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Abstract: This paper presents an adjoint-based shape optimization framework and its demonstration
in a conjugate heat transfer problem in a turbine blading. The gradient of the objective function is
computed based on the continuous adjoint method, which also includes the adjoint to the turbulence
model. Differences in the gradient resulting from making the frozen turbulence assumption are
discussed. The developed software was used to optimize both the blade shape of the internally
cooled linear C3X turbine blade and the position of cooling channels aiming at (a) minimum total
pressure drop of the hot gas flow and (b) minimum highest temperature within the blade. A two-step
optimization procedure was used. A free-form parameterization tool, based on volumetric NURBS,
controls the blade airfoil contour, while the cooling channels are free to move following changes
in the coordinates of their centers. Geometric and flow constraints are included in the performed
optimizations, keeping the cooling channels away from the airfoil sides and retaining the turbine
inlet capacity and flow turning.

Keywords: internally cooled turbine blades; conjugate heat transfer; shape optimization;
continuous adjoint

1. Introduction

The efficient design of gas turbines with improved performance and longer lifetime,
for use in aerospace and marine propulsion, land power plants, and other industrial ap-
plications, is of great importance. Gains are expected from aerodynamically optimized
compressors, reduced friction in mechanical parts, optimal performance of inlet ducts and
nozzles, and/or higher turbine inlet temperatures. The latter is limited by the thermal
resistance of the first turbine row blades which are currently able to operate at gas tempera-
tures exceeding the limits set by the materials thanks to internal and/or external cooling.
Relevant studies account for the interaction of blades and gas flow in gas turbine compo-
nents. This can be done using conjugate heat transfer (CHT) analysis and optimization.

A CHT analysis involves the strongly or loosely coupled solutions of the governing
equations in the adjacent fluid and solid domains. In a strongly coupled scheme, PDEs in
different domains are solved simultaneously, while in a loosely coupled one, each discipline
is solved separately and communicates with the other(s) by exchanging data along their
interfaces [1]. For the shape optimization of cooled blades, both stochastic and gradient-
based methods have been used. The latter make use of the adjoint method to compute the
gradient of quantities of interest at a cost independent of the number of design parameters.
In [2], the continuous adjoint method to compute the objective function gradient in CHT
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shape optimizations for turbulent incompressible flows is developed in the OpenFOAM
environment. There, the shape optimization of a 2D internally cooled turbine cascade and
a 3D car engine cylinder cooling system are presented.

The internally cooled C3X turbine blade, reported in [3], is a well-known test case
that has widely been used for validation purposes [4,5] and is used in this paper, as well.
The optimization of the cooling system of the C3X blade can be found in [6,7], which both
use evolutionary algorithms, and in [8] using the globally convergent method of moving
asymptotes. In the latter, the objective function derivatives with respect to the design
variables needed by the optimization algorithm are computed based on forward finite
differences.

This paper is an extended version of [9] and deals with the continuous adjoint method
for computing the gradient of the objective and constraint functions with respect to the
design variables; the adjoint to the turbulence model PDE is also formulated and solved.
Compared to the material presented in [9], the development of the continuous adjoint for
CHT problems is presented in detail. The adjoint solver is used within a gradient-based
algorithm to optimize the C3X turbine blade, aiming at minimizing the total pressure drop
and the highest blade temperature, by controlling the blade shape and its cooling holes’
locations. This optimization is performed in two steps, in which constant heat transfer
coefficients are imposed in the cooling holes. The latter are based on 3D CHT analysis runs
instead of using the empirical expression of [3,9].

This paper is organized as follows. The governing equations and the adjoint develop-
ment are presented in Sections 2 and 3, respectively. The in-house CFD software PUMA [10],
running on GPUs, is presented in Section 4 and used for the CHT analysis of the C3X tur-
bine blade in Section 5. The adjoint-based computed sensitivity derivatives are compared
with finite differences in Section 6. Section 7 presents the CHT optimization of the C3X
turbine blade.

2. Governing Equations

In a 3D CHT analysis problem, the flow equations in the fluid domain ΩF are coupled
with the heat conduction one in the solid domain ΩS. In ΩF, the RANS (mean-flow; MF)
equations for compressible fluid flows read

RMF
n =

∂ f inv
nk

∂xk
−

∂ f vis
nk

∂xk
= 0 (1)

where f inv
k = [ρvk ρvkv1+pδ1k ρvkv2+pδ2k ρvkv3+pδ3k ρvkht]

T are the inviscid fluxes

and f vis
k =

[
0 τ1k τ2k τ3k v`τ`k + qF

k
]T the viscous ones. ρ, p and ht stand for the

fluid’s density, pressure, and total enthalpy, respectively. vk are the velocity components
and δkm the Kronecker symbol. τkm = (µ + µt)

(
∂vk
∂xm

+ ∂vm
∂xk
− 2

3δkm
∂v`
∂x`

)
− 2

3δkmρk is the

stress tensor based on the Boussinesq assumption. The heat fluxes are qF
k = κF ∂T

∂xk
,

with κF = Cp

(
µ
Pr +

µt
Prt

)
being the fluid’s conductivity, where µ and µt are the bulk and

turbulent viscosity. Cp is the specific heat under constant pressure, Pr = 0.72 and Prt = 0.90.
The dynamic viscosity depends on the fluid’s temperature TF [11]. Turbulence is mod-
eled either by the one-equation Spalart–Allmaras or the two-equation k−ω SST model.
The transport equations of the Spalart–Allmaras variable (ν̃), the turbulent kinetic energy
(k), and the turbulence frequency (ω) are
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Rν̃ =
∂

∂xk
(ρvk ν̃)− ρ

σ

∂

∂xk

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
+

ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)
−P ν̃ +Dν̃ =0 (2)

Rk =
∂

∂xk
(ρvkk)− ∂

∂xk

[
(µ + σkµt)

∂k
∂xk

]
− P̃k + β?ρωk=0 (3)

Rω =
∂

∂xk
(ρvkω)− ∂

∂xk

[
(µ + σωµt)

∂ω

∂xk

]
− γ

νt
Pk + βρω2 − 2(1−F1)

ρσω2

ω

∂k
∂xk

∂ω

∂xk
=0 (4)

where P ν̃ = ρCb1(1− ft2)S̃ν̃ and Dν̃ = ρ
(

Cw1 fw − Cb1
κ2 ft2

)(
ν̃
d
)2 are the production and

destruction of ν̃, and d stands for the distance from the nearest solid wall boundary. µt can
be computed via

µt = ρν̃ fv1 or µt =
ρα1k

max(α1ω, SF2)
(5)

The constants κ, Cb1, Cb2, and Cw1 along with the expressions of fv1, fw, ft2, and
S̃ are given in [12]. The last two quantities are functions of vorticity ζ =

√
2WkmWkm,

where Wkm = 1
2

(
∂vk
∂xm
− ∂vm

∂xk

)
. Constants β?, α1, σω2, the expression for the production

of k
(

P̃k = min(Pk, 10β?ρωk)
)

, and those of σk, σω, β, γ, F1, and F2 can be found in [13].
In Equation (5), S stands for the strain rate magnitude. The distance field (d), which affects
the production and destruction terms of ν̃ and the solid wall condition for ω, is computed
by solving the Eikonal equation,

RF
d =

∂d
∂xk

∂d
∂xk
− 1 = 0 (6)

The last state equation, which stands for the heat conduction equation over ΩS, reads

RS = −
∂qS

k
∂xk

= 0 (7)

where qS
k = κS ∂TS

∂xk
are heat fluxes and κS is the thermal conductivity of the solid. The flow

and heat conduction solvers communicate across the fluid–solid interface (FSI), where
TF = TS and qF

k nF
k = −qS

k nS
k must be satisfied. nF

k , nS
k are the normal vectors to the FSI

pointing toward ΩF and ΩS, respectively.

3. Continuous Adjoint Formulation

In this work, two objective functions and two flow constraints are considered. The total
pressure drop (F1) and the highest temperature of the blade (F2) are the two objective func-
tions. The inlet capacity (F3) and hot gas exit flow angle (F4) are the two flow constraints.
These quantities are

F1 = p̄I
t − p̄O

t , F2 =

∑
solid

TSeαTS

∑
solid

eαTS , F3 = ṁI

√
T̄ I

t

p̄I
t

, F4 = tan−1

(
v̄O

2

v̄O
1

)
(8)

where the highest blade temperature is approximated by the above differentiable expression
where α takes on a large value. ṁI , p̄I

t , T̄ I
t are the massflow and the mass-averaged total

pressure and total temperature at the hot gas inlet, respectively, and p̄O
t , v̄O

1 , v̄O
2 stand for the

mass-averaged total pressure and velocity components at the hot gas exit. Gradient-based
optimization algorithms require the gradient of both the objective and constraint functions;
thus, in the remainder of this section, the continuous adjoint method for a generic function
F (standing for F1, F2, F3, or F4) is formulated. In continuous adjoint, F is augmented
(Faug) by the field integrals of the product of the state equations’ residuals with the adjoint
variable fields over ΩF and ΩS. For the development of the adjoint method, only the
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Spalart–Allmaras turbulence model is used. Differentiating Faug with respect to the design
variables bi gives

δFaug

δbi
=

δF
δbi

+
∫

ΩF

Ψn
δRMF

n
δbi

dΩ

︸ ︷︷ ︸
IMF

+
∫

ΩF

ν̃a
δRν̃

δbi
dΩ

︸ ︷︷ ︸
ISA

+
∫

ΩF

da
δRd

δbi
dΩ

︸ ︷︷ ︸
ID

+
∫

ΩS

Ta
δRS

δbi
dΩ

︸ ︷︷ ︸
IS

(9)

where Ψn, ν̃a, and da are the nth adjoint flow fields (n = 1,. . . ,5), the adjoint Spalart–
Allmaras, and adjoint distance fields, respectively, all defined in ΩF. Ta stands for the
adjoint temperature and is defined in ΩS. By definition, δFaug

δbi
and δF

δbi
are the same. For any

function Φ of the state variables, the expression

δΦ
δbi

=
∂Φ
∂bi

+
∂Φ
∂xk

δxk
δbi

correlates its total (δ/δbi) and partial (∂/∂bi) derivatives as well as grid sensitivities δxk
δbi

.
Total derivatives of Φ with respect to bi and spatial derivatives permute according to [14]

δ

δbi

(
∂Φ
∂x`

)
=

∂

∂x`

(
δΦ
δbi

)
− ∂Φ

∂xk

∂

∂x`

(
δxk
δbi

)
After a lengthy mathematical development, δFaug

δbi
can be expressed as the sum of field

and surface integrals that include variations in the state variables, and integrals depending
on sensitivities of geometrical quantities with respect to bi. Setting the multipliers of
variations in the state variables to zero gives rise to the field adjoint equations (FAE)
along with the adjoint boundary conditions (ABC). In the next subsections, the four field
integrals in Equation (9) are further developed in order to derive the FAE, the ABC, and
the expressions of the sensitivity derivatives (SDs).

3.1. Development of the IMF Integral

Substituting the residuals of the MF equations in Equation (9), the first field integral
of this equation takes the form

IMF =
∫

ΩF

Ψn
δ

δbi

(
∂ f inv

nk
∂xk

)
dΩ

︸ ︷︷ ︸
IMF

inv

−
∫

ΩF

Ψn
δ

δbi

(
∂ f vis

nk
∂xk

)
dΩ

︸ ︷︷ ︸
IMF

vis

(10)

Using the divergence theorem, its inviscid counterpart becomes

IMF
inv =

∫
SF

Ψnnk
δ f inv

nk
δbi

dS

︸ ︷︷ ︸
→IB

−
∫

ΩF

Anmk
∂Ψn

∂xk

δUm

δbi
dΩ

︸ ︷︷ ︸
→FAEMF

−
∫

ΩF

Ψn
∂ f inv

nk
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

where U = [ρ ρv1 ρv2 ρv3 ρE] (in a 3D flow) are the conservative flow variables, E the total

energy per unit mass, and Anmk =
∂ f inv

nk
∂Um

the inviscid flux Jacobian matrix. An arrow (→)
underneath any underbraced term indicates where this term contributes. For instance, field
integrals including variations in Um contribute to the field adjoint mean-flow equations
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(FAEMF). Integrals which contain sensitivities of geometric quantities contribute to the
SDs. Finally, IB gathers all surface integrals. Using the divergence theorem

IMF
vis = −

∫
SF

Ψnnk
δ f vis

nk
δbi

dS

︸ ︷︷ ︸
→IB

+
∫

ΩF

∂Ψn

∂xk

δ f vis
nk

δbi
dΩ

︸ ︷︷ ︸
IMF

vis,Ω

+
∫

ΩF

Ψn
∂ f vis

nk
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

Substituting the expression of the viscous fluxes, applying the divergence theorem,
and rearranging the indices, IMF

vis,Ω becomes

IMF
vis,Ω =

∫
ΩF

τkm
µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ5

∂xk

)
δµ

δbi
dΩ +

∫
ΩF

∂Ψ5

∂xk

∂T
∂xk

∂k
∂µ

δµ

δbi
dΩ−

∫
ΩF

Kk
δVk
δbi

dΩ

︸ ︷︷ ︸
→FAEMF

+
∫

ΩF

τkm
µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ5

∂xk

)
δµt

δbi
dΩ +

∫
ΩF

∂Ψ5

∂xk

∂T
∂xk

∂k
∂µt

δµt

δbi
dΩ

︸ ︷︷ ︸
IMF

µt

−
∫

ΩF

(
τ

adj
km

∂vk
∂x`

+ qadj
m

∂T
∂x`

)
∂

∂xm

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

+
∫
SF

(
τ

adj
km nm

δvk
δbi

+ qadj
k nk

δT
δbi

)
dS

︸ ︷︷ ︸
→IB

Note that, in integrals over ΩF and ΩS or their boundaries (SF, SS), superscripts
denoting the fluid (F) or solid (S) domains are omitted in quantities such as qadj and T.
Arrays V, K are

V =
[

p v1 v2 v3 TF
]T

K =

[
0

∂τ
adj
1m

∂xm
− ∂Ψ5

∂xm
τ1m

∂τ
adj
2m

∂xm
− ∂Ψ5

∂xm
τ2m

∂τ
adj
3m

∂xm
− ∂Ψ5

∂xm
τ3m

∂qadj,F
k

∂xk

]T

The adjoint stresses and adjoint heat flux are defined as

τ
adj
km = (µ + µt)

(
∂Ψk+1

∂xm
+

∂Ψm+1

∂xk
− 2

3
δkm

∂Ψ`+1
∂x`

+
∂Ψ5

∂xk
vm +

∂Ψ5

∂xm
vk −

2
3
δkm

∂Ψ5

∂x`
v`

)
qadj,F

k = κF ∂Ψ5

∂xk

Variations in µ are taken into account by differentiating the Sutherland law [11] with
respect to the fluid’s temperature. IMF

µt comprises field integrals over ΩF which include
variations in µt. Differentiating Equation (5) (first option), source terms to the adjoint
Spalart–Allmaras equation arise, as follows

IMF
µt =

∫
ΩF

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ5

∂xk

)
+

∂Ψ5

∂xk

∂T
∂xk

∂k
∂µt

]
∂µt

∂µ̃

δµ̃

δbi
dΩ

︸ ︷︷ ︸
→FAESA

(11)
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3.2. Development of the ISA Integral

Substituting the transport equation of ν̃, the second field integral of
Equation (9) becomes

ISA = ISA
C + ISA

D + ISA
S (12)

where ISA
C , ISA

D and ISA
S contain the convection, diffusion, and source terms of the Spalart–

Allmaras model, namely

ISA
C =

∫
ΩF

ν̃a
δ

δbi

[
∂

∂xk
(ρvk ν̃)

]
dΩ

ISA
D =

∫
ΩF

ν̃a
δ

δbi

[
− ρ

σ

∂

∂xk

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
+

ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)]
dΩ

ISA
S = −

∫
ΩF

ν̃a
δP ν̃

δbi
dΩ +

∫
ΩF

ν̃a
δDν̃

δbi
dΩ

The first two integrals can be rewritten using the divergence theorem as

ISA
C =−

∫
ΩF

∂ν̃a

∂xk
vk

δµ̃

δbi
dΩ

︸ ︷︷ ︸
→FAESA

−
∫

ΩF

∂ν̃a

∂xk

δvk
δbi

µ̃dΩ

︸ ︷︷ ︸
→FAEMF

+
∫
SF

µ̃ν̃a
δvk
δbi

nkdS +
∫
SF

vk ν̃a
δµ̃

δbi
nkdS

︸ ︷︷ ︸
→IB

−
∫

ΩF

ν̃a
∂

∂x`
(ρvk ν̃)

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

ISA
D =

∫
ΩF

ν̃a

[
− ρ

σ

∂

∂xk

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
+

ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)]
δρ

δbi
dΩ

︸ ︷︷ ︸
→FAEMF

+
∫

ΩF

ρν̃a

σ
Cb2

∂

∂xk

(
∂ν̃

∂xk

)
δν̃

δbi
dΩ

︸ ︷︷ ︸
→FAEMF & FAESA

+
∫

ΩF

ρν̃a

σ
Cb2ν̃

∂

∂x`

(
∂ν̃

∂xk

)
∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

+
∫

ΩF

ρν̃a

σ

∂

∂x`

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

+
∫

ΩF

ρCb2ν̃ν̃a

σ

∂

∂xk

[
δ

δbi

(
∂ν̃

∂xk

)]
dΩ−

∫
ΩF

ρν̃a

σ

∂

∂xk

[
δ

δbi

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]]
dΩ

︸ ︷︷ ︸
ISA

gradν̃

Integrals including variations in µ̃ (where µ̃ = ρν̃) contribute to the field adjoint
Spalart-A-llmaras equation (FAESA). Those including variations in ν̃ contribute to both
FAESA and FAEMF as δν̃

δbi
= ∂ν̃

∂ρ
δρ
δbi

+ ∂ν̃
∂µ̃

δµ̃
δbi

. The above field integrals which contribute
neither to FAEMF, FAESA nor to the SDs can further be analyzed using the divergence
theorem, as
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ISA
gradν̃ =

∫
ΩF

1
σ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

δν

δbi
dΩ

︸ ︷︷ ︸
→FAEMF

+
∫

ΩF

1 + Cb2
σ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

δν̃

δbi
dΩ

︸ ︷︷ ︸
→FAEMF & FAESA

−
∫

ΩF

∂

∂xk

[
1
σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
δν̃

δbi
dΩ

︸ ︷︷ ︸
→FAEMF & FAESA

+
∫
SF

[
1
σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
δν̃

δbi
nkdS

︸ ︷︷ ︸
→IB

−
∫
SF

1
σ

ρν̃a
δ

δbi

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
nkdS

︸ ︷︷ ︸
→IB

+
∫
SF

Cb2
σ

ρν̃ν̃a
δ

δbi

(
∂ν̃

∂xk

)
nkdS

︸ ︷︷ ︸
→IB

+
∫

ΩF

[
1
σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

Since the production and destruction of ν̃ are functions of ρ, vorticity ζ, distance d,
and µ̃, ISA

S takes the form

ISA
S =

∫
ΩF

ν̃a
∂S ν̃

∂ρ

δρ

δbi
dΩ

︸ ︷︷ ︸
→FAEMF

+
∫

ΩF

ν̃a
∂S ν̃

∂µ̃

δµ̃

δbi
dΩ

︸ ︷︷ ︸
→FAESA

+
∫

ΩF

ν̃a
∂S ν̃

∂d
δd
δbi

dΩ

︸ ︷︷ ︸
→FAED

+
∫

ΩF

ν̃a
∂S ν̃

∂ζ

δζ

δbi
dΩ

︸ ︷︷ ︸
ISA

ζ

where S ν̃ = Dν̃−P ν̃ and the field integral including variations in distance contributes
to the field adjoint distance equation (FAED). The partial derivatives of the production
and destruction of ν̃ with regard to ρ, µ̃, d, and ζ can be found in [15]. The last integral is
rewritten as

ISA
ζ =−

∫
ΩF

∂

∂xm

[
ν̃a

∂Sν̃

∂ζ

2
ζ

Wkm

]
δvk
δbi

dΩ

︸ ︷︷ ︸
→FAEMF

−
∫

ΩF

ν̃a
∂Sν̃

∂ζ

2
ζ

Wkm
∂vk
∂xl

∂

∂xm

(
δxl
δbi

)
dΩ

︸ ︷︷ ︸
→SD

+
∫
SF

ν̃a
∂Sν̃

∂ζ

2
ζ

Wkmnm
δvk
δbi

dS

︸ ︷︷ ︸
→IB

3.3. Development of the ID Integral

Substituting the residual of the Eikonal equation in Equation (9) and applying the
divergence theorem, ID becomes

ID = −
∫

ΩF

∂

∂xm

(
2

∂d
∂xm

da

)
δd
δbi

dΩ

︸ ︷︷ ︸
→FAED

+
∫
SF

2
∂d

∂xm
nmda

δd
δbi

dS

︸ ︷︷ ︸
→IB

−
∫

ΩF

2
∂d

∂xm

∂d
∂xl

da
∂

∂xm

(
δxl
δbi

)
dΩ

︸ ︷︷ ︸
→SD
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3.4. Development of the IS Integral

In ΩS, using the heat conduction equation and the divergence theorem, the corre-
sponding integral in Equation (9) takes the form

IS = −
∫
SS

Tank
δqk
δbi

dS

︸ ︷︷ ︸
→IB

+
∫

ΩS

∂Ta

∂xk

δqk
δbi

dΩ

︸ ︷︷ ︸
IS

q

+
∫

ΩS

Ta
∂qk
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

where, by defining qadj,S
k = κS ∂Ta

∂xk
as the adjoint heat fluxes in the solid domain,

IS
q =

∫
ΩS

∂Ta

∂xk

∂T
∂xk

δκ

δbi
dΩ−

∫
ΩS

∂qadj
k

∂xk

δT
δbi

dΩ

︸ ︷︷ ︸
→FAES

+
∫
SS

qadj
k nk

δT
δbi

dS

︸ ︷︷ ︸
→IB

−
∫

ΩS

qadj
k

∂T
∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

︸ ︷︷ ︸
→SD

(13)

3.5. Field Adjoint Equations (FAEs) and Adjoint Boundary Conditions (ABCs)

The multipliers of variations in the state variables give rise to FAEMF, FAESA, FAED,
and FAES. These read

RΨ
m =− Anmk

∂Ψn

∂xk
−Kn

∂Vn

∂Um
+ BF

µ
∂µ

∂Um
+ BF

c
∂κF

∂Um
+ SΨ

m = 0

Rν̃a =− vk
∂ν̃a

∂xk
+

1
σ

∂

∂xk

[
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk

]
− Cb2

σ

∂

∂xk

[
∂(ρν̃ν̃a)

∂xk

]
− 1 + Cb2

σ

∂ν̃

∂xk

∂(ρν̃a)

∂xk
− Cb2

σ
ν̃a

∂

∂xk

(
∂ν̃

∂xk

)
+ S ν̃a = 0

Rda =− ∂

∂xk

(
2

∂d
∂xk

da

)
+ Sda = 0

RTa =−
∂qadj,S

k
∂xk

+ BS
c

∂kS

∂TS +
∂F

∂TS = 0

(14)

where BF
µ , BF

c , BS
c stand for the multipliers of δµ

δbi
, δκF

δbi
, and δκS

δbi
, respectively. SΨ are source

terms added to FAEMF and result from the differentiation of the Spalart–Allmaras model.
Similarly, Sν̃a and Sda are sources to FAESA and FAED, resulting from the differentiation of
the mean-flow and turbulence model equations, respectively. It should be mentioned that
FAEMF, FAESA, and FAES do not depend on the adjoint distance variable da; thus, FAED
is numerically solved after solving FAEMF or FAESA and FAES first and contributes to the
computation of SDs. ∂F

∂TS is the contribution of F to FAES, which is non-zero only for F2.
Gathering all surface integrals without variations in ν̃ or d into a single integral gives

IB =
∫
SF

(
Ψnnk

δ f inv
nk

δbi
−Ψnnk

δ f vis
nk

δbi
+ τ

adj
km nm

δvk
δbi

+ qadj
k nk

δT
δbi

)
dS

−
∫
SS

(
Tank

δqk
δbi

+ qadj
k nk

δT
δbi

)
dS (15)

IB splits into integrals over (a) the inlet/outlet boundaries (SI/O) and (b) the solid
wall boundaries (SW) of ΩF; the latter include the FSI and adiabatic walls (hub and shroud).
For the SI/O,

IB
I/O =

∫
SI/O

[
Ψn Anmknk

δUm

δbi
+
(
τ

adj
km nm −Ψ5τkmnm

) δvk
δbi

+ qadj
k nk

δT
δbi

]
dS



Int. J. Turbomach. Propuls. Power 2021, 6, 20 9 of 17

where variations in viscous stresses and heat flux are ignored. Eliminating the terms
including variations in the flow variables gives rise to the adjoint inlet/outlet conditions,
namely

Ψn Anmknk
∂Um

∂V I/O
j

+
(
τ

adj
km nm −Ψ5τkmnm

) ∂vk

∂V I/O
j

+ qadj
k nk

∂T
∂V I/O

j

+
∂F

∂V I/O
j

= 0 (16)

where V I/O
j denotes any flow quantity extrapolated to SI/O from the interior of ΩF.

For the inlet, V I
j stands for the velocity magnitude, and for the outlet, VO

j are the outgoing

Riemann variables. For the solid walls of ΩF, taking into account the no-slip condition,
Equation (15) becomes

IB
W =

∫
SF

W

Ψm+1nm
δp
δbi

dS−
∫

SF
W

Ψm+1nk
δτkm
δbi

dS−
∫

SF
W

Ψ5
δ(qknk)

δbi
dS +

∫
SF

W

qadj
k nk

δT
δbi

dS

−
∫

SS
W

Ta
δ(qknk)

δbi
dS +

∫
SS

W

qadj
k nk

δT
δbi

dS+
∫

SF
W

Ψ5qk
δnk
δbi

dS +
∫

SS
W

Taqk
δnk
δbi

dS

︸ ︷︷ ︸
→SD

The adjoint no-slip condition (Ψ2 = Ψ3 = Ψ4 = 0) eliminates surface integrals
with variations in τkm and p. Terms with variations in heat flux and T are eliminated
by satisfying the adjoint adiabatic and FSI conditions. The former read qadj,F/S

m nF/S
m = 0

along the adiabatic walls of ΩF and ΩS. The adjoint FSI conditions are Ψ5 = Ta and
qadj,F

k nF
k = −qadj,S

k nS
k . Finally, setting ν̃a and da to zero over the boundaries of ΩF eliminates

the surface integrals which contain variations in ν̃ and d.

3.6. Expression for SDs

The remaining field and surface integrals comprise the formula for computing the
gradient of F

δF
δbi

= ISD
MF + ISD

SA + ISD
D + ISD

S (17)

where

ISD
MF =−

∫
ΩF

[
Ψn

(
∂ f inv

nk
∂x`

−
∂ f vis

nk
∂x`

)
− τ

adj
km

∂vm

∂x`
− qadj

k
∂T
∂x`

]
∂

∂xk

(
δx`
δbi

)
dΩ +

∫
SF

W

Ψ5qk
δnk
δbi

dS

ISD
SA =−

∫
ΩF

ν̃a
∂

∂x`
(ρvk ν̃)

∂

∂xk

(
δx`
δbi

)
dΩ

+
∫

ΩF

ρν̃a

σ

[
∂

∂x`

[
[ν + (1 + Cb2)ν̃]

∂ν̃

∂xk

]
+ Cb2ν̃

∂

∂x`

(
∂ν̃

∂xk

)]
∂

∂xk

(
δx`
δbi

)
dΩ

+
∫

ΩF

[
1
σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩ

−
∫

ΩF

ν̃a
∂Sν̃

∂ζ

2
ζ

Wkm
∂vk
∂x`

∂

∂xm

(
δx`
δbi

)
dΩ

ISD
D =−

∫
ΩF

2
∂d

∂xm

∂d
∂x`

da
∂

∂xm

(
δx`
δbi

)
dΩ

ISD
S =

∫
ΩS

(
Ta

∂qk
∂x`
− qadj

k
∂T
∂x`

)
∂

∂xk

(
δx`
δbi

)
dΩ +

∫
SS

W

Taqk
δnk
δbi

dS

(18)
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Grid sensitivities along the parameterized surfaces (here, the FSI and the cooling
channel boundaries) are computed directly by the differentiation of the parameterization
tool. Then, the spring analogy method undertakes their propagation into ΩF and ΩS.

4. The PUMA Software

PUMA is a GPU-accelerated software which involves a RANS equations’ solver,
a heat conduction equation’s solver, and their adjoint counterparts along with a set of
shape parameterization and grid deformation tools. It runs on a GPU cluster using the
shared on-board memory for data transfer between GPUs on the same computational node
and the MPI protocol between GPUs on different nodes. Data communications overlap
with computations.

The flow and their adjoint equations are discretized on unstructured grids following
the vertex-centered finite-volume approach. A multi-stage Runge–Kutta scheme, applied
in pseudo-time, with residual smoothing is used to solve the equations. A second-order
accurate, central differences scheme with artificial dissipation discretizes the inviscid fluxes.
Residual smoothing employs the first-order accurate Jacobian of the fluid’s residuals, which
is computed in double-, though stored in single-precision arithmetic. The mixed-precision
arithmetic minimizes GPU memory transactions without jeopardizing solution accuracy.
The heat conduction equation is also discretized using vertex-centered finite volumes and
solved using a Krylov-based solver.

The flow and heat conduction solvers are loosely coupled by means of Aitken’s
dynamic relaxation formula. Figure 1 illustrates a schematic representation of the coupling
between the flow and heat conduction solvers. Temperature fields computed by the
heat conduction solver in ΩS after performing a number of internal iterations are scaled
according to Aitken’s formula and imposed as boundary conditions to the flow solver.
The flow solver preforms a number of pseudo-time steps, and the computed heat fluxes on
the FSI are communicated back to the heat conduction solver. The flow solver computes
heat fluxes along the FSI by integrating the energy equation over the ΩF finite volumes
next to it; for instance, for an FSI node i,(

qF
mnF

m

)
i
= ∑

j∈Neighs(i)
Φinv,ij

energ − ∑
j∈Neighs(i)

Φvisc,ij
energ

where j are its neighbors and Φinv
energ, Φvisc

energ the inviscid and viscous energy fluxes crossing
the finite volume interfaces between i and j, respectively. The stability of the coupling
scheme is enhanced by computing and communicating the Jacobians of the computed
heat fluxes

(
qF

mnF
m
)

i with respect to TF
i along the FSI to the heat conduction solver. Heat

fluxes along with their Jacobians are computed and communicated at each pseudo-time
iteration of the heat conduction solver. The CHT coupled adjoint equations are solved in a
similar way.

Flow solver qF
mnF

m

TF

Heat conduc-
tion solver

TSCoupling scheme

Figure 1. Schematic representation of the coupling of the flow and heat conduction solvers. A similar
coupling applies to the adjoint solver.

5. CHT Analysis of the C3X Turbine

The geometry of the C3X turbine linear cascade can be found in [3]. The blade, made
of stainless steel with density ρS = 7900 kg/m3 and heat capacity CS = 586.15 J/(kg K), is
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cooled by 10 straight channels. Its thermal conductivity is a function of TS as
κS = 6.8110 + 0.020716TS. Its span is 7.62 cm long, with an axial chord of 7.816 cm.
According to Case 158, for the hot gas, pI

t = 243 700 Pa, T I
t = 808 K, and TuI = 8.3%

(turbulence intensity) at the inlet, whereas pO = 142.530 Pa at the outlet. For each cooling
channel, experimental data for the average temperature and the coolant flow rate are
available; to meet them, an iterative procedure for adjusting the total pressure and total
temperature at the cooling channels’ inlets is applied.

An unstructured 3D grid with ∼3.5 M nodes was generated with ∼2 M for the hot
gas, ∼630 K for the coolant flow, and ∼950 K for the solid domain. The grid has structured
layers close to the pressure and suction sides and the cooling channels to account for the
large spatial gradients of TF and TS in these regions. The rest of the fluid and solid domain
is filled with prismatic elements. Both the Spalart–Allmaras and k−ω SST turbulence
models were used in the analysis phase. The TS fields computed at the hub, shroud, and
midspan of the solid blade are presented in Figure 2 (top left), illustrating the effect of
the cooling fluid flow at the blade temperature. Pressure, temperature, and heat transfer
coefficient distributions along the blade midspan are compared with measurements in the
same figure. A good agreement is observed for both models, though the temperature along
the suction side and close to the leading edge is overestimated due to the absence of a
transition model.
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Figure 2. Computed TS fields (top left) at the solid blade’s hub, midspan, and shroud. Computed
pressure (top right), temperature (bottom left), and heat transfer coefficient (bottom right) distri-
butions across the blade midspan compared with measurements. Pressure is non-dimensionalized
by the inlet total pressure of 243,700 Pa, temperature by 811 K, and the heat transfer coefficient by
1135.6 W/m2K.

The pressure, temperature, and heat transfer coefficient distributions at the blade
midspan were also computed by a 2D CHT analysis, in which the average temperature and
coolant flow rate per cooling channel were replaced by heat transfer coefficient values (since
the 2D analysis refrains from computing the coolant flow). The heat transfer coefficients
per cooling channel result from h = κ NuD /D, where κ is the coolant thermal conductivity,
D the channel diameter, and NuD the Nusselt number. For turbulent flows in smooth
pipes, the latter is given by NuD = 0.022 Cr Pr0.5 Re0.8

D , where the Reynolds number ReD is
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determined by the channel’s diameter, the measured flow rate, and the coolant’s molecular
viscosity. Cr is a correction for a fully developed thermal boundary layer to account for
thermal entrance region effects and ranges from 1.03 to 1.12 for the 10 channels, [3].

An alternative computation is based on the post-processing of the heat flux and tem-
perature fields at the blade midspan computed by the 3D CHT run. Figure 3 summarizes
the heat transfer coefficients computed based on the two aforementioned approaches.
The heat transfer coefficients based on the second approach, with both turbulence models,
are slightly different, being ∼15% lower than those based on the first approach. To mea-
sure the effectiveness of the computed heat transfer coefficients, 2D CHT analyses were
performed based on them with the Spalart–Allmaras turbulence model. Figure 4 shows
the computed temperature and heat transfer coefficient distributions at the blade midspan
resulting from two 2D CHT analyses employing the heat transfer coefficients from the two
approaches and also includes the 3D CHT analysis results as well as measurements. It can
be seen that, using the heat transfer coefficients computed by the second approach, the
2D CHT analysis produces almost the same results with the 3D run. On the other hand,
with the first approach, lower TS is computed. Though it is not shown here, both 2D runs
obtain practically the same pressure field at the blade midspan with the 3D run. This was
expected since the pressure field is mostly affected by the blade shape.
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Figure 3. Comparison of the heat transfer coefficients of the cooling channels computed by the two
approaches.
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Figure 4. Temperature (left) and heat transfer coefficient (right) distributions along the blade contour
obtained by 3D and 2D CHT runs. The 2D runs use the channels’ heat transfer coefficients computed
by the two approaches presented in the text.

6. Verification of the Adjoint Sensitivities

Prior to the optimization studies, the accuracy of the adjoint-based sensitivity deriva-
tives is assessed. For this purpose, the sensitivity derivatives of the objective functions
and flow constraints (F1, F2, F3 and F4) are computed by the developed continuous ad-
joint method and compared with finite differences (FDs). In this comparison, the 2D
configuration with the heat transfer coefficients computed by the second approach and the
Spalart–Allmaras turbulence model are used. The turbine blade shpae is parameterized
using a 7 × 3 volumetric NURBS control grid. The control points at the leading and
trailing edges are fixed while the rest are free to move in the axial and pitch-wise directions.
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In total, 38 design variables are used. The cooling holes, though potentially controlled by
the same morphing box, are fixed without being affected by changes in the design variables.
Figure 5 presents the computed adjoint and FD-based sensitivity derivatives which are
in very good agreement. The influence of the frozen turbulence assumption (which is
frequently made in the literature) is investigated. As shown in Figure 5, avoiding including
the turbulence model equation into the adjoint formulation does not affect the gradients of
the total pressure drop (F1), inlet capacity (F3), and exit flow angle (F4). However, this is not
the case for the highest blade temperature (F2), where the frozen turbulence assumption
significantly reduces the accuracy of the computed derivatives. For instance, for some
design variables, this leads to derivatives that even have a wrong sign.
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Figure 5. Verification of the sensitivity derivatives computed by the adjoint method with the differ-
entiated turbulence (DT) model and with the frozen turbulence (FT) assumption for F1 (top left),
F2 (top right), F3 (bottom left), and F4 (bottom right). Finite differences are used as the reference
values.

7. CHT Optimization of the C3X Turbine

The CHT optimization of the C3X turbine blade follows: The target was to minimize
both the total pressure drop and the highest temperature of the blade while the inlet
capacity and the hot gas exit flow angle were constrained to change up to 0.1% from
their datum values. A first shape optimization was performed targeted at minimizing
the total pressure drop under the above flow constraints. The 7 × 3 volumetric NURBS
control grid of Figure 6a was used to control the blade shape. As in the verification study
of the previous section, the control points at the leading and trailing edges remained
constant, while the rest were free to move in the axial and pitch-wise directions. In this
optimization run, in order to avoid the intersection of the cooling channels with the blade
sides, the locations of their centers were controlled by the same control grid, while their
radii were constant. In total, 38 design variables were used. To adapt the fluid domain grid
to the changing boundaries, the spring analogy technique [16] was employed. The grid
inside the blade was generated from scratch based on the new blade shape and cooling
channel locations. Figure 6b shows the design variable bounds (used as extra geometric
constraints). The method of moving asymptotes [17] was used, and its convergence is
plotted in Figure 6b. The total pressure drop has decreased by ∼21% after 20 cycles by
satisfying the flow constraints.
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(a) Blade contour parameterization
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Figure 6. First optimization run.

The best solution of the first optimization has almost the same highest blade tempera-
ture with the baseline, since this is mainly affected by the location of the cooling channels,
which were only slightly changed by the control box of the first optimization. Thus, the
outcome of the first optimization was further optimized for minimum highest temperature
over the blade, aiming at refining the location of the channels. In this second optimization,
the blade shape was not allowed to change, while the cooling channels were free to move
leading to 20 design variables (2 per channel). Figure 7a shows the design variable bounds
which were chosen so as to avoid channels overlapping with each other. To prevent the
cooling channels from overlapping with the blade sides, the distance of each cooling chan-
nel from the airfoil sides was constrained to be higher than 30% of their radius. These
20 geometric constraints (2 per channel) ensured the generation of valid grids anew in each
optimization cycle and kept the channels away from the blade sides, avoiding extremely
high

∣∣∇TS
∣∣ and high thermal stresses. After 45 optimization cycles, the blade’s highest

TS was reduced by ∼30 K, still satisfying all geometric constraints. Figure 7b shows the
convergence of the optimization algorithm, where the blade’s temperature is normalized
with Tre f . For clarity, only the distance of the 10th cooling channel (the one closer to the
leading edge) from the blade’s sides is plotted in Figure 7b, where distances are normalized
with the channels’ radius. The best solution of the second optimization has a slightly
increased (no more than 0.1%) total pressure drop compared to the best solution of the first
run. This small increase was expected since reducing the highest TS on the blade results in
a higher heat flux from the hot gas to the blade. At the same time, inlet capacity and hot
gas exit angle differ no more than 0.1% from their datum values.

(a) Cooling system parameterization
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Figure 7. Second optimization run.

Figure 8 presents the Mach number fields computed for the baseline and the optimized
configuration (i.e., the outcome of the second optimization run). It is clear that the reduction
in total pressure drop is mostly achieved by reducing the flow velocity in the passage
throat region.



Int. J. Turbomach. Propuls. Power 2021, 6, 20 15 of 17

Figure 9 presents the computed TS and
∣∣∇TS

∣∣ fields inside the blade for the baseline
and the optimized configuration. In the latter, the first two cooling channels moved toward
the leading edge where TS is high, while the remaining channels moved toward the trailing
edge where the highest TS exists. Thanks to the geometric constraints, the cooling channels
did not move too close to the blade sides, and the highest

∣∣∇TS
∣∣ changed by less than

∼0.3% compared to the baseline. The optimized blade cooling system can also be seen in
Figure 10.

(a) Baseline (b) Optimized

Figure 8. Computed Mach number fields for the baseline and optimized configurations.

(a) Baseline

(b) Optimized

Figure 9. Computed temperature (left) and temperature gradient magnitude (right) fields for the
baseline and the optimized configurations.

Figure 10. Baseline (red) and optimized (blue) blade’s shape and cooling system.

8. Conclusions

The mathematical development of the continuous adjoint method for computing
sensitivity derivatives in CHT problems involving turbulent compressible fluid flows
was presented. The turbulence model equations are included in the adjoint formulation
without making the frozen turbulence assumption, thus leading to an adjoint model that
is consistent, in the continuous sense, to the one used in the CHT analysis. This was
implemented in the in-house GPU accelerated software PUMA and used to optimize the
internally cooled C3X turbine blade. Two optimization runs were performed. The first aims
at reducing the total pressure drop while constraining the turbine inlet capacity and hot gas
exit angle, allowing changes up to 0.1% compared to the baseline configuration. The second
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optimization started with the best solution of the first run, aiming at refining the cooling
channel locations for minimum highest temperature over the blade. The optimized con-
figuration has ∼20% less total pressure drop and ∼30 K lower highest blade temperature.
The geometric constraints used in the second optimization run constrained the cooling
channels from moving too close to the blade sides, increasing the highest temperature
gradient magnitude inside the blade less than 0.3% of the baseline. The results show
that the developed continuous adjoint CHT method, coupled with a gradient-based algo-
rithm, provides a useful tool for the CHT optimization of internally cooled turbine blades.
They also reveal possible losses in accuracy, regarding the gradient computation, from
making the frozen turbulence assumption in the development of the adjoint method.
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Abbreviations

CFD Computational fluid dynamics
CHT Conjugate heat transfer
FAE Field adjoint equation
FDs Finite differences
FSI Fluid–solid interface
GPU Graphics processing unit
NURBS Non-uniform rational B-splines
RANS Reynolds-averaged Navier–Stokes
SD Sensitivity derivative
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