler-Plöcker EOS
m Linear approximant coefficient
MP Medium Pressure
n Schultz [6] polytropic volume exponent as applied in pvn = c
T Temperature
TE-CP Taher–Evans Cubic Polynomial
REFPROP Reference properties EOS software
s Specific entropy
SC Supercritical
v Specific volume
X Compressibility function, = βT − 1
XY Schultz method using compressibility functions X and Y
ηp Polytropic efficiency

Subscripts and Superscripts
(q)

j T i(s)
i indicates the ith segment
j total number of segments
q degree of the polynomial approximant

Example: (3)
10T6(s) indicates the cubic polynomial approximant, which is

used to approximate the segment number 6 of a polytropic path that is
divided into 10 segments.
This symbology provides a clear way to compare different methods
discussed in this paper.

inf inflection
p Polytropic, or pressure
r ratio
d compressor section discharge (measured)
1 compressor section inlet
2 compressor section discharge
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Appendix A. Temperature Change with Entropy along the Polytropic Path

Derivation of the following two important relationships, dT
ds and d2h

ds2 along the poly-
tropic compression path is explained in this appendix.

Choose the entropy to be a function of temperature and pressure. Writing the differen-
tial of s = s(T, P) gives:

ds =
(

∂s
∂T

)
P

dT +

(
∂s
∂P

)
T

dP (A1)

The first partial derivative in (A1) can be written as follows:

(
∂s
∂T

)
P
=

(
∂h
∂T

)
P(

∂h
∂s

)
P

=
cp

T
(A2)

where
(

∂h
∂T

)
P
= cP and

(
∂h
∂s

)
P
= T from the first partial derivate of the Gibbs relationship

dh = Tds + vdP.
The second partial derivative in (A1) is one of the Maxwell relations:(

∂s
∂P

)
T
= −

(
∂v
∂T

)
P

(A3)

Substituting the first and second partial derivatives in (A1) from (A2) and (A3) yields:

ds =
cp

T
dT −

(
∂v
∂T

)
P

dP (A4)

Using the definition of isobaric expansivity β = 1
υ

(
∂v
∂T

)
p

for the second partial deriva-

tive gives:

ds =
cp

T
dT − βvdP (A5)

Employing the Gibbs relationship dh = Tds + vdP for a polytropic process and
substituting dh with vdP

ηp
gives:

vdP =
Tds

1
ηp
− 1

(A6)

Substituting vdP from (A5) to (A4) yields:

ds =
cp

T
dT − βTds

1
ηp
− 1

(A7)

This can be further simplified to1 +
βT

1
ηp
− 1

ds =
cp

T
dT (A8)

From (A8) the slope of the polytropic path on a T-s diagram is determined:

dT
ds

=
T
cp

(
1 + ηp(βT − 1)

1− ηp

)
(A9)

Substituting (βT − 1) with the Schultz compressibility function X gives:

dT
ds

=
T
cp

(
1 + ηpX
1− ηp

)
(A10)
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By replacing dT
ds from (A10) to (47) gives:

d2h
ds2 =

T
cp

(
1 + ηpX

)(
1− ηp

)2 (A11)

The relationships (A10) and (A11) were developed and presented for the first time by
Taher [1].

The relationship (A11) shows that the polytropic path on the enthalpy-entropy dia-
gram is concave upward since the second derivative is positive in an uncooled compres-
sor section.

Appendix B. Comparative Numeric Examples of Application of the Taher–Evans
Cubic Polynomial Methods

The Taher–Evans Cubic Polynomial method for calculation of centrifugal compressor
polytropic performance has been applied to 19 compression example cases which are com-
prised of five pure fluids and four hydrocarbon fluid mixtures. Eight cases are considered
low pressure while eleven cases are considered medium or high pressure. Input data for
ten cases came from existing literature references while nine cases are new. All cases were
chosen based upon the desire to explore a wide range of process conditions for fluids
common to the hydrocarbon industry.

The fluids and process conditions selected represent a combination of relatively easy
and difficult calculations for centrifugal compressor polytropic performance. Table A1
lists input data for the 19 cases. The “easy cases” are found by the results listed below to
be low pressure versions for CO2, C3H8 and CH4/C3H8/CO2. The most difficult case is
supercritical propane due to inlet conditions.

Using results of the above referenced analyses, this appendix will review polytropic
efficiency calculation method comparisons for following three categories:

• Endpoint methods

# Schultz (two variations) [6];
# Mallen Saville [9];
# Cubic Polynomial;
# Linear polynomial.

• Three point methods

# Cubic Polynomial two segment;
# Huntington’s three point [13].

• Multi-step and multi-segment methods

# Cubic Polynomial—sequential segments (2 through 10 segments);
# Linear Polynomial—sequential steps (10, 20, 50, 90 and 100 steps).

The Taher–Evans Cubic Polynomial 10 segment method is used as a comparison
standard to determine relative deviations in polytropic efficiency for all other methods.
The validity of using this standard is confirmed below. Equation (A12) documents the
relative deviation calculation.

Relative Deviation, % = 100×
∣∣ηTE-CP 10 Segment − ηp

∣∣
ηTE-CP 10 Segment

(A12)

Industry standardized compressor data sheets document operating conditions and
performance characteristics with polytropic efficiency shown as a percentage, typically
with two decimal places of accuracy, such as 68.25%. One criterion applied in the example
cases below is that the deviation should be known to be less than 0.001% of an acceptable
standard. Since all polytropic efficiency calculation methods are approximations, a standard
determines the magnitude of the difference between two calculations.
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As mentioned in the paper (see also Appendix D), polytropic performance results
can be impacted by the choice of an equation of state (EOS). The REFPROP (version 10)
software package [28] produced by the National Institute of Science and Technology (NIST)
was employed for calculations in this appendix. REFPROP provides reference quality,
multi parameter, real gas equations of state for thermodynamic and transport properties of
individual fluids. REFPROP applies optimized binary interaction parameters via mixing
rules to determine mixture properties.

When using the REFPROP software package, all example case inlet and discharge state
point phases are single phase and either superheated or supercritical. For some example
cases, the close proximity of inlet conditions to a fluid’s critical point yielded two phase
or liquid phases for some other equations of state used in Appendix D. The polytropic
performance methods discussed in this paper are neither designed nor recommended for
two phase flows. The impact of equation of state choices will be reviewed in Appendix D.

Table A1. Example case input data.

Case Number 1 2 3 4 5 6 7 8 9 10 11

Case Name

Sc
hu

lt
z

R
12

LP
Et

hy
le

ne

H
P

Et
hy

le
ne

SC
Et

ha
ne

PT
C

10
C

O
2

LP
C

O
2

M
P

C
O

2

H
P

C
O

2

LP
Pr

op
an

e

H
P

Pr
op

an
e

SC
Pr

op
an

e

C
om

po
si

ti
on

,m
ol

%

Ethane 1.0000

Propane 1.0000 1.0000 1.0000

Carbon
Dioxide 1.0000 1.0000 1.0000 1.0000

Ethylene 1.0000 1.0000

R12 1.0000

C
om

pr
es

si
on

C
on

di
ti

on
s

p1 , psia 10 360 362.5 750 300.01 400 500 1100.1 17.99 300 650

p1 , bara 0.689 24.821 24.993 51.710 20.685 27.579 34.474 75.849 1.240 20.684 44.816

T1 , ◦F −10 50 98.3 110 100 100 75 98.3 −31.36 200 210

T1 , ◦C −23.33 10 36.833 43.333 37.778 37.778 23.88 36.833 −35.2 93.333 98.889

p2 , psia 130 1000 7250 3500 487.76 1200 3000 6000.3 60 1000 3500

p2 , bara 8.963 68.948 499.870 241.316 33.630 82.737 206.843 413.706 4.137 68.948 241.316

T2 , ◦F 210 195 566.3 285 201.59 325 400 368.3 60 330 300

T2 , ◦C 98.889 90.556 296.833 140.556 94.217 162.778 204.444 186.833 15.556 165.556 148.889

Case Number 12 13 14 15 16 17 18 19

Case Name

LP
C

H
4/

C
3H

8/
C

O
2

M
P

C
H

4/
C

3H
8/

C
O

2

H
P

C
H

4/
C

3H
8/

C
O

2

LP
C

H
4/

C
O

2

H
P

C
H

4/
C

O
2

LP
H

ea
vy

N
G

H
P

H
ea

vy
N

G

PT
C

10
H

PN
G

C
om

po
si

ti
on

,m
ol

%

Methane 0.30294 0.30294 0.30294 0.256274 0.256274 0.688671 0.688671 0.8600

Ethane 0.03748 0.03748 0.03748 0.022871 0.022871 0.119957 0.119957 0.1125

Propane 0.43533 0.43533 0.43533 0.005691 0.005691 0.102964 0.102964 0.0075

isoButane 0.00222 0.00222 0.00222 0.000001 0.000001 0.031432 0.031432

Butane 0.00218 0.00218 0.00218 0.000001 0.000001 0.027541 0.027541

isoPentane 0.000001 0.000001 0.008927 0.008927

Pentane 0.000001 0.000001 0.005563 0.005563

Hexane 0.000175 0.000175

Nitrogen 0.00399 0.00399 0.00399 0.002629 0.002629 0.002477 0.002477 0.0040

Carbon
Dioxide 0.21586 0.21586 0.21586 0.712356 0.712356 0.012468 0.012468 0.0160

C
om

pr
es

si
on

C
on

di
ti

on
s

p1 , psia 650 2071 2071 500 1649.7 500 1750 2520.6

p1 , bara 44.816 142.790 142.790 34.474 113.743 34.474 120.658 173.789

T1 , ◦F 115 160 160 50 101.2 100 50 100

T1 , ◦C 46.111 71.111 71.111 10 38.444 37.778 10 37.778

p2 , psia 2200 10,025.70 11,010.80 1700 8189.70 1800 4375 6500

p2 , bara 151.685 691.248 759.168 117.211 564.660 124.106 301.646 448.159

T2 , ◦F 270 291.9 301.5 250 316.2 295 125 280
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Appendix B.1. Endpoint Methods

Schultz [6] described several alternative versions of his methodology in his original
ASME paper all of which applied a path equation of pvn = c. The variations involved
calculating his “polytropic head factor”, f , in various ways as well as multiple methods of
averaging his “polytropic volume exponent”, n. For the comparisons below, the following
two variations of Schultz’s method are included for examination since they were included
in the 1997 version of ASME PTC10 [4].

• Schulzn—with n based upon the endpoints of compression

# n = ln(p2/p1)
ln(v2/v1)

• Schultz XY average n—with n averaged based upon individual calculations at inlet
and discharge

# n = n1+n2
2

Mallen and Saville [9] employed a path equation of Tds
dT = c. Path equations are

described above in this paper for the liner and cubic polynomial methods.
Figure A1a–e illustrate polytropic efficiency relative deviation results for endpoint

methods for the 19 example cases. The Taher–Evans endpoint method provides superior
results compared to the other endpoint methods for all example cases. Example cases
PTC10 CO2, LP CO2, LP propane and LP CH4/C3H8/CO2 are considered easy cases
since the Taher–Evans Cubic Polynomial endpoint method achieves deviations from the
10-segment method of less than 0.001%. Thus, using multi-segment analyses would not
be required for these cases. The two Schultz based methods show significant errors for
some example cases and do not exhibit a consistent pattern. Figure A1f directly compares
two related cases in that the PTC10 CO2 case represents a Type 2 test designed for the
HPNG example case. The PTC10 CO2 case is a low-pressure case and deviations are seen
to be smaller than for the HPNG case as expected. However, the Taher–Evans endpoint
method provides better accuracy for the PTC 10 HPNG case. The HPNG case requires
more segments to achieve less than a 0.001% deviation level.

Notable comparisons for endpoint methods:

• Figure A1a

# HP ethylene; Mallen and Saville [9] highlighted their improvements over
Schultz’s method for high pressure, but still have an approximate 1% deviation;

# LP and HP ethylene; typical and expected patterns for cubic and lin-
ear polynomials.

• Figure A1b,c

# CO2 and propane; as pressure increases accuracy decreases is a typical pattern

• Figure A1d

# CH4/C3H8/CO2; medium and high pressure cases are very similar since
discharge conditions are close

• Figure A1f

# PTC10; the HPNG case will require more cubic segments to achieve sufficient
accuracy than the Type 2 test design using CO2
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Figure A1. (a–f) Summary comparison of relative deviation results for endpoint methods.

Table A2 lists the T-s path inlet and discharge slope and curve category for the 19
example cases. Five cases show that an inflection point in curvature exists along the path.
For these five cases, endpoint analyses do not provide sufficient polytropic efficiency
accuracy and multi-segment analyses are recommended. Changes in path slope and
curvature can be used as criteria for determining how many cubic segments are needed to
provide sufficient accuracy (See Section 4, Figure 10 and Appendix C).
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Table A2. Taher–Evans Cubic Polynomial endpoint method T-s path slope and curvature.

Case Number Case 1 Case 2 Case 3 Case 4 Case 5

T-s Slope at Inlet, E1, lbm.R2/BTU 14,168 10,442 9383 14,537 7026
T-s Slope at Discharge, E2, lbm.R2/BTU 19,822 12,253 8302 7946 7881
T-s Slope Change, % 39.90 17.34 −11.52 −45.34 12.17
T-s Curve Shape Category I I III II I
Entropy at Inflection Point, BTU/lbm.R - - 0.65070 - -
Temperature at Inflection Point, ◦F - - 304.71 - -

Case Number Case 6 Case 7 Case 8 Case 9 Case 10

T-s Slope at Inlet, E1, lbm.R2/BTU 8551 15,181 10,553 7178 10,330
T-s Slope at Discharge, E2, lbm.R2/BTU 10,744 19,708 8887 8151 15,523
T-s Slope Change, % 25.66 29.82 −15.79 13.57 50.28
T-s Curve Shape Category I I II I I
Entropy at Inflection Point, BTU/lbm.R - - - - -
Temperature at Inflection Point, ◦F - - - - -

Case Number Case 11 Case 12 Case 13 Case 14 Case 15

T-s Slope at Inlet, E1, lbm.R2/BTU 14,053 10,664 11,513 11,509 13,135
T-s Slope at Discharge, E2, lbm.R2/BTU 3773 9986 5526 5352 16,183
T-s Slope Change, % −73.15 −6.36 −52.01 −53.50 23.20
T-s Curve Shape Category III III III III I
Entropy at Inflection Point, BTU/lbm.R 0.48820 0.64410 0.55540 0.55670 -
Temperature at Inflection Point, ◦F 288.95 176.68 286.75 294.07 -

Case Number Case 16 Case 17 Case 18 Case 19

T-s Slope at Inlet, E1, lbm.R2/BTU 18,783 5147 4601 2786
T-s Slope at Discharge, E2, lbm.R2/BTU 12,049 5762 3362 2632
T-s Slope Change, % −35.85 11.94 −26.94 −5.53
T-s Curve Shape Category II I II II
Entropy at Inflection Point, BTU/lbm.R - - - -
Temperature at Inflection Point, ◦F - - - -

Appendix B.2. Three Point Methods

Figure A2a–e provide a summary of the polytropic efficiency deviation results compar-
ing the Taher–Evans Cubic Polynomial 2 segment method with Huntington’s three-point
method [13]. The two-segment cubic polynomial method shows sufficient accuracy for 13
of 19 example cases while Huntington’s three-point method shows sufficient accuracy for
only 7 of 19 example cases based upon the 0.001% requirement. In all example cases, the
cubic polynomial method is more accurate than Huntington’s method. Figure A2f com-
pares PTC10 CO2 and HPNG cases. Both cubic and the Huntington’s three-point method
are sufficient for the low-pressure test case but only the cubic polynomial is sufficient for
the HPNG case.

Appendix B.3. Multi-Step and Multi-Segment Methods

Table A3 lists the polytropic efficiency calculated for Taher–Evans Cubic Polynomial 2
through 10 multi-segment methods, and linear polynomial 10, 20, 50, 90 and 100 multi-step
methods. The general trend is that using more segments or steps yields higher accuracy. In
many example cases, as more segments or steps are applied, the efficiency only changes
beyond the fourth decimal place as highlighted in the table by the outlined values. The
results are shown to have “stabilized” to four decimal places for additional segments or
steps. In all example cases, the highest accuracy shown agrees between cubic and linear
methods, but the linear method requires many more steps before “stabilizing”. The general
trend of higher-pressure cases requiring more segments or steps to stabilize is confirmed.

For the supercritical ethane example case, the cubic method demonstrates a polytropic
efficiency of 79.9519% for three segments and remains at that value for the four decimal
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places shown as the number of segments is increased. The linear method needs between 50
and 90 steps to reach the same accuracy for efficiency. In other words, the linear method
approaches an asymptote much more slowly than the cubic method at the cost of increased
computing resources and elapsed time to reach a solution. This illustrates the usefulness
of the cubic method in being able to take advantage of matching the slope of the T-s path
between sequential segments. Both the cubic and linear methods are approximants that
can reach essentially the same level of approximation, but the cubic method employs more
thermodynamic constraints to achieve the resulting polytropic efficiency much quicker.

It is not necessary to reach a “stabilized” polytropic efficiency to satisfy the maximum
allowable deviation requirement of 0.001% as compared to the Taher–Evans Cubic Polyno-
mial 10 segment results. Deviations are less than 0.001% for 13 of 19 example cases using
2 cubic segments while only 4 of 19 are less than 0.001% for 10 linear steps.
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Table A3. Summary comparison of polytropic efficiency results for linear multi-step and cubic polynomial multi-
segment methods.

Case Number Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Cubic Polynomial 2 Segment 75.0442 81.9199 80.6174 79.9531 59.4118 65.2211 78.4933
Cubic Polynomial 3 Segment 75.0437 81.9200 80.6148 79.9521 59.4118 65.2211 78.4938
Cubic Polynomial 4 Segment 75.0436 81.9200 80.6146 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 5 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 6 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 7 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 8 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 9 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Cubic Polynomial 10 Segment 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939

Linear Polynomial 10 step 75.0408 81.9194 80.6153 79.9544 59.4111 65.2189 78.4916
Linear Polynomial 20 step 75.0428 81.9198 80.6147 79.9525 59.4116 65.2205 78.4933
Linear Polynomial 50 step 75.0434 81.9200 80.6145 79.9520 59.4118 65.2210 78.4938
Linear Polynomial 90 step 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939
Linear Polynomial 100 step 75.0435 81.9200 80.6145 79.9519 59.4118 65.2211 78.4939

Case Number Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14
Cubic Polynomial 2 Segment 64.3513 81.0248 79.4381 67.7882 76.7610 82.0678 82.0695
Cubic Polynomial 3 Segment 64.3497 81.0247 79.4386 67.7984 76.7610 82.0692 82.0712
Cubic Polynomial 4 Segment 64.3493 81.0247 79.4387 67.8002 76.7610 82.0694 82.0714
Cubic Polynomial 5 Segment 64.3492 81.0247 79.4387 67.8007 76.7610 82.0695 82.0715
Cubic Polynomial 6 Segment 64.3491 81.0247 79.4387 67.8009 76.7610 82.0695 82.0715
Cubic Polynomial 7 Segment 64.3491 81.0247 79.4387 67.8010 76.7610 82.0695 82.0716
Cubic Polynomial 8 Segment 64.3491 81.0247 79.4387 67.8010 76.7610 82.0695 82.0716
Cubic Polynomial 9 Segment 64.3491 81.0247 79.4387 67.8011 76.7610 82.0695 82.0716
Cubic Polynomial 10 Segment 64.3491 81.0247 79.4387 67.8011 76.7610 82.0695 82.0716

Linear Polynomial 10 step 64.3512 81.0243 79.4375 67.8050 76.7612 82.0715 82.0738
Linear Polynomial 20 step 64.3496 81.0246 79.4384 67.8021 76.7610 82.0700 82.0721
Linear Polynomial 50 step 64.3491 81.0247 79.4387 67.8013 76.7610 82.0696 82.0717
Linear Polynomial 90 step 64.3491 81.0247 79.4387 67.8012 76.7610 82.0695 82.0716
Linear Polynomial 100 step 64.3491 81.0247 79.4387 67.8011 76.7610 82.0695 82.0716

Case Number Case 15 Case 16 Case 17 Case 18 Case 19
Cubic Polynomial 2 Segment 80.3316 82.1055 72.1215 71.3151 59.2985
Cubic Polynomial 3 Segment 80.3317 82.1052 72.1216 71.3153 59.2984
Cubic Polynomial 4 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 5 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 6 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 7 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 8 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 9 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Cubic Polynomial 10 Segment 80.3317 82.1052 72.1217 71.3154 59.2984
Linear Polynomial 10 step 80.3306 82.1073 72.1209 71.3164 59.2990
Linear Polynomial 20 step 80.3315 82.1057 72.1215 71.3156 59.2986
Linear Polynomial 50 step 80.3317 82.1053 72.1216 71.3154 59.2984
Linear Polynomial 90 step 80.3317 82.1052 72.1217 71.3154 59.2984
Linear Polynomial 100 step 80.3317 82.1052 72.1217 71.3154 59.2984

Figure A3a illustrates polytropic efficiency relative deviation results for all cubic multi-
segment methods and linear multi-step methods for the supercritical propane example
case. The more difficult an example case is, the more segments or steps it takes to achieve
a relative deviation of 0.001% or less. This most difficult case achieves this target with
5 segments for the cubic polynomial method while it would take 44 steps for the linear
polynomial method to reach the same deviation value as the 5 cubic segment method. The
cubic polynomial method does not suffer from the requirement of a small step size for each
segment as does the linear polynomial method.

Figure A3b shows the elapsed calculation times for 5 cubic segments and 44 linear
steps are approximately 3.5 s and 55.8 s, respectively. Thus, the linear method takes 16 times
longer to reach the same level of accuracy for this very difficult example case. For the six
example cases that required more than 2 cubic segments to reach a deviation less of than
0.001%, the elapsed time ratio varied from 5 to 16 times longer for the linear method.
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The elapsed time to reach a solution is dependent upon the algorithm employed to
resolve the inner and outer nested, recursive loops for discharge temperature and efficiency.
The algorithm used for both cubic and linear method results in this appendix is identical.
Thus, while another algorithm might reach solutions faster or slower, the ratio between
cubic and linear method elapsed times should remain approximately the same for a given
example case.
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Figure A4a–e illustrate polytropic efficiency relative deviation results for all cubic
multi-segment methods and linear multi-step methods for the 19 example cases. The
10 cubic segment results are used as the standard for comparison. For each case, fewer
cubic segments are needed than linear steps to achieve the 0.001% required accuracy.
Figure A4f directly compares the HPNG case and the PTC10 CO2 Type 2 performance
test designed to prove the compressor should meet the design requirements within the
tolerances allowed by the ASME PTC10 code [4].
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Appendix B.4. High Pressure Ethylene Example

This example was first created by Mallen and Saville [9] to demonstrate differences
between their polytropic work calculation method and Schultz’s method [6] at higher
pressures. Since then, it has been used by many authors as a strong test of other methods
due to its large pressure and temperature ranges. The high compression ratio and extreme
discharge temperature for this case illustrate it would likely not be feasible to build a single
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section compressor to accomplish this application. However, its use as an example to test
calculation methods has been documented.

Ethylene has been described as an unruly fluid by Brown, [29]. Evans and Huble, [22],
postulated Brown’s comment could be due to the proximity of ethylene’s critical tem-
perature to usual inlet temperature ranges for common applications causing rapid, large
changes in specific heat, cp, and especially density with small inlet temperature changes. In
the vicinity of the critical point, large changes in inlet density can occur due to small changes
in inlet temperature causing a centrifugal compressor’s operating point to move from one
side of its performance map to the other without any process operator control changes.

The Taher–Evans Cubic Polynomial method provides the ability to calculate and
graphically display the T-s values at any point along the constant polytropic efficiency
path between inlet and discharge. The HP ethylene example case serves to demon-
strate the method’s usefulness to visualize the path, its curvature and an inflection point.
Figure A5a shows paths for 1 and 10 segment cubic polynomial methods and 1 and 100 step
linear polynomial methods. The 100-step linear method’s orange markers are seen to lie on
top of the solid blue 10-segment cubic path. The one segment cubic dotted blue line shows
an inflection point near the center of the graph. The 10-segment cubic polynomial path
begins with an upward concavity that transitions to downward at the inflection point. The
100 step linear markers follow this pattern illustrating the accuracy of the cubic polynomial
method’s path.

Figure A5b shows an expanded view of the area outlined by a black box in Figure A5a.
The inflection point of the 10-segment cubic polynomial path is shown to occur at a slightly
higher temperature for the more refined calculation. The 10-segment cubic polynomial
begins with 5 upward concave segments, and ends with 4 downward concave segments.
The 6th segment is “s” shaped since it starts out concave upward and shifts at the inflection
point to concave downward. The curvature of the cubic segments is determined by values
of the derivatives of the T-s path equation. The point where the blue 10-segment curve
crosses the orange dotted linear endpoint line is not an inflection point, but rather just a
crossing of the upward concave segments of the 10-segment cubic method path.
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Appendix B.5. Supercritical Propane Example

The results shown in Table A4 illustrated that the supercritical propane example
case is the most difficult. The following discussion uses this case to shed light upon
reasons performance calculations are more difficult for certain applications. Figure A6a,b
are pressure-temperature and pressure-enthalpy diagrams for this example. Figure A6a
shows inlet conditions are very near the critical point such that the reduced pressure
and reduced temperature are very near 1.0. While these inlet conditions might not be
recommended in normal compression industry practice, the example serves as an “acid test”
for polytropic calculation methods. Figure A6b shows isotherms in the dense phase region
are nearly horizontal at inlet but are nearly vertical at discharge. For the cubic polynomial
compression curve shown in the figure, near the inlet, pressure changes are more rapid
than enthalpy changes while the opposite is true near discharge conditions giving the path
its shape. Near discharge, one value of enthalpy could be associated with two values of
pressure at the same temperature making an EOS root finding algorithm more difficult
to converge.

Figures 8 and 9 in the main body of the paper illustrate the rapid variation of thermo-
dynamic properties cp and X in the vicinity of the critical point for this application. This
causes large differences of path slope between the inlet and discharge (E1 and E2).
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Figure A7 illustrates the T-s path determined by four methods for the supercritical
propane example case. The cubic and linear polynomial endpoint methods are shown with
dotted lines. The 10 segment Taher–Evans Cubic Polynomial method is shown with a solid
blue line. The 100-step linear method is shown with markers which lay on top of the cubic
polynomial line. The endpoint methods clearly do not provide a sufficiently accurate path
for this example case. The 10-segment cubic polynomial and the 100-step linear polynomial
agree on the path.
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The supercritical propane example case serves to illustrate the accuracy of the 10 seg-
ment Taher–Evans Cubic Polynomial method even when inlet conditions are near the
critical point of a fluid.

Appendix C. Overview of 115 Example Case Results

Evans [3] provided a broad set of 115 example cases that compares endpoint and
multi-step linear polynomial solutions to endpoint and multi-segment cubic polynomial
solutions. This set covers 22 fluids (7 pure fluids and 15 mixtures) with a wide range of
mole weight and critical point properties. The 19 example cases discussed in Appendix B
above were included in the 115 example cases. Seventeen polytropic efficiency calculation
methods were included which yielded a total of 1955 independent calculations. This effort
is sufficient to document the validity of the results for the polytropic performance methods
employed and gives a robust comparison basis for the conclusions and recommendations
included in this paper.

One consistent result for all 115 example cases matches the trend shown in Figure A7
above in that the 10 segment cubic polynomial temperature-entropy based polytropic path
and the 100 step linear polynomial path are matched. If fact, these two methods agreed to
four decimal places for polytropic efficiency. The figures and tables below summarize the
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superior results provided by the cubic polynomial methods for all of the 115 example cases
due to much more rapid solutions requiring fewer computing resources.

Figure A8 illustrates that the cubic multi-segment and linear multi-step methods
both approach an asymptote as the number of segments and steps increase. The cubic
polynomial methods approach the asymptote much more rapidly yielding an acceptable
solution in less than 10 segments while the linear polynomial methods would require more
than 50 steps to provide an equivalent solution. The cubic and linear methods approach
the asymptote from opposite directions for this methane, propane, and carbon dioxide
mixture example case.

Int. J. Turbomach. Propuls. Power 2021, 6, x FOR PEER REVIEW 40 of 45 
 

 

superior results provided by the cubic polynomial methods for all of the 115 example cases 
due to much more rapid solutions requiring fewer computing resources. 

Figure A8 illustrates that the cubic multi-segment and linear multi-step methods both 
approach an asymptote as the number of segments and steps increase. The cubic polynomial 
methods approach the asymptote much more rapidly yielding an acceptable solution in less 
than 10 segments while the linear polynomial methods would require more than 50 steps to 
provide an equivalent solution. The cubic and linear methods approach the asymptote from 
opposite directions for this methane, propane, and carbon dioxide mixture example case. 

 
Figure A8. Asymptotic approach to a solution. 

For the 115 example cases, 114 reached an acceptable relative deviation of ≤0.001% in 
three or less cubic polynomial segments as documented in Table A3. Only one example case 
required 5 cubic segments due to inlet conditions being extremely close to the critical point, 
which is unlikely to occur in reality. Based upon an analysis of these results, the recom-
mended number of segments required for a particular application can be related to the path 
categories defined in Figure 10 above. 
• Category I: 3 cubic polynomial segments required; 
• Category II: 5 cubic polynomial segments required; 
• Category III: 5 cubic polynomial segments required. 

Table A3. Cubic polynomial solution segments required versus polytropic path curve category for 
115 example cases. 

T-s Path Category 
Number of Cubic Polynomial Segments Required 

Totals 
1 Segment 2 Segments 3 Segments 4 Segments 5 Segments 

I 28 16    44 
II 10 28 8  1 47 
III 4 13 7   24 

Totals 42 57 15 0 1 115 

Figure A8. Asymptotic approach to a solution.

For the 115 example cases, 114 reached an acceptable relative deviation of ≤0.001% in
three or less cubic polynomial segments as documented in Table A4. Only one example
case required 5 cubic segments due to inlet conditions being extremely close to the critical
point, which is unlikely to occur in reality. Based upon an analysis of these results, the
recommended number of segments required for a particular application can be related to
the path categories defined in Figure 10 above.

• Category I: 3 cubic polynomial segments required;
• Category II: 5 cubic polynomial segments required;
• Category III: 5 cubic polynomial segments required.

Recall that Figure 11 shows that determining a similar set of recommendations for
the number of linear polynomial steps required was not possible. The wide scatter of the
linear methods results that would yield similar accuracy results to the cubic methods was
very random.
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Table A4. Cubic polynomial solution segments required versus polytropic path curve category for
115 example cases.

T-s Path
Category

Number of Cubic Polynomial Segments Required
Totals

1 Segment 2 Segments 3 Segments 4 Segments 5 Segments

I 28 16 44
II 10 28 8 1 47
III 4 13 7 24

Totals 42 57 15 0 1 115

Figure A9 shows dissimilar patterns for average elapsed calculation time between
cubic segments and linear steps. The cubic polynomial solutions average time per seg-
ment decreases with an increasing number of segments. However, the linear polynomial
solutions pattern shows an increasing time per step as the number of steps increases. The
averages are over all 115 example cases.
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Figures A8 and A9 combined show that the Taher–Evans Cubic Polynomial polytropic
path methods are superior. While both cubic and linear polynomial methods can reach
acceptable results, the cubic methods require fewer repetitive iterations and are completed
much faster. This is a clear advantage when processing test data in real time.

Figure A10 compares polytropic efficiency calculation uncertainty for cubic and lin-
ear polynomial methods. Both exhibit decreasing uncertainty with an increase in cubic
segments or linear steps. However, the cubic polynomial methods uncertainty rapidly
decreases as the number of segments increases while the linear polynomial methods illus-
trate a much more gradual decrease as they approach an asymptote. The linear methods
uncertainty asymptote appears to be more than an order of magnitude greater than the
uncertainty of the 9-segment cubic method. A comparison of uncertainty between 115 and
19 example case statistical populations revealed that uncertainty decreased with a larger
population for both cubic and linear polynomial methods. However, cubic methods had
lower uncertainty than linear methods for both population sizes.
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Appendix D. Equation of State Impact on Polytropic Efficiency

When a compression application is first designed by a user, it typically involves a
process simulator that has many equations of state available. One is selected from those
available within a specific simulator software package based upon the overall project Type.
When various vendors receive an inquiry for a compressor containing the necessary inlet
and discharge state point operating conditions and other pertinent details, each vendor
may select a different equation of state for their detailed compressor design according to
individual experience. Using different equations of state can yield variations in predicted
performance. The same holds true for analyzing compressor test data to verify conformance
to testing codes and/or contractual guarantees.

A user is encouraged to require the use of a consistent equation of state throughout a
project by all parties involved from inception to final testing and operation to minimize
or avoid EOS related discrepancies. It should be pointed out that variations exist in the
implementation of similarly named equations of state across various software platforms.
Should these variations cause issues, they should be investigated and documented.

All polytropic efficiency calculation results shown in this Appendix D were performed
with the Taher–Evans Cubic Polynomial endpoint method. These results are influenced by
thermodynamic state point parameters calculated by the various equations of state. From
the main text of this paper, the required equations are (15), (16) and (32).

For given inputs of fluid composition, total pressure and total temperature at inlet
and discharge the parameters required to be calculated by an EOS to determine polytropic
efficiency are:

• Enthalpy, h;
• Entropy, s;
• Specific heat at constant pressure, Cp;
• Compressibility function, X.

Even though various EOS may use different reference states for enthalpy and entropy,
it is the change in these parameters that are used in Equation (32), therefore differences in
individual reference states for different EOS is not an issue for the purpose of this study.
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The equations of state investigated are:

• PR, Peng–Robinson [30];
• LKP, Lee, Kesler, Plöcker [31,32];
• PR-LK, Peng–Robinson with Lee–Kesler Enthalpy;
• BWRS, Benedict–Webb–Rubin–Starling [33–35]
• REFPROP, NIST reference fluid thermodynamic and transport properties data-

base [28,36,37]

# Employs individual, reference quality EOS for each pure fluid;
# Applies mixing rules to the Helmholtz energy of the mixture components;
# REFPROP is a program, not a database of measurements.

Results for the first four EOS above were derived from Aspen HYSYS V.10 [27] while
the REFPROP results were calculated via a spreadsheet with the EOS embedded.

Figure A11 illustrates variations in polytropic efficiency for seven example cases from
Appendix B using the five equations of state listed above. These EOS induced polytropic
efficiency variations can exceed variation due to measurement uncertainty values in some
cases. The supercritical propane example case results are misleading in that only REFPROP
considered the inlet conditions to be superheated (see Figure A6a). The EOS used within
the process simulator considered the fluid to be either two phase or liquid. This serves to
illustrate the care that must be exercised in selecting an EOS when inlet conditions are near
the critical point of a fluid.

Other than the supercritical propane example case, the largest polytropic efficiency
variation of 12.75% is seen for the MP CH4/C3H8/CO2 example case. The figure clearly
demonstrates the need to use a consistent approach to selection of an equation of state for
compression calculations.
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To explore the efficiency variations shown in Figure A11, the EOS supplied parameters
that are used by the Taher–Evans Cubic Polynomial method are compared.

References
1. Taher, M. Mathematical Modeling of the Polytropic Process Using the Sequential Cubic Polynomial Approximation. In Proceed-

ings of the ASME GT2021, ASME Turbo Expo 2021, Virtual, Online, 7–11 June 2021. Paper Number GT2021-59715.
2. Taher, M.; Evans, B.F. Centrifugal Compressor Polytropic Performance Evaluation Using Cubic Polynomial Approximation for

the Temperature-Entropy Polytropic Path. In Proceedings of the ASME GT2021, ASME Turbo Expo 2021, Virtual, Online, 7–11
June 2021. Paper Number GT2021-59678.

3. Evans, B.F. Centrifugal Compressor Polytropic Efficiency—Cubic and Linear Polynomial Solution Methods Comparing 115 Example Case
Calculations; Technology Report; ResearchGate: Berlin, Germany, 2020. [CrossRef]

4. ASME PTC 10. Performance Test Code on Compressors and Exhausters; American Society of Mechanical Engineers: New York, NY,
USA, 1997.

5. Zeuner, G.A. Fundamental Laws of Thermodynamics Theory of Gases. In Technical Thermodynamics; D. Van Nostrand Company:
New York, NY, USA, 1906; Volume 1.

6. Schultz, J.M. The Polytropic Analysis of Centrifugal Compressors. ASME J. Eng. Power 1962, 84, 69–82. [CrossRef]
7. ASME PTC 10. Compressors and Exhausters Power Test Code 10; American Society of Mechanical Engineers: New York, NY,

USA, 1965.
8. ASME PTC 10. Compressors and Exhausters Power Test Code 10; reaffirmed of the 1965 edition; American Society of Mechanical

Engineers: New York, NY, USA, 1992.
9. Mallen, M.; Saville, G. Polytropic Processes in the Performance Prediction of Centrifugal Compressors; Institution of Mechanical

Engineers Conference Publications C183/77; Institution of Mechanical Engineers: London, UK, 1977; pp. 89–96.
10. Kent, R.G. Application of Basic Thermodynamics to Compressor Cycle Analysis. In Proceedings of the International Compressor

Engineering Conference, West Lafayette, IN, USA, 10–12 July 1974. Paper 135.
11. Nathoo, N.S.; Gottenberg, W.G. Measuring the Thermodynamic Performance of Multistage Compressors Operating on Mixed

Hydrocarbon Gases. In Proceedings of the Tenth Turbomachinery Symposium; Turbomachinery Laboratory, Texas A&M University:
College Station, TX, USA, 1981; pp. 15–23.

12. Nathoo, N.S.; Gottenberg, W.G. A New Look at Performance Analysis of Centrifugal Compressors Operating with Mixed
Hydrocarbon Gases. ASME J. Eng. Power 1983, 105, 920–926. [CrossRef]

13. Huntington, R.A. Evaluation of Polytropic Calculation Methods for Turbomachinery Performance. ASME Trans. J. Eng. Gas
Turbines Power 1985, 107, 872–879. [CrossRef]

14. Huntington, R. Limitations of the Schultz Calculation for Polytropic Head—A Proposal for Revision of PTC-10; Technology Report;
ResearchGate: Berlin, Germany, 1997. [CrossRef]

15. Hundseid, O.; Bakken, L.E.; Helde, T. A Revised Compressor Polytropic Performance Analysis. In Proceedings of the ASME
GT2006, ASME Turbo Expo 2006, Barcelona, Spain, 8–11 May 2006. Paper Number 91033.

16. Oldrich, J. Advanced Polytropic Calculation Method of Centrifugal Compressor. In Proceedings of the ASME IMECE2010, the
ASME International Mechanical Engineering Congress and Exposition 2010, Vancouver, BC, Canada, 12–18 November 2010.
Paper Number 40931.

17. Sandberg, M.R.; Colby, G.M. Limitations of ASME PTC 10 in Accurately Evaluating Centrifugal Compressor Thermodynamic
Performance. In Proceedings of the 42nd Turbomachinery Symposium, Houston, TX, USA, 1–3 October 2013; Turbomachinery
Laboratory, Texas A&M University: College Station, TX, USA, 2013.

18. Taher, M. ASME PTC-10 Performance Testing of Centrifugal Compressors—The Real Gas Calculation Method. In Proceedings of
the ASME GT2014, ASME Turbo Expo 2014, Düsseldorf, Germany, 16–20 June 2014. Paper Number GT2014-26411.

19. Wettstein, H.E. Polytropic Change of State Calculations. In Proceedings of the ASME IMECE2014, the ASME International
Mechanical Engineering Congress and Exposition 2014, Montreal, QC, Canada, 14–20 November 2014. Paper Number 36202.

20. Plano, M. Evaluation of Thermodynamic Models used for Wet Gas Compressor Design. Master’s Thesis, Innovative Sustainable
Energy Engineering, Norwegian University of Science and Technology, Trondheim, Norway, June 2014.

21. Evans, B.F.; Huble, S.R. Centrifugal Compressor Polytropic Performance: Consistently Accurate Results from Improved Real
Gas Calculations. In Proceedings of the ASME GT2017, ASME Turbo Expo 2017, Charlotte, NC, USA, 26–30 June 2017. Paper
Number GT2017-65235.

22. Evans, B.F.; Huble, S.R. Tutorial, ‘Centrifugal Compressor Performance: Making Enlightened Analysis Decisions. In Proceedings
of the 46th Turbomachinery Symposium, Houston, TX, USA, 11–14 December 2017; Turbomachinery Laboratory, Texas A&M
University: College Station, TX, USA, 2017.

23. Sandberg, M.R. A More Detailed Explanation of the Sandberg-Colby Method for the Evaluation of Centrifugal Compressor Thermodynamic
Performance; ResearchGate: Berlin, Germany, 2020. [CrossRef]

24. Box, G.E.; Draper, N.R. Empirical Model-Building and Response Surfaces; Wiley: Hoboken, NJ, USA, 1987.
25. IEEE/ASTM SI 10-2016—American National Standard for Metric Practice; Institute of Electrical and Electronics Engineers:

Washington, DC, USA, 2016.

http://doi.org/10.13140/RG.2.2.21404.72321/1
http://doi.org/10.1115/1.3673381
http://doi.org/10.1115/1.3227501
http://doi.org/10.1115/1.3239827
http://doi.org/10.13140/RG.2.1.2088.4087
http://doi.org/10.13140/RG.2.2.15841.66401


Int. J. Turbomach. Propuls. Power 2021, 6, 15 43 of 43

26. Stepanoff, A.J. Turboblowers: Theory, Design, and Application of Centrifugal and Axial Flow Compressors and Fans; John Wiley and Sons:
New York, NY, USA, 1955.

27. HYSYS; Aspentech: Bedford, MA, USA, 2020.
28. Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and

Transport Properties-REFPROP, Version 10.0; Standard Reference Data Program; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2018.

29. Brown, R.N. Compressors Selection and Sizing, 2nd ed.; Butterworth-Heinemann: Woburn, MA, USA, 1997.
30. Peng, D.Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [CrossRef]
31. Lee, B.I.; Kesler, M.G. A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AIChE J.

1975, 21, 510–527. [CrossRef]
32. Plöcker, U.; Knapp, H.; Prausnitz, J. Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding States Correlation

with Emphasis on Asymmetric Mixtures. Ind. Chem. Process Des. Dev. 1978, 17, 324–332. [CrossRef]
33. Benedict, M.; Webb, G.B.; Rubin, L.C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their

Mixtures. J. Chem. Phys. 1940, 8, 334–345. [CrossRef]
34. Benedict, M.; Webb, G.B.; Rubin, L.C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their

Mixtures II. Mixtures of Methane, Ethane, Propane, and n-Butane. J. Chem. Phys. 1942, 10, 757–758. [CrossRef]
35. Starling, K.E. Fluid Thermodynamic Properties for Light Petroleum Systems; Gulf Publishing: Houston, TX, USA, 1973.
36. Span, R. Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data; Springer: New York, NY, USA, 2000.
37. Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature

to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [CrossRef]

http://doi.org/10.1021/i160057a011
http://doi.org/10.1002/aic.690210313
http://doi.org/10.1021/i260067a020
http://doi.org/10.1063/1.1750658
http://doi.org/10.1063/1.1723658
http://doi.org/10.1063/1.555991

	Introduction 
	Polytropic History 
	Polytropic Process 

	Polytropic Path: Polynomial Approximation Methods 
	Temperature-Entropy Polytropic Path Approximation: Linear Polynomial Endpoint Method 
	Temperature-Entropy Polytropic Path Approximation: Cubic Polynomial Endpoint Method 

	Polytropic Efficiency Calculation 
	Polytropic Efficiency Calculation: Linear Polynomial Endpoint Method 
	Polytropic Efficiency Calculation: Taher–Evans Cubic Polynomial Endpoint Method 
	Polytropic Efficiency Calculation: Linear Multistep Method 
	Polytropic Efficiency Calculation: Taher–Evans Cubic Polynomial Multi-Segment Method 
	Polytropic Efficiency Calculation Procedure: Taher–Evans Cubic Polynomial Multi-Segment Method 
	Distinction between Cubic Interpolation and Approximation 


	Polytropic Path on Temperature-Entropy Diagram 
	Enthalpy Change with Entropy along the Polytropic Path 
	Comparison of Cubic and Linear Polynomial Results 
	Conclusions 
	Temperature Change with Entropy along the Polytropic Path 
	Comparative Numeric Examples of Application of the Taher–Evans Cubic Polynomial Methods 
	Endpoint Methods 
	Three Point Methods 
	Multi-Step and Multi-Segment Methods 
	High Pressure Ethylene Example 
	Supercritical Propane Example 

	Overview of 115 Example Case Results 
	Equation of State Impact on Polytropic Efficiency 
	References

