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Abstract: Aeroelastic instabilities such as flutter have a crucial role in limiting the operating range and
reliability of turbomachinery. This paper offers an alternative approach to aeroelastic analysis, where the
sensitivity of aerodynamic damping with respect to main flow and structural parameters is quantified
through a surrogate-model-based investigation. The parameters are chosen based on previous studies
and are represented by a uniform distribution within applicable intervals. The surrogate model is an
artificial neural network, trained and tested to achieve an error within 1% of the test data. The quantity
of interest is aerodynamic damping and the datasets are obtained from a linearised aeroelastic solver.
The sensitivity of aerodynamic damping with respect to the input variables is obtained by calculating
normalised gradients from the surrogate model at specific operating conditions. The results show
a quantitative comparison of sensitivity across the different input parameters. The outcome of the
sensitivity analysis is then used to decide the most appropriate action to take in order to induce stability
in unstable operating conditions. The work is a preliminary study, carried out on a simplified two
dimensional compressor cascade and it is aimed at proving the validity of a data-driven approach in
studying the aeroelastic behaviour of turbomachinery. To the best of the authors’ knowledge, this is
the first time a data-driven flutter model has been investigated. The initial results are encouraging,
indicating that this approach is worth pursuing in the future. The presented framework can be used as a
redesign tool to enhance the flutter stability of an existing blade.

Keywords: flutter; machine learning; sensitivity analysis

1. Introduction

The development of highly loaded, three-dimensional, long compressor and fan blades
yields a great challenge in terms of aeroelastic stability of turbomachinery. The task of
assessing blade stability is only made more compelling by the recent trend towards blisks, in
which mechanical damping is hardly present. Self-excited vibration, or flutter, is among the
several aeroelastic phenomena which can limit the operating range of turbomachinery and
eventually lead to blade failure. Flutter has been extensively studied by several authors,
through analytical, experimental and computational methods, leading to a wealth of
literature in which several driving parameters have been identified [1–3]. In [4], Srinivasan
associates flutter with high steady loading and low reduced frequency, for blades vibrating
in first bending or twist modes. The reduced frequency is addressed here as k = ωc/Urel ,
where ω is the angular vibration frequency, c is the blade chord and Urel is the inlet relative
flow velocity. In an early analytical work [5], Whitehead presents unsteady lift calculations
for a two-dimensional cascade of flat plates, emphasising that stability is affected, in
different fashions depending on the flow variables (e.g., inlet Mach number), by the nature
(cut-on waves propagate without attenuation, whereas cut-off waves decay as they travel)
of acoustic waves produced by the vibration. The strong correlation between mean flow
incidence and stability is shown in [6], using results from a complete analytical model
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for loaded cascades in incompressible flow developed in [7]. All of the above claims
are corroborated by more recent computational studies. In [8], Vahdati and Cumpsty
performed a three-dimensional CFD analysis of a state-of-the-art fan blade, and observed
that (1) 3D separation (high loading), followed by radial migration of flow along the span
towards the casing, reduces aerodynamic damping; (2) flutter occurs in the frequency and
nodal diameter range where the generated acoustic waves are cut-on upstream and cut-off
downstream (for an exhaustive explanation of acoustic modes in turbomachinery ducts
see [9]); (3) aerodynamic damping decreases as the twist component in the first flap mode
increases, in agreement with the study on turbines in [10]. Flutter is, therefore, influenced
by steady and unsteady flow features, aeroacoustics and structural properties.

At early design stages, most of the attention is focused on performance, while aeroe-
lastic stability is investigated only in terms of simple parameters such as reduced frequency.
The influence of flow variables and other structural parameters is assessed only later in the
process, or when in-service failure occurs. Although recent CFD-based methods have been
successful in predicting flutter [11], the condition at which flutter occurs is unknown at the
design stage; if unsteady CFD is to be used for such analysis, it can be very computationally
expensive and cannot be used routinely. Moreover, given a specified range of design
parameters variability, it is unclear in what measure these variables influence stability
and how they quantitatively compare to one another. For example, is blade stiffening as
effective as changing bending-twist ratio or the design point aerodynamics? How do flow
features influence stability in different acoustic waves regimes?

The present paper will focus on the instability commonly known as stall flutter,
which occurs at part-speed regime, when airfoils operate at an incidence higher than
nominal [12]. It is misleadingly named so, since stall is not a necessary condition for its
occurrence (Isomura and Giles [13] reported shock oscillations as instability exciting mech-
anism for their case, yet they referred to it as stall flutter). Inspired by the recent success of
machine-learning-based uncertainty quantification of turbulence model coefficients [14–16],
this paper attempts to answer the previous questions by means of a forward-propagation
sensitivity analysis of selected design parameters, based on a machine-learnt surrogate
model. The proposed method represents an alternative approach to current numerical stall
flutter predictions which rely on ever growing computational methods [11,17]. The suc-
cessful development of the proposed strategy would provide significant improvement over
current CFD-based methods, as it requires significantly less computational resources. In ad-
dition, the machine-learnt model can provide quantitative measures of sensitivity, in the
form of gradients of aerodynamic damping with respect to design parameters, offering
optimum remedies for flutter issues of an existing design.

In this work, a simplified geometry is used to demonstrate the validity of a machine-
learning-based framework to study the impact of flow and structural parameters on
aerodynamic damping. The objective of the present work is to develop a redesign tool to
enhance the flutter stability of an existing blade. The long term goal is to develop a simple
model to assess stability of compressor and fan blades in order to provide early design
guidelines focused on improving aeroelastic stability.

In the following sections, the choice of input coefficients, with their relative ranges,
will be explained. Flow solver, machine learning model and forward-propagation strategy
will be discussed and, finally, the results will be presented.

2. Methodology
2.1. Test Case

The test case selected for this study is the Standard Configuration 10 [18], a 2D
compressor cascade. The chord length and pitch to chord ratio are fixed at 0.1 m and 1.0,
respectively; the stagger angle is 45◦; inlet total pressure and temperature are 101.3 kPa
and 300 K throughout the study and finally, at design point, the cascade operates with
inlet Mach number M1 = 0.7 and inflow angle α1 = 55◦. The incidence angle of flow onto
the blade is referred to as β1, with β1 = 0◦ corresponding to α1 = 55◦, and therefore to
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nominal incidence. Figure 1 shows an example of a steady state solution with M1 = 0.85
and nominal incidence. The choice of a 2D geometry preserves the driving physics of flutter
apart from two effects: three-dimensional flow profiles and presence of radial acoustic
modes in the duct. Although relevant, these are not considered essential in the early design
stage this work is targeting; moreover, this approach decouples the influence of tip leakage
flow, which represents a cumbersome turbulence modelling problem in its own merit.
Three-dimensional flow features will be included in future work.

(a) Mach Number contour plot
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(b) Isentropic Mach Number
Figure 1. Example of steady state solution.

2.2. Flow Solver

The CFD solver used in this work, LUFT, is developed by Dr. Paul Petrie-Repar from
RPMTurbo. LUFT steady-state solver solves the 3D RANS equations on a hexahedral
mesh, using a cell-centered finite volume scheme. The fluxes are calculated with an
upwind Roe scheme (other schemes are available), the flow is reconstructed using a
MUSCL interpolation with van Albada limiter and a local time stepping with residual
smoothing is applied. The unsteady flow solver is linearised, casting the URANS equations
in the frequency domain and the calculated unsteady pressures are used to evaluate
aerodynamic work on the blade and subsequently aerodynamic damping, ζ. A linearised
Spalart-Allmaras turbulence model is adopted, with no wall functions. Two-dimensional
non-reflecting boundary conditions are applied throughout the study. The solver has been
validated against other established codes [19,20].

2.3. Selection of Design Parameters

The relevant parameters chosen for this work are based on the literature presented
in the previous section: inlet Mach number, M1, incidence angle, β1, reduced frequency k,
bending-twist ratio of modeshape and Interblade Phase Angle, σ.

β1 is imposed as boundary condition, M1 is varied by changing the pressure ratio
(inlet total pressure over outlet static pressure) across the cascade, k is imposed in the
unsteady solver which, in turn, calculates the correct structural frequency using the steady
state inlet flow velocity as reference. σ is specified in degrees and imposed as phase lag
at the passage interfaces in the unsteady solver. The bending-twist ratio requires a little
discussion.

The modeshape chosen for this work is a rigid body rotation about a given axis,
referred to as twist axis. The bending-twist ratio is varied by keeping a fixed leading edge
displacement, while changing the parameter Xt, defined as:

Xt =
XLE + XTE
XLE − XTE

(1)

where XLE, XTE are signed leading and trailing edge displacements, respectively. The
limiting cases are pure twist with Xt = 0 and pure bending with Xt → ∞ (XLE → XTE);
all other cases, i.e., Xt ∈ (0, ∞), are referred to as flap mode. The effect of increasing Xt
is, essentially, to move the twist axis further downstream from the blade (e.g., Xt = 2
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locates the twist axis half a chord away from the trailing edge); therefore, decreasing the
twist component of the modeshape. Figure 2 shows a schematic illustration of the effect of
increasing Xt.

Blade
Xt=0
Xt=1
Xt=20

Figure 2. Schematic illustration of modeshape at different Xt.

The next step is to decide the intervals in which the input parameters will vary. The
interval for inlet Mach number is chosen to be symmetric about the nominal value of 0.7, to
study both subsonic flow, where no shock appears, and transonic flow conditions, where
a shock is present on the suction side. M1, thus, changes between 0.5, anything lower is
discarded as excessively low speed, and 0.9, so that the shock stays on the suction side and
does not move too far upstream (Figure 1a). The incidence of incoming flow onto the blade
is varied between 0◦ and 6◦, which is the largest value before inception of stall for all the
Mach numbers studied in this work. σ ranges from −180◦ to 180◦; the extremes are the
same point, although no special treatment has been specified for them in the training phase
of the surrogate model. In practice, the combination of reduced frequency and modeshape
is not arbitrary: the same blade will be characterised by very different reduced frequencies
whether it is vibrating in a pure twist or in a flap mode. Moreover, this combination also
depends on the machine being considered: the flap mode of a fan blade will have a lower
reduced frequency [17,21] compared to an embedded compressor blade [22]. Nevertheless,
to cover the whole spectrum of combinations, modeshape and frequency in this study are
assumed to be independent from each other during training of the surrogate model and,
therefore, take large intervals. Table 1 summarises the space of input variables.

Table 1. Intervals of design parameters.

Parameter Min Max

M1 Inlet Mach Number 0.5 0.9
β1 Incidence (difference with nominal) 0◦ +6◦

k Reduced Frequency 0.4 1.5
Xt Non dimensional Twist Axis distance 0.0 4.0
σ Interblade Phase Angle −180◦ 180◦

2.4. Sensitivity Analysis Method

The sensitivity analysis in this work is carried out by means of a surrogate model-
based approach, in order to alleviate the computational load required by a conventional
CFD-based method.

The Latin Hypercube sampling method [23] is applied to generate five independent
databases of input parameters within the range in Table 1: this approach ensures a uniform
distribution of the samples in the space of interest and that arbitrary samples from different
databases are mutually independent. The databases have size 128, 256, 512, 1024, 2048,
and are referred to as db1 to db5. The databases are applied to train and test a surrogate
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model of the CFD solver which will approximate aerodynamic damping without solving
the aeroelastic equations:

q ≈ q̂ = S(x) (2)

where x is the input parameters vector, S is the surrogate model, q̂ and q are the quantity
of interest, predicted by the surrogate model and CFD, respectively.

Finally, the PDF (probability density function) of aerodynamic damping can be ob-
tained. The sensitivity of input coefficients on the prediction is quantified by the normalised
gradient computed by the surrogate model, which will be briefly discussed.

The surrogate model S is a nonlinear function which given an input x ∈ Rd outputs
q̂ ∈ Rm; the Jacobian of the outputs with respect to input is:

Jij(x) =
∂Si(x)

∂xj
= ∇Si(x) (3)

The value of ∇Si(x) will give a measure of how sensitive the output i is to the input j
in the vicinity of x. In order to have a comparison between the inputs and across differ-
ent locations of the sample space, the gradient is normalised by its magnitude |∇Si(x)|,
yielding the normalised gradient.

2.5. Artificial Neural Network Based Surrogate Model

The artificial neural network (ANN) is used as a surrogate model of the CFD solver.
The ANN is composed of multiple layers of nonlinear activation units called neurons. The
input, hidden and output layers store input variables, intermediate outputs and quantity of
interest, respectively. The vector of input variables x and quantity of interest q are below:

x = [M1, β1, k, Xt, σ]

q = ζ
(4)

The principles, training strategy and results are the following.

2.5.1. Forward Propagation

The input variables are normalised by their maximum and minimum and then rescaled
in the range {−1, 1}:

a(0)i = 2
xi −min(xi)

max(xi)−min(xi)
− 1 (5)

where xi is the vector of input variable i, with dimension m, where m is the number of
samples. The outputs at intermediate layers are propagated as below:

a(l+1) = f (z(l+1)) = f (w(l+1)a(l) + b(l+1)) (6)

where w is the weights matrix, b = diag(I) is the bias vector and f (·) is the activation
function. The function f (x) = Atanh(Hx) with A = 1.7159 and H = 2

3 is a rescaled
hyperbolic tangent as proposed by [24]. The results at the output layer (L + 1) are then
denormalised to yield the quantity of interest:

q̂ = (max(q)−min(q)) · a(L+1) + A
2A

+ min(q) (7)

The max-min normalisation of the aerodynamic damping is symmetric with respect to
zero so that |q̂|q̂ = |ζ|

ζ , i.e., negative q̂ (output of ANN) corresponds to negative aerodynamic



Int. J. Turbomach. Propuls. Power 2021, 6, 39 6 of 13

damping. Lastly, the accuracy of ANN predictions is measured by the relative error on the
test database:

ε =
1
m

m

∑
j=1

|qj − q̂j|
max(q)−min(q)

(8)

2.5.2. Backpropagation

The ANN solves an optimisation problem by iteratively updating the weights w that
connect the neurons. These are initialised randomly and are updated by minimising the
cost function J:

J(w, b) =
1

2m

m

∑
j=1

(qj − q̂j)
2 +

λ

2m

L+1

∑
l=1

(w(l))2 (9)

where λ regularises the weights norm so to avoid overfitting. The optimiser used in this
work is the Broyden–Fletcher–Goldfarb–Shanno (BFGS, [25]). The gradient of the cost
function is calculated as:

∂J
∂w(l)

=
1
m

m

∑
j=1

∆(l) · (a(l−1))T +
λ

2m
w(l)

∂J

∂b(l)
=

1
m

m

∑
j=1

∆(l)
(10)

where:

∆(l) =

{
(â(l) − a(l)) · f ′(z(l)), l = L + 1
(w(l+1))T∆(l+1) · f ′(z(l)), 1 ≤ l ≤ L

(11)

2.5.3. Choice of Hyperparameters

The weights determined in the optimisation process are influenced by multiple pa-
rameters, the hyperparameters, namely number of layers L and number of neurons per
layer NL, training database size and regularisation factor λ. A baseline ANN with L = 2,
NL = 12 and λ = 10−4 will be used for the hyperparameters study. First, a training
database independence study is carried out, using 5 different combinations of databases
summarised in Table 2. The training/test split is kept constant at 80/20 for all the com-
binations. The gradient-based optimisation can lead to local minima of the cost function;
therefore, 16 networks with different initial conditions and randomly reshuffled datasets
are trained in parallel.

Table 2. Data for training database independence study.

Data Total Size Training Data Test Data Trained ANNs

db1 ∪ db2 384 80% 20% 16
db2 ∪ db3 768 80% 20% 16
db3 ∪ db4 1536 80% 20% 16
db4 ∪ db5 3072 80% 20% 16

All dbs 3967 80% 20% 16

The difference between test and training error (εTE, εTR) is plotted in Figure 3. As the
training database size increases, the difference between the test and training errors reduces
to nearly zero, and thus, the accuracy of the ANN becomes independent of the training
database size. Moreover the max-min envelope in Figure 3 converges to the mean value
when all the datasets are used, indicating independence from initial conditions. The rest
of the hyperparametric study is carried out using all data, with the training/test split
discussed above.
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Figure 3. Training database independence study.

The hyperparameters are changed one at a time while keeping the others constant
with the baseline setting; the number of neurons per layer, NL, is kept constant at a value
of 12 throughout the study. The most appropriate value of λ depends on the number
of layers in the ANN; in Figure 4 it is shown that the minimum error is achieved with
λ = 10−1 when L = 2. As L increases, so does the cost associated with the ANN weights
(see Equation (9)); therefore, it is inferred that with L > 2, the regularisation factor has to
be λ ≤ 10−1. In order to find the best combination of the two hyperparameters, the study
of number of layers L is repeated 4 times, with λ = 10−1, 10−2, 10−3, 10−4, respectively.
This approach is known as “grid search” and it is described in the flowchart in Figure 5.
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Figure 4. Hyperparameters study.
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Figure 5. Flowchart for hyperparameters selection.
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It is observed that the minimum mean error value (εTE ≈ 1%) is achieved with
λ = 10−4 and L = 10. The ANN employed in the rest of this work is, therefore, charac-
terised by the following hyperparameters: NL = 12, L = 10, λ = 10−4.

Figure 6 shows a good agreement between the PDFs of CFD and ANN predictions;
almost none of the test data lie outside the 5% confidence band (in grey).
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3. Results
3.1. Validation

The following results show a comparison between ANN and CFD predictions. Four
cases are setup to demonstrate the capability of the ANN: 4 out of 5 input variables are fixed
while the remaining one is swept. The CFD computations employed in this comparison do
not explicitly coincide with any training sample, they will therefore represent a further, and
final, test to evaluate the machine-learnt surrogate model. The combination of parameters
for the four comparisons are reported in Table 3. The results in Figure 7 show good
agreement between ANN and CFD.

Table 3. Input parameters for ANN sweep test.

M1 β1 k Xt σ

Case 1 0.8 Sweep 0.5 3.0 20◦

Case 2 0.55 +5◦ Sweep 1.5 20◦

Case 3 0.7 +6◦ 0.7 Sweep 0◦

Case 4 0.55 +5◦ 0.5 1.0 Sweep

Figure 7a shows that for a blade vibrating in flap mode, in transonic flow, aerody-
namic damping decreases with increasing flow incidence. The flow conditions for this
case are very similar to what a fan blade section would experience as it moves up a con-
stant speed characteristic. This behaviour has been already reported in the literature [8].
The ANN is able to follow the trend of the CFD closely, and to predict the flutter boundary
within 0.2◦, confirming that its predictions can be trusted for engineering-relevant cases.
Figure 7b shows a reduced frequency sweep; at these flow conditions and with the given σ,
the upstream and downstream cut-off frequencies are 0.230 and 0.408, respectively. As the
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frequency of vibration is increased, the unsteady pressure fields upstream and downstream
of the blade change from cut-on to cut-off. The frequencies at which this change takes
place are the cut-off frequencies and their crossing is associated with a strong change in
aerodynamic damping. The crossing in Figure 7b takes place at k = 0.408 and is visible by
the drop in aerodynamic damping. The surrogate model captures the overall trend as well
as the crossing of the zero damping line with good accuracy. Figure 7c shows a sweep of Xt;
as the modeshape approaches a pure bending (increasing Xt), the aerodynamic damping
increases, in agreement with the literature. The ANN is, again, able to follow the CFD
closely. The peak in aerodynamic damping in Figure 7d is well predicted, both in location
(σ ≈ 40◦) and magnitude, and so is the overall shape of the curve.

0 1 2 3 4 5 6
1

0.5

0.0

0.5

1.0

1.5

No
rm

al
ise

d

(a) Case 1: Incidence sweep

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k

(b) Case 2: Reduced Frequency sweep

0 1 2 3 4
Xt

−0.5

0.0

0.5

1.0

1.5

No
rm

al
ise

d
ζ

(c) Case 3: Axis distance sweep

−180−135−90−45 0 45 90 135 180
σ

(d) Case 4: Interblade Phase Angle sweep

Figure 7. Comparison of ANN (dashed red line) and CFD (solid black line) predictions.

The results discussed above show that the ANN is able to correctly predict aerody-
namic damping across a range of flow conditions and structural parameters. Moreover, the
surrogate model captures the zero damping crossing point (flutter boundary) with good
accuracy. In the next subsection, an example of how the method can be used in a design
environment is given.

3.2. Application

In this section, the application of this method to a hypothetical engineering problem is
addressed. During the early design stage of a turbomachinery blade, the surrogate model
predicts flutter for an aerodynamically optimised blade at some operating conditions.
Even at the cost of reducing aerodynamic performance, the design parameters need to be
adjusted to increase damping and regain stability. Under the assumption that a mechanical
solution (e.g., introduction of under-platform dampers) is either not convenient or not
possible at all (e.g., the blade is part of a blisk), the most viable solution is to increase
aerodynamic damping. Traditional wisdom suggests that, for example, increasing reduced
frequency is beneficial for aeroelastic stability. However, this generalisation has been
shown to achieve mixed results in real applications (see Figure 7b). Therefore, there is a
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need for tools which can provide guidelines for blade re-design or optimisation to improve
aerodynamic damping. This is the problem that the present method tries to tackle.

Take a blade behaving like Figure 7d as test case. Two intervals of σ are affected by
flutter: 0◦ to 30◦ and 60◦ to 140◦. The objective is to adjust the design parameters so that
instability can be avoided. In order to achieve this goal, one can compute the normalised
gradients (Equation (3)), and use them as a guide for deciding the best action to take in
order to increase damping in an unstable configuration.

The normalised gradients at σ = 20◦ and σ = 120◦ are shown in Figure 8. The bar
height, value of normalised gradient, is a measure of aerodynamic damping sensitivity,
while the sign on top gives the type of correlation between input and output, i.e., a (+) sign
indicates that an increase in input variable results in greater aerodynamic damping. The
most important parameter in both cases of Figure 8 is β1 which is negatively correlated
with damping. M1 is important for σ = 20◦ but exerts negligible influence at σ = 120◦.
The influence of k diminishes from σ = 120◦ to σ = 20◦, and, most importantly, the nature
of its correlation with aerodynamic damping is opposite between the two cases; i.e., an
increment in k is beneficial at σ = 120◦ but detrimental at σ = 20◦. Finally, Xt shows the
same behaviour as k. The previous considerations lead to the conclusion that, varying only
one parameter, the most effective action one can take (for both Interblade Phase Angles) is
to reduce the incidence of incoming flow onto the blade (e.g., restaggering the blade).
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Figure 8. Normalised gradients for Case 4 at σ = 20◦ and σ = 120◦.

The change in aerodynamic damping due to variation in incidence angle and reduced
frequency is shown in Figure 9. The predictions are results from the surrogate model.
As expected, a reduction in incidence angle is beneficial for both Interblade Phase Angles
(Figure 9a). In particular, a decrease of 0.3◦ is sufficient to stabilise σ = 120◦, whereas a
reduction of 1.8◦ is necessary to stabilise σ = 20◦. Figure 9b confirms the contradicting
behaviour of aerodynamic damping with respect to reduced frequency, for the two cases:
an increase in k leads to a more stable blade at σ = 120◦, but aggravates the instability at
σ = 20◦ in the vicinity of the design point. The method also provides an “exchange rate”
between different parameters so that the designer can make the best choice for improving
flutter margin. For example, in Figure 9 for σ = 120◦, a decrease of 0.3◦ in incidence is
equivalent to an increase of, roughly, 0.06 in reduced frequency for eradicating flutter.
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Figure 9. Change in normalised damping at σ = 20◦ and σ = 120◦.

In summary, the surrogate model predicts that a decrease of 1.8◦ in flow incidence
should stabilise the blade at both σ = 20◦ and σ = 120◦. To verify this claim, a “restaggered”
case is setup, where the inflow angle is kept constant and the incidence is reduced by
restaggering the blade by 1.8◦. The other parameters are kept constant. The aerodynamic
damping predicted by the CFD is shown in Figure 10. As anticipated by the surrogate
model, σ = 120◦ becomes highly stable while the point at σ = 20◦ sits just above the zero
damping line. Two unstable points at σ = 0◦ and σ = 10◦ are still present: the process
described above can be repeated for them and appropriate changes to the input variables
can be made to induce stability at these Interblade Phase Angles.
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Figure 10. CFD prediction of normalised damping for “restaggered” blade.

4. Conclusions and Future Work

A machine-learning-based sensitivity analysis has been presented. The surrogate
model has been trained on results from a linearised aeroelastic solver and its validity has
been tested through evaluation of relative errors. The results concern a flap modeshape,
with different Interblade Phase Angles, across a range of reduced frequencies, flow con-
ditions and consequent acoustic waves regimes. It has been shown that the sensitivity
analysis can be used as a guide to take appropriate measures to stabilise two unstable
operating points; therefore, constituting a redesign tool for the given airfoil geometry. This
preliminary study shows how summary measures of influence of design parameters can
be easily extracted and presented with data-driven approaches, such as machine learning,
rather than classical methods of investigation. The results in this work are obtained with a
simple artificial neural network which makes no assumption regarding the flow physics
of turbomachinery. Furthermore, the results are only valid for the airfoil geometry used
in the training phase. Future work will focus on addressing these limitations by embed-
ding known physics into the cost function (e.g., continuity), and by training the model on
physically relevant steady state features (e.g., shock strength), independent of geometry.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws
URANS Unsteady Reynolds-averaged Navier–Stokes
PDF Probability Density Function
GMRES Generalized Minimal Residual Method

Appendix A. Computational Cost

The steady state solver uses a pseudo-time stepping technique to bring the solution to
convergence. In this study, a steady CFD solution is considered converged if every point
in the domain has a density residual of order 10−6. On average, the equivalent CPU time
elapsed to obtain a converged solution for this case is 8400 s.

The unsteady solver uses a preconditioned GMRES scheme to find the solution to the
system arising from the linearisation of the URANS equations. In this study, an unsteady
CFD solution is considered converged if the residual is of order 10−6. On average, the
equivalent CPU time elapsed to obtain a converged solution for this case is 20 s.

In total, the creation of the 5 databases employed in this study took an estimated
9280 CPU hours.

The ANN employed in this study runs on CPU and the optimisation process performs
a fixed number of steps, 750. The number of iterations was chosen so that the different
ANNs would not suffer from excessive underfitting or overfitting, so called “early stopping”
regularization. The cost function convergence history for the ANN employed in this work
is shown in Figure A1.
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Figure A1. Plot of cost function convergence.
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A total of 1072 different ANNs have been trained to find the best combination of
parameters, yielding an estimated 194 equivalent CPU hours. The results in Figure 7
consist of 8 steady and 135 unsteady simulations. The predictions from the CFD have been
obtained in an estimated 19 equivalent CPU hours, whereas the ANN produced its results
in 4.6 CPU milliseconds.
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