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Abstract: Empirical correlations are still fundamental in the modern design paradigm of axial turbines.
Among these, the prominent Ainley and Mathieson correlation (Ainley D. and Mathieson G., 1951,
“A Method of Performance Estimation for Axial-Flow Turbines,” ARC Reports and Memoranda
No. 2974) and its derivatives, plays a crucial role. In this paper, the underlying assumptions of
the aforementioned models are discussed by means of a descriptive review, whilst an attempt is
made to enhance their reliability and, potentially, accuracy in performance estimations. Closer
investigation reveals an intriguing misuse of the lift coefficient in the secondary loss. In light of
this, an enhanced model that, notably, builds upon the Zweifel criterion and the vortex penetration
depth concept is developed and discussed. The obtained accuracy is subsequently assessed through
CFD computations, employing a database comprising 109 cascades. The results indicate a 50%
probability of achieving the ±15% error interval, which is twice as good as the most recent Aungier
model (Aungier R., 2006, “Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design
and Analysis”, ASME Press, New York). Furthermore, the reliability of the proposed model is
demonstrated by a reconstruction of the Smith chart, on the one hand, and a performance analysis,
on the other. The reconstruction exhibits contours that conform to the original. The results of the
performance study are compared with the CFD solutions of eight cascades working in off design
conditions and confirm the need of the additionally included turbine design parameters, such as the
axial velocity and the meanline radius ratios.

Keywords: loss correlation; axial-flow turbine; turbine performance

1. Introduction

The axial turbine became incontestably the accustomed device for medium to high
mechanical power generation in modern powerplants and therefore, not surprisingly, it
still remains the subject of extensive research. Throughout the past decades, experience
and knowledge have grown continuously, adding refinements to the art of turbine design.
In this study, the 1D aerodynamic design, more specifically, the loss correlations employed
in the meanline analysis used in the early design phase, are reviewed. These models are
crucial, as they set the preliminary design parameters that can be maintained up to the final
design stage, that is, if the model incorporates sufficient levels of reliability [1]. Among
these, it is evident to note the renown Ainley and Mathieson (AM) correlation, published
in 1957, which serves this purpose [2] well. For the record, Ainley and Mathieson’s model
was considered to be a significant innovation, as it enabled the quantification of local
losses. It was, e.g., successfully employed in the design process of the Rolls Royce Olympus
engine [3]. Being the cradle leading to great successes and broad acceptance, it underwent
multiple updates [4–6], which expanded into a veritable genealogy.
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Over time, the design of axial turbines underwent several improvements and the
geometry became much more diverse, causing the accuracy and reliability of the current
historic correlation based (open source) 1D models to become less effective. An important
issue is their mathematical foundation, which relies on a fuzzy blend of classical flow
theory and heuristic manipulations matching the early cascade measurements [7]. Hence,
it is not surprising that modern turbines may become excluded from their range of applica-
tion. In light of this, studies have evaluated the correlation reliability through parametric
analysis [8–10]. Although inconsistencies have been identified and reported, no remedies
have been proposed. Accuracy has been evaluated on few test cases, which is insufficient
to affirm any statistical significance. These two aspects (reliability and accuracy) have to
be investigated with statistical evidence to clarify the true potential of the available 1D
correlations with the latest turbines. Moreover, it is deemed mandatory to upgrade the
correlations with a more robust physics based backbone, compatible with modern turbines.

The objective of this paper is, therefore, twofold. The first is to provide a comprehen-
sive review of the AM family correlations. The second is to enhance the AM correlation
based on recent breakthroughs in turbine aerodynamics and loss mechanisms, and boost-
ing compatibility with current design workflows. In particular, the Zweifel criterion [11]
and the depth penetration [12,13] are integrated into the latest Aungier (Ag) profile and
secondary loss models [6]. The latter are validated on a data set composed of 109 cascades
(static and rotating) to achieve statistical significance in terms of accuracy and reliability.
High fidelity simulations and their numerical solutions serve as the benchmark during the
evaluations. The correlation accuracy is determined in terms of probability according to
the Gaussian distribution of the relative errors, whilst the correlation reliability is proven
by its ability to reproduce the Smith chart [14] and maintain consistent trends in off design
conditions under the variation of the newly introduced axial velocity ratio.

2. Review

The importance of empirical loss correlations still remains high in the design process
of modern axial turbines. Despite their restricted fidelity, they can effectively offer guidance
in decision making during the preliminary design stages [1]. In general, the development
of empirical models is built upon on a turbine database, which is produced by means of
experimental tests where a multitude of measurements are performed and linked to several,
mostly dimensionless, design parameters. When parameters are found to correlate well,
dedicated design laws can consequently be established.

Quite recently, there was a spirited debate on the capability of cascade tests to approxi-
mate real turbine flow. The proponents claimed that cascades could offer a satisfactory basis
for estimating losses in real machines and should be preferred thanks to their simplicity,
flexibility and low cost [15]. The opponents, however, believe that cascades are inherently
limited since they cannot reproduce key aspects of the real operation environment, involv-
ing, e.g., rotational, curvature and inlet flow distortion effects [16]. Despite this contention,
the current state of the art research has clearly joined the supporting side, considering
the solid foothold of cascade tests in public literature. The authors of this work adhere
to the standpoint of Craig and Cox (CC) [17], which holds a certain relativism. In fact,
the extreme situation in which application of the correlations fails in both accuracy and
reliability is rather unlikely. However, careless use must be avoided, as this could lead to
an entirely erroneous result [18,19]. Hence, the user has to be fully aware of the features
and limitations involved, so that the correlations can be applied effectively in real turbine
design. This aspect is the crux of the following discussions.

Correlations are typically determined by the investigator’s own judgment, experience
and interpretation of flow physics, test quality and database size [20]. The challenge resides
in the way the wide information of a complex 3D flow is filtered and condensed into a 1D
empirical model. During its setup, certain parameters could be deliberately biased, with
the objective to reflect specific turbine characteristics. The reason behind this intervention
is quite straightforward. For example, aero-engine and land based steam turbines do not
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share the same design requirements, as is the case with high and low pressure turbines.
They differ by design and aerodynamics and so will the correlations. The comparative
studies of several public domain correlations [9,21] emphasized this issue clearly. As a
consequence, there are no universal turbine correlations at this point. Hence, they only
serve a specific range of applications adequately.

Since it is common to use empirical models for a wide range of turbine design applica-
tions, it is not surprising that the parameters estimated from the cascade correlation may
disagree with real machine measurements by a considerable order of magnitude. In these
circumstances, one resorts typically to a heuristic calibration. Otherwise, the correlation is
of little value [22]. However, there are some risks involved with such an approach. First,
simple multipliers/polynomials are often deemed sufficient, even though the resulting
correlation would much better suit turbines akin to those used in the database from which
the model was established. Second, its use inherently leads to designs whose aerodynamics
are similar to that of the turbines in its original database. The fundamental issue is the
statistical bias engendered by the limited size of the database. This could be prevented by
the construction of a large public database collecting all cascade measurements performed
up to the present day [7]. Unfortunately, early investigators did not share or even lost
their databases. New investigators often had to generate a new database from the ground
up, with neither access to previous data, nor methodologies. In particular, insights that
could have revealed a stronger interaction between design parameters, were curtailed. As
a consequence, 1D correlations revert to quite simple mathematics or charts and are biased,
which, thus, leads to results with rather low fidelity. In contrast, the models established
in large industries do not suffer from the aforementioned issues, where one can afford
the calibration of public domain or in-house correlations using the vast amount of data
accumulated over time for dedicated configurations. From this data, new versions of
earlier models can be developed, which enables a safer and cheaper enhancement of the
design process.

In [23], it was advanced that any loss correlation exhibits the same probability to
accurately predict turbine performance once out of its range of application. Considering
the current discussion, it is rather irrational to expect outstanding accuracy from models
that attempt to cover complex systems with elemental information. With full awareness
of the higher fidelity 3D methods intervening at later design stages, correlation accuracy
should be less prioritized, but the focus must initially go towards including all relevant
design parameters in the model. Therefore, the ability to cope coherently with the true
physics, i.e., reliability, must become the primary concern.

2.1. Ainley and Mathieson Family Correlations

The empirical AM correlation [2] has been so successful that it owns a lineage (the
AM correlation and its derivatives will not be differentiated in this framework, as these
are fundamentally equivalent). Chronologically, it was established through cascade tests
using conventional profiles stemming from the 1940s and claimed a nominal accuracy of
±2% in stage efficiency estimation. The latter corresponds to about ±15% total pressure
loss error. It was published at a time when the expertise and the understanding of axial
compressors were more profound than those of turbines [24]. As a matter of fact, before AM
was published, one had to resort to expensive experimental trial and error processes when
the available methods revealed efficiencies largely inferior to those of the actual turbines.
The AM correlation was, therefore, considered to be groundbreaking, as it provides a
systematic way to quantify turbine aerodynamic loss and its components.

The Dunham and Came (DC) correlation [4] was the first and a canonical update to
the model of AM, which used 16 1960s technology Rolls Royce turbines. It extended the ap-
plication range to small turbines, while retaining the same accuracy level. Dunham claimed
that their model was still the most reliable design tool during the 1970s, in a context where
there was a progressive adoption of potential flow calculation in industry [3]. However,
the investigators did not have access to the database of AM and, thus, the improvement
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resulted from model calibration based on the overall performance of a restricted number
of turbines. It is noteworthy to mention that CC [17], along with Traupel [25], published
new correlations with different approaches with regard to turbine aerodynamics in that
same period. The Kacker and Okapuu (KO) correlation [5] came as a second update based
on 33 1980s technology Pratt & Whitney turbines and showed an accuracy up to ±1.5% in
stage efficiency estimation in design conditions. Furthermore, KO, having high confidence
in the validity of the Smith chart [14] which contains 70 1960s technology Rolls Royce
turbines [26], calibrated their correlation to fittingly reproduce the same chart. Ag [6] sub-
sequently revised KO to handle recompression produced in extreme off design conditions
and real working fluids. In addition, it can cope with hub to shroud S2 calculations (the
hub to shroud S2 and blade to blade S1 calculations proposed by Wu [27] refer to stream
surfaces on which 2D flow equations are solved by mass-averaging the third coordinate).
This has recently been confirmed, notably in ORC turbines [28,29]. Despite many the critics
of its limitations, the choice of the AM correlation over other public correlations is driven
by three particular aspects. Firstly, it owns a comparatively broader mathematical basis
and is less reliant on empirical charts. Secondly, it does not require specific assumptions on
the blade surface velocity distribution nor the need to perform cumbersome mathematical
computations. As a consequence, faster solution and better accessibility are ensured, in
contrast to the semi-empirical models of Baljé and Binsley [30], Denton [31] and Coull and
Hodson [32]. Lastly, transparent and valuable details of its development can be retraced in
the successive works [2,24,33,34].

There are five sources of total pressure loss encountered in aerodynamics, notably,
skin friction, pressure drag, shock, leakage and mixing losses. However, this classification
was rearranged to associate these losses to their location instead of their phenomenological
origin. The AM family correlations assumed the turbine loss system as follows:

Yt =
ptr,out,is − ptr,out

ptr,out − pout
,

= Yp + Ys + Ycl .
(1)

• Profile loss Yp is generated by the growth of the boundary layer and flow mixing over
the blade surface. This encompasses skin friction and pressure drag. In case the exit
flow reaches supersonic velocities and triggers shocks near the trailing edge, then an
additional supersonic loss Yex is to be accounted for. These losses exclusively arise
from blade to blade S1 flow and thus assume spanwise uniformity.

• Secondary loss Ys originates from the interaction between endwall flow and the
pressure difference across the blade passage. The main actors are the 3D induced
vortices and endwall boundary layers. AM, drawing on the model of Carter [35],
regarded both flows and the annulus loss as one entity. This local loss is responsible
for spanwise non-uniformity at blade tip and hub.

• Tip leakage loss Ycl arises from the presence of a gap between the blade tip and the
shroud, preventing the rotating blade from rubbing against the casing. Although
this is indispensable to complete the loss system, this loss is not considered within
the scope of this work, where priority is given to the more fundamental profile and
secondary losses.

Although it was not specified, the correlations implicitly refer to losses of fully mixed
flow. However, to be precise, there is neither theoretical nor experimental evidence that can
justify the breakdown of Equation (1), as this inherently assumes little interaction between
the components [36]. However, its effectiveness might be due to the comparatively small
chord of axial turbine blades and the short flow transit time in the blade passage inhibiting
strong interaction between the secondary flows (all flows that differ from the primary
inviscid flow) [7].
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2.2. Profile Losses

The AM 2D profile loss [37] is

Yp,AM =

[
Yp,θin=0◦ −

∣∣∣∣ θin
βout

∣∣∣∣( θin
βout

)(
Yp,θin=−βout −Yp,θin=0◦

)](5tmax

c

)−Km
θin

βout
,

= f (s/c, tmax/c, θin, βout).

(2)

AM blended the profile losses of a slightly compressible 50% reaction nozzle Yp,θin=0◦

and impulse nozzle Yp,θin=−βout , as depicted in their Figure 4 on page 24 in [2], to cover all
intermediate designs. This correlation inherently comprises the trailing edge loss taken
at standard tte/s = 0.02. Equation (2) was obtained from low speed wind tunnel tests
and focuses on parabolically cambered conventional profiles, i.e., the British T.6 type
profiles. Their experimental results showed the notable sensitivity of the losses to the
profile thickness in impulse profiles and, thus, a correction for any deviation from standard
tmax/c = 0.2 [34] was introduced in the model. In addition, there was a variation according
to (θin/βout)2 for profiles in-between the impulse and nozzle blades, hence justifying the
arrangement/blending in Equation (2). The velocity distribution of the nozzle and impulse
blades was presented in AM’s Figure 5 on page 26 in [34]. This distribution shows that a
considerable portion of the suction side of the blade extending from midchord to trailing
edge is affected by flow diffusion, which is nowadays regarded as unacceptable in design
standards. Use of AM would, therefore, implicitly assume a similar velocity distribution
over modern turbine profiles, which is likely to result in a significant loss mismatch if
not handled with care [38]. This specific problem with associated implications has to be
addressed when enhancing Equation (2).

In order to improve the reliability of the model of AM for recent turbine configurations,
several correction factors—in this work designated as the auxiliary factorsK—have been
proposed by different authors [4,5]. For example, in his latest update, Ag [6] adapted the
profile loss correlation of KO (and, thus, AM). This equation possesses several auxiliary
factors and is expressed as:

Yp,Ag = KmodKMKpKRe
(
KiYp,AM −Ytte=0.02s

)
+ Ysh,

= f (ec/s, θin, θout, Mr,in, Mr,out, Re, e/c, k, i)Yp,AM.
(3)

• Mach correction factor Kp ≤ 1 reflects the flow acceleration in the blade passage
reducing viscous loss and acts in the subsonic range Mr,out ≥ 1. According to Ag [6],
Kp, introduced for the first time by KO, is flawed in extreme off-design conditions,
especially when recompression occurs at the blade hub. It was known that KO yielded
only satisfactory results at the design point [15]. Wei [9] tested KO and exposed a
curious slope disruption and a nonphysical reduction in the predicted profile losses in
cases of higher positive incidences i resulting in recompression, because of spurious
Kp values. It is also noteworthy that the impact of the Mach number was investigated
by AM [24] and is consistent with the purpose of Kp, but it was, surprisingly, not
adopted in the earlier Equation (2).

• Expansion correction factor KM ≥ 1 deals with local weak shocks on the blade suction
side in the subsonic exit Mach number band Mr,out ∈ [0.6–1] and was rendered
more physics driven. This parameter was first introduced by DC [4] for supersonic
flows and was derived from the overall turbine performance established by means
of experiments.

• Reynolds correction factor KRe applies to Reynolds numbers outside the transition
range [105–5× 105] and includes surface roughness, as seen in the CC correlation [17].
A standard finish of e/c = 10−4 is assumed throughout the analysis.

• Technology correction factor Kmod copes with the technology mismatch of Yp,AM when
examining the losses in post-1980s turbine profiles [37]. Kmod takes the value of 0.825
for meridional entry profiles and 2/3 for the other.
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• Incidence correction factor Ki ≥ 1 conditions the profile loss in off design conditions
and was proven to be successful in pre-1980s turbines [39] but overly conservative in
modern turbines [15].

In summary, the purpose of the auxiliary factors is to calibrate Equation (2) with
its underlying velocity distribution, without the need for an in depth understanding or
elaboration of the loss mechanisms. This is evidently caused by a lack of knowledge
transfer between AM, DC, KO and Ag [7]. The shock factor Ysh ≥ 0 accounts for local
shocks situated on hub profiles with a thicker leading edge under comparatively high inlet
velocities and is exclusively considered as an independent loss contributing to the profile
loss, as introduced by KO. However unlike that of KO, it is unaffected by the auxiliary
factors. If Mr,out ≥ 1, then Kp and KM are held at Mr,out = 1 and the supersonic loss Yex
has to be supplemented to Yp in Equation (3). Ag proposed

Yex,Ag =

(
Mr,out − 1

Mr,out

)2
. (4)

It must be recognized that this is a rather arbitrary formulation. However, this is re-
tained throughout the analysis because there are no more reliable alternatives at the moment.

As mentioned earlier, Equation (2) encompasses the trailing edge loss for standard
tte/s = 0.02. For any variation of tte/s, AM proposed a trailing edge correction factor
affected to Equation (1), such that

Yt = Kte(Yp + Ys + Ycl). (5)

This expression interrelates the trailing edge to the profile, and secondary and tip
clearance losses and was criticized by KO for its weak physical soundness regarding
the latter two options. In fact, neither of the endwall nor tip leakage vortices remain
closely attached to the blade surface upon reaching the blade exit, rendering interaction
between the vortices and the trailing edge wake flow unlikely. Instead, KO employed
a more intuitive approach and proposed the trailing edge loss Yte as an independent
component [5], such that

Yt = Yp + Ys + Ycl + Yte. (6)

However, Yte still remains part of Yp in a broader sense, so that Equation (1) is not
contracted. To enable this expression, one has to virtually bring Equation (2) to tte/s = 0
beforehand. However, Ag carried on this approach and formulated the trailing edge loss as
the consequence of an abrupt area enlargement:

Yte,Ag =

(
tte

o− tte

)2
. (7)

Correction to zero of the trailing edge of Equation (2) is performed by the subtraction
of Ytte=0.02s.

2.3. Secondary Losses

The AM 3D gross secondary loss is presented by the following equation [2]:

Ys,AM = λAMZ,

= f (βin, βout, θin, Aout/Ain, rhub/rtip).
(8)

This compact expression was the result of continuous efforts to interpret turbine
endwall secondary flows. λAM and Z are intrinsic parameters of the AM correlations and
originate from the work of Carter [35], who drew on the classical secondary flow theory.
The intent of AM was to define a common and unique basis between axial compressors
and turbines to quantify secondary losses, as one had (historically) the objective to employ
mostly similar blades for both devices. The theory associates endwall vortices with passage
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vortices produced in curved channels [40]. The latter originate from the distortion of
the inlet endwall boundary layer by the near-wall velocity deficit and the blade passage
pressure gradient, causing the inception of a helical cross-flow motion spreading throughout
the blade passage, as shown in Figure 1a.

(a) (b)

Figure 1. Secondary flow mechanisms considered by Carter [35]. (a) Classical secondary flow model.
(b) Cascade lifting line model.

As Carter strived for a practical model to quantify the losses incurred by these passage
vortices, he made an analogy with the lifting line theory to obtain a first order approxima-
tion. The idea that Carter used leans on the trailing edge inviscid vortex sheet produced by
flow circulating around a blade. Being unstable, the closed vortex filaments of the vortex
sheet roll up into trailing vortices at the blade ends, as shown in Figure 1b. Based on
qualitative analyses of some experimental evidence taken downstream of the blade, the
modelled trailing and passage vortices were made equivalent, to establish a secondary loss
correlation [35]. Hence, the induced drag under uniform spanwise circulation is:

CD,s =
1
4

C2
L,m

s/c

(
1− 2H′

H

)
= λAM

C2
L,m

s/c
, (9)

with H′ the distance from blade midspan to the core of the endwall vortices. This loss
coherently reflects lost work by the product of blade loading and the width of the trailing
vortices; an analogy to force time displacement. AM subsequently replaced H′ by the
empirical Ainley parameter λAM, which is shown in their Figure 16 on page 31 in [34], and
which reflects the vortex characteristics implicitly. The involved lift coefficient CL,m refers
to the mean velocity and relates to the mean angle βm, where

CL,m = 2
s
c
(tan βin − tan βout) cos βm, (10)

and

βm = tan−1
(

tan βin + tan βout

2

)
. (11)

This was transformed into the Ainley loading Z with:

Ys,AM = CD,s(cos2 βout/ cos3 βm)(c/s) = λAMZ, (12)

where:

Z =
C2

L,m

s/c
cos2 βout

cos3 βm

c
s
= 4(tan βin − tan βout)

2 cos2 βout

cos βm
. (13)

This equation assumes an axial velocity ratio AVR and meanline radius ratio κ, with:
AVR = Wz,out/Wz,in = κ = rin/rout = 1 and is fully independent of s/c. Note that a change
in blade loading due to a pitch to chord variation would not be identifiable [41]. As a matter



Int. J. Turbomach. Propuls. Power 2022, 7, 14 8 of 27

of fact, this expression is much closer to the lift coefficient of a single airfoil. The chosen
lifting line theory is also used under steady and incompressible conditions and is applied
to low camber/loading blades to guarantee the linearity of the problem. As a result, a large
disagreement in secondary loss may arise in impulse turbine blades [8] and Equation (13)
may wrongfully override other parameters under high loadings [10]. AM were aware of
this issue, given the shortage of high-loading blades in their database [34].

It is also interesting to note that a mathematical “mistake” occurred with respect to
Equation (12). Normally, the outcome should have been [40]:

Ys,AM = CD,s(1/ cos βm)(c/s), (14)

and consequently, Equation (13):

Z = 4(tan βin − tan βout)
2 cos βm (15)

which yields results that are several orders of magnitude higher. This indicates that
Equation (12) was most likely adapted heuristically to match the measurements. Therefore,
as they possess little physical meaning, λAM and Z cannot be taken apart in the analysis [7].
This is not surprising, since the secondary loss of AM in Equation (8) was calibrated with:

Ys = Yt −Yp (16)

This corresponds to Equation (1) in absence of clearance losses but has another impli-
cation. In fact, the secondary loss was calibrated to the subtraction of the measured true
total loss by the modelled profile loss of Equation (2). Hence, Equation (8) embodies the
errors associated to Equation (2). As is the case with λAM and Z, secondary and profile
losses should also not be used separately, as they are bound together by Equation (16).

Dunham [19] criticized the approach of Carter but still relied on it to produce

Ys,AMDC = 0.0334KAR

(
cos βout

cos θin

)
Z,

= f (H/c, βin, βout, θin).
(17)

The aspect ratio factor KAR ≥ 1 relates the intensity of the endwall vortices with blade
height and was reported to have questionable reliability [42]. DC simplified the multipliers
in Equation (13) using a cascade configuration

λAM = f

(
(An,out cos βout/An,in cos θin)

2

(1 + dhub/dtip)

)
= f

(
1
2

(
cos βout
cos θin

)2
)

= 0.0334KAR

(
cos βout
cos θin

)
(18)

The constant 0.0334 is expected to cover most inlet boundary layer thicknesses and was
obtained by calibration to overall turbine performance data [22]. Even though this crude
approach is not able to estimate the downstream endwall loss of cascade flows [18], it was,
however, proven to be more accurate than most refined correlations tested and compared
under diverse inlet boundary layer profiles [43]. Eventually, Ag improved Equation (17) to

Ys,Ag = KpKRe

(
Y2

s,AMDC

1 + 7.5Y2
s,AMDC

) 1
2

,

= f (Mr,in, Mr,out, Re, e/c)Ys,AMDC,

(19)

which shares the Kp and KRe of Equation (3) [6]. Nevertheless, KRe was inherited from DC
and was later removed by KO. They certainly did not agree on the impact of viscosity on the
endwall flow and, interestingly, the debate is still ongoing. It is true that the endwall vortices
are mostly driven by inviscid mechanisms. However, their growth in the blade passage
highly depends on the endwall boundary layer flow preceding the blade leading edge
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and continuous interaction with the blade surface boundary layer. Thereby, the approach
of DC and Ag is more plausible. The square root manipulation prevents loss overshoots
in extreme off design conditions. This feature has proven to be particularly crucial in
optimization. In fact, the search algorithm could inadvertently exploit inconsistencies of
the correlation to reach its objective [44].

Again, the auxiliary factors act as moderate multipliers to the basic Equation (17). It is
interesting to note that the aptness of the axial turbine loss correlations was investigated in
the context of centrifugal turbines, and, more specifically, the interaction of the auxiliary
factors [23]. Drastic changes in the aerodynamic parameters did not trigger a comparable
variation in the auxiliary factors, which could have guaranteed reliable solutions. Hence,
these auxiliary factors can only sustain minor and individual adjustment and, thus, axial
turbine correlation should only be used with axial turbines.

3. Profile Loss Enhancement

The Ag correlation [6], being the latest complete loss system, constitutes the most
suitable vessel for successive enhancements. Thus, the profile loss of Equation (3) is
revamped into

Yp,Enh = 0.914KmodKMKpKReYp,AM + Ysh + Yinc,

= f (ec/s, θin, θout, Mr,in, Mr,out, Res, e/c, k, i, dLE/s, WeLE, AVR)Yp,AM,
(20)

in which Equation (2) is rewritten as

Yp,AM =

[
Yp,βin=0◦ −

∣∣∣∣ βin
βout

∣∣∣∣( βin
βout

)(
Yp,βin=−βout −Yp,βin=0◦

)](5tmax

c

)−Km
βin

βout
,

= (s/c, tmax/c, βin, βout, ψZ).

(21)

Carrying on with the auxiliary factor arrangement of Equation (3), several minor
changes were performed.

1. Metal angle θin in Equation (21) was replaced by a design flow angle βin. Practically, a
better continuity in design workflow is gained by focusing on the flow angles first and
deriving the metal angles afterward. Modern turbines tend to integrate little negative
incidence to enable low loss in off designs. Proceeding with θin would, rather, require
extra iterations in the preliminary design process.

2. Yp,βin=0◦ and Yp,βin=−βout in Equation (21) were scaled by a common s/c. Before
developing the modifications, the context in which they were built is reviewed and
compared to current practice. During the 1940s, blade profiling was an empirical
science. It consisted of a selection from a family of standardized profiles and was
arranged into cascade configuration with little allowable change. This approach was
inherited from axial compressors and guaranteed cost-effectiveness as it facilitated
manufacture. It was impossible to grasp the trend of cascade performance without
resorting to cumbersome trial and error wind tunnel tests until the determination of
a competent profile. This substantially contrasts with modern profiling techniques,
which offer close monitoring and automated optimization of the blade surface velocity
distribution. Yp,βin=0◦ and Yp,βin=−βout were certainly obtained from competent but
obsolete profiles, in which blade surface velocity distributions or efficiencies have
become unacceptable according to modern state of the art standards [34]. As they form
the cornerstone of Equation (2), it would be unreasonable to initiate large modification
at the risk of disrupting the auxiliary factor arrangement in Equations (3) and (20).
Instead, a scaling technique with a reference s/c, which is analogous to that applied to
compressor performance maps, is proposed. In a design process, s/c is set following a
trade off between efficiency and cost. If efficiency consideration prevails, the optimum
s/c that minimizes profile loss, in this case of Equation (2), is chosen, so that any s/c
departure results in profile loss increase or simply efficiency deterioration. However,
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the optimum s/c of Yp,βin=0◦ and Yp,βin=−βout are fixed and specific to competent
profiles. The issue would then be its insensitivity to other types of profile. With this in
mind, a reasonable approach that maintains the Yp,βin=0◦ and Yp,βin=−βout trend and
scales the optimum pitch to chord ratio s/cAM of Equation (2) to a new optimum
s/c is proposed. The purpose is to extend Equation (21) to other profiles in which
optimum s/c abides by different design rules. Among these, the prominent Zweifel
criterion [11] is chosen to inherit its flexibility and its incompressible is generalized to:

s/cZ =
1
2

b
c

ψZ

| 1
AVR tan βin − tan βout| cos2 βout

, (22)

introducing the axial velocity ratio AVR as an additional design parameter. An ψZ
beyond the range of [0.6–0.8] recommended by Zweifel is chosen, to achieve the higher
optimum pitch to chord ratio s/cZ in modern turbines. The vital scaling factor is:

fs/c =
s/cZ

s/cAM
,

= f (s/c, βin, βout, AVR, ψZ, γ),
(23)

which is multiplied to the s/cAM of Equation (21). Note that Yp,βin=0◦ and Yp,βin=−βout

are fitted as polynomials about their respective optimum s/c (the fitting formulae
of Tournier and El-Genk [45], Korpela [46], Aungier [6] and Concepts/ETI [47] were
tested at extreme βout = 30◦ and βout = 80◦; the Tournier and El-Genk performed best),
so that the scaling process does not alter their slope. As demonstrated, the original
and scaled Yp,βin=0◦ and Yp,βin=−βout are depicted at exit flow angles βout = 50◦ and
70◦ in Figure 2, with the ψZ = 1 typical of modern turbines.
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Figure 2. Optimal pitch to- hord ratio matching of AM profile losses [2] with ψZ = 1. (a) Nozzle
βin = 0◦. (b) Impulse βin = −βout.

Both Figure 2a,b are consistent on the minimum shift. At βout = 70◦, a larger s/c can be
achieved with better boundary layer flow control during blade profiling. However, at
βout = 50◦, a lower s/c is resorted tp, in order to satisfy ψZ = 1. This is an undesirable
solution, as this would add structural weight. A cost-effective constraint is imposed
to refrain fs/c ≥ 1.1.

3. The Reynolds correction factor KRe was adjusted to suction surface length and becomes
a function of the suction surface Reynolds number Res. Suction surface momentum
thickness could be responsible of up to 90% of the profile loss [32], the suction surface
flow should logically be prioritized.
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4. Incidence loss Yinc replaces the incidence factor Ki of Equation (3) and acts as a fully
independent, contributing to the profile loss. According to Moustapha et al. [15],
modern turbines are designed with relatively thicker leading edges and smoother front
curvatures, to retard boundary layer separation over a wide range of incidence angles
and to keep loss at low level. This feature can not be reflected in the conservative Ki. In
this regard, Benner et al. [48] formulated a polynomial incidence loss Yinc compatible
with KO and used in Equation (20).

5. The trailing edge loss Yte,Ag of Equation (7) is insensitive to change of turbine operating
conditions and, thus, was deemed inappropriate for modifications. As an alternative,
the Yte of KO, which encompasses many key aerodynamic parameters, is considered:

∆Φte,KO = ∆Φte,βin=0◦ −
∣∣∣∣ βin

βout

∣∣∣∣( βin
βout

)(
∆Φte,βin=−βout − ∆Φte,βin=0◦

)
. (24)

The replacement of θin by βin follows the same reasoning behind Equation (21). Draw-
ing on the profile loss of AM in Equation (2), KO blended the exit boundary layer
mixing and base pressure losses of nozzle and impulse blades [5]. Instead of a subtrac-
tion, as in Equation (3), virtual correction of Yp to tte/s = 0 produces a multiplication
by 0.914 in Equation (20). The latter corresponds to the value of Kte proposed by AM
in Equation (5) at standard tte/s = 0 [2]. Now, the conversion of Equation (24) to Yte
involves Mr,out [49]. This is a property specific to the total pressure loss coefficient and
cannot be counted as part of the correlation. However, recent literature has proven
its reliance on Mr,out but has not delivered any correlation compatible to the AM
family [50]. Conveniently, Equation (24) was acquired on low speed tests in the same
way as Equation (2). This implies that auxiliary factors defined for the profile loss
can be reasonably extended to the trailing edge loss. Considering the relevance of
compressibility and Reynolds effects, Equation (24) is revamped into

Yte,Enh = KMKpKReYte,KO,

= f (βin, βout, tte/o, Mr,in, Mr,out, Res, e/c).
(25)

4. Revised Secondary Loss

In light of the issues disclosed earlier in Equation (9), its terms are overhauled. The
purpose is to determine a better product of loading and displacement supported by a robust
physical basis and depart from the approach used in Equation (16). The latter implies that
each contribution has to fully be independent, as in Equation (1). Interestingly, there was a
formulation anterior to Equation (8) found in early works [24,33]:

Ys,AM = 0.04
(

1− θin
βout

)
C2

L,out, (26)

using the lift coefficient based on the outlet velocity

CL,out = 2
s
c
(tan βin − tan βout)

cos2 βout

cos βm
. (27)

Unfortunately, Equation (26) was abandoned in favor of the model of Carter [35]
because it owns a firmer theoretical background and provides common ground for future
compressor and turbine models, according to AM [34]. Contrary to their expectation, axial
compressors and turbines have not taken the same course of evolution. As odd as it may be,
there is a soundness in Equation (26) in the present context. In particular, CL,out is consistent
with turbine analysis, which is not the case with Z of Equation (8), which relies on CL,m in
Equation (10).
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The secondary loss improvement begins with CL,out rearranged and generalized into
the lift solidity coefficient

CL,out

s/c
=

(
1 +

1
AVR

)( κ

AVR
tan βin − tan βout

)cos2 βout

cos βm
. (28)

Assuming AVR = κ = 1, Equation (27) is recovered. Modern turbines possess a
meridional flowpath that forces the radial shift of streamlines such that κ 6= 1. The
latter triggers the Coriolis force and may lower work output [51]. Moreover, expansion
through each row inevitably accelerates the flow and, thus, invariance of AVR even in early
design stages, which thus constitutes a poor assumption. This aspect would serve in the
subsequent evaluation of the correlation reliability. In addition, βm is also generalized to:

βm = tan−1

(
1

AVR tan βin + tan βout

1 + 1
AVR

)
. (29)

Elaborated models of the endwall vortices have been produced since then, to substitute
the classical secondary flow theory. Among these, the passage vortex penetration depth of
Sharma and Butler [12], later enhanced by Benner et al. [13], is proposed as the replacement
to λAM:

Zte

H
=

0.1F0.79
θ√

CR(H/c)0.55 + 32.7
(

δ∗

H

)2
,

= f (H/c, δ∗/H, βin, βout, γ, s/c, AVR).

(30)

Once the incident endwall flow impinges on the blade, a first separation occurs at
the leading edge, creating a horseshoe vortex, as illustrated in Figure 3a. Under passage
pressure gradient and crossflow friction, the pressure leg is progressively strengthened and
pushed towards the adjacent blade suction side. Meanwhile, the suction leg remains near
the suction side wall. Eventually, both legs of opposite vorticity coincide at the minimum
pressure point. The suction leg starts to orbit around the dominant pressure leg, also
identified as the passage vortex. The latter draws a demarcation line S4 on the blade suction
side. Sharma and Butler assumed symmetric and linear S4, beginning at the leading edge
and forming a triangle, as shown in Figure 3b. Zte/H corresponds to the width of the
passage vortex taken at the trailing edge. It also differs from λAM by the weight attributed
to the parameters. For instance, AM prioritized the area ratio Aout/Ain over blade turning
βin + βout, as there was only weak evidence on the influence of blade loading [34]. On the
opposite, the genetic algorithm used by Benner et al. identified a stronger influence of the
blade tangential force Fθ , rather than the convergence ratio CR, analogous to Aout/Ain.

(a) (b)

Figure 3. Endwall vortices model. (a) New secondary loss model [12]. (b) Passage vortex penetration
depth [13].
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Coull and Hodson [10] pointed out the absence of directives in the calculation of the
upstream displacement thickness δ∗/H. This is a minor issue, as classical formulae or rea-
sonable estimates could be resorted to. However, it is still unable to consider downstream
endwall loss increase [18]. In a turbine environment, this issue becomes less relevant, as
vortex flow is disrupted by succeeding blade rows distanced by a short row gap. The
threshold of Equation (30) is Zte/H = 0.5, above which the merging of the endwall vortices
takes place and produces distinct flow dynamics.

An additional consideration is made on the aspect ratio H/c. Enlarging blade height
H and shortening blade chord c both increase H/c but affect secondary loss in different
ways [34]. This problem was raised in the early cascade tests of Kraft [52], which exposed
the insensitivity of the secondary loss under the change of c. The traditional interpretation
reflected by the auxiliary factor KAR in Equations (17) and (19) is that secondary loss is
inversely proportional to H/c. This is valid when H is varied but no special regard to c
has been made. However, as H/c approaches 0, KAR tends to infinity and vice versa. This
contradicts the real physics of the secondary flow. Teia even showed that the structure of
the endwall vortices is unaltered by the change of H beyond a certain critical aspect ratio
in his Figures 10–12, page 25–26 [42]. He deduced that interaction between the endwall
vortices is absent and, thus, secondary loss should remain constant. Below a certain critical
aspect ratio varying H, the vortices merge together and amplify loss. His observation
offers new insights into the highlighted inconsistency but lacks key verification. Notably,
correlation between vortices’ interaction and loss was not established and this can hardly
argue secondary loss insensitivity for all H/c before merging. In addition, no means
were provided to estimate his critical aspect ratio. Drawing partially on his observation,
invariance to H/c above H/c = 2 in Equation (30) is imposed. H/c = 2 corresponds to
the traditional threshold below which the slope of KAR becomes sharper. Concurrently, the
database size bias of Equation (30) reduces its certainty beyond the same threshold [13]. At
this stage, it is cautiously advanced that loss amplification occurs even before the merging
of the vortices within H/c ≤ 2. The problem with c remains unsolved.

Replacing Equation (8), the basic secondary loss is

Ys,b =
1
2

Zte

H

(
CL,out

s/c

)2
,

= f (H/c, δ∗/H, βin, βout, γ, s/c, AVR, κ),
(31)

accounting for the pair of endwall vortices and their core located at Zte/2H as in Figure 3b.
This respects the structure of lost work with loading and displacement parameters. The
square of CL,out/(s/c), as in Equation (26), is inherited from the classical lifting-line theory,
which associates the endwall and induced vortices. It yields values which are lower than Z
by several order of magnitude, hence predominance of CL,out/(s/c) over other parameters
is naturally prevented

The independence to s/c in Equation (19) has been criticized, as this does not fit
reality [41,53]. Practice refers to the optimum s/c with profile loss consideration only,
there are still no available studies, to this day, that have addressed an overall optimum
for both profile and secondary losses [19]. The tangential force Fθ of Equation (30) utilizes
s/c as loading indicator and is unable to serve this purpose. As a reasonable attempt
to incorporate the intensification of secondary loss caused by deviation from the profile
optimum s/c, an auxiliary factor is proposed

Ksc = 1 + 10
(

1− s/c
s/cZ

)2
,

= f (s/c, βin, βout, AVR, ψZ, γ).
(32)

This polynomial expression was acquired by fitting the cascade data of Perdichizzi
and Dossena [41], as shown in Figure 4.
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Figure 4. Optimum pitch to chord ratio auxiliary factor for secondary loss.

Tests were conducted for s/c = 0.58, 0.73, 0.87 and i ∈ [−60–+35]◦. The highlighted
points result from averaging over the incidence range and normalizing by s/cZ with
ψZ = 0.6 such that a clear parabola could be drawn. The data of Hodson and Dominy [53]
were also exposed and normalized with ψZ = 0.9, for comparison. According to the trend,
it is seen that their LPT profiles were not optimized at nominal s/c and, thus, their results
are omitted. The magnitude of Equation (32) is restrained to 1.5 beyond the range [0.8–1.2]
as a precaution, given the scarcity of data. Lastly, the enhanced secondary loss, keeping the
same arrangement as Equation (19), is updated as

Ys,Enh = KscKpKRe

(
Y2

s,b

1 + 7.5Y2
s,b

) 1
2

,

= f (s/c, ψZ, γ, Mr,in, Mr,out, Res, e/c, H/c, δ∗/H, βin, βout, AVR, κ).

(33)

Further discussions regarding recent works are carried on. Teia [42] stipulated that
profile loss should increase with H/c. He argued that increasing H incurs additional loss,
as the boundary layer covers more surface area. This implies a 3D effect which violates the
2D spanwise uniformity of the profile loss assumed in Equation (1). A similar attempt was
done by Benner et al. [54], with their alternative loss breakdown

Yt = Yp

(
1− Zte

H

)
+ Ys. (34)

The boundary layer flow was treated separately in accordance to the area division on
the suction side in Figure 3b. They stated that their secondary loss correlation includes
the profile loss of the secondary regions, which is unlikely since their genetic algorithm
search removed the blade skin friction during the development of their correlation. In that
sense, the net profile loss is confined within the primary region delimited by S4. Although
intuitive, these results are not compatible with older correlations, especially when the Yp of
Equation (34) is still that of KO.

To ascertain the credibility of the update, it has to achieve statistical significance and
thus requires a large database. A major challenge in this framework is to gather a sufficient
number of public turbine test cases to possibly enable unbiased analysis. A previous
study [23] collected 33 subsonic cascades (15 static and 18 rotating) partitioned from single
stage turbines. The same approach is adopted and the previous cascade database is enlarged
to 109 specimens (54 static and 55 rotating) to enhance representativeness. Their key design
parameter range is summarized in Table 1.
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Table 1. Design parameter range of the cascade database.

Parameters Min Max

s/c 0.498 0.974
H/c 0.456 6.493
Mr,in 0.071 0.649
Mr,out 0.149 1.280

βin + βout 45.6◦ 138.9◦

Re 4.538 × 104 6.025 × 106

Res 5.487 × 104 1.1185 × 107

Although it was advanced that reliability should be prioritized over the accuracy in
the early review, both aspects would be investigated. For this purpose, high fidelity CFD
simulations were conducted on the cascades and the solutions would serve as a benchmark
in the analysis.

Although the clearance leakage loss Ycl is not addressed in this paper, it is funda-
mental to select a compatible leakage loss model to complete the system of Equation (1).
For this purpose, the recent correlations of Yaras and Sjolander [55] or Farokhi [56] are
recommended.

5. Numerical Method

Since numerical steady solutions serve in determining Yt, their credibility has to be
guaranteed. At issue is their overriding dependence upon numerical discretization and
turbulence modelling [57]. Without proper verification and validation, any produced
solutions would be untrustworthy [58]. In this regard, a previous study [23] adopted the
systematic V and V procedure [59] to identify the numerical scheme (mesh and turbulence
model) best suited for the simulation of turbine aerodynamics. It was performed on the
Aachen turbine rotor test case [60] with NUMECA FINE/Turbo [61] and presented an on
design numerical error of 3.79% the experimental value. The latter is considerably lower
than the accuracy standard of ±15% of the correlations [34,38], therefore justifying the use
of CFD in the assessment.

The computations were run with the commercial package NUMECA FINE/Turbo [61]
whose code architecture is capable of maximum second order accuracy. In order to cap-
ture anisotropy, and impact of curvature and body forces on turbulence, the proprietary
separation sensitive corrected explicit algebraic Reynolds stress model (SSC-EARSM) was
chosen. Compared to the conventional EARSM model [62], this was calibrated by scale
adaptive simulation to increase turbulent mixing in the flow separation region and enhance
the near wall behavior of anisotropy. Single blade passage meshes were generated with the
semi-automatic mesher AutoGrid5. O4H topology, which comprises batches of curvilinear
structured hexahedral blocks, was adopted. A large portion of cells were clustered at the
wall boundaries and plane intersections to enable, first, inner cell spacing characterized by
y+ ≈ 0.8 within the viscous sublayer. The employed mesh resolution was about 2.7× 106

nodes. To ensure algorithm robustness, a uniform profile of absolute total temperature
and pressure was imposed at the inlet patch, placed at one chord upstream of the leading
edge. This also guarantees the control of the endwall boundary layer over the distance
separating the inlet patch to the blade leading edge and enables the use of classical formula
in the δ∗ estimation in Equation (30). Static pressure was subsequently prescribed at the
outlet patch placed at one chord downstream of the trailing edge. This distance should
enable mixed out solutions at the outlet. Periodic boundary conditions were imposed on
the circumferential patches of the control volume. All simulations were performed with
real gas in on design conditions, unless specified otherwise.

6. Correlation Accuracy

Although it has been advanced that correlation accuracy should not be prioritized,
the extreme case with 100% error is not tolerable either. In that sense, the limit at which
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inaccuracy fails the correlation has to be evaluated. For this purpose, the previous gauge
with the probability ∆Ptol of reaching a tolerance interval of ±15% error is reused [23],
this is depicted in Figure 5. This conforms to the aforementioned accuracy standard of
±15% [38] and accommodates numerical error uncertainties.

∆Ptol

E× 10[ %]−4 −3 −2 −1 0 1 2 3 4

Figure 5. Tolerance interval for correlation accuracy evaluation.

The assessment relies on straightforward descriptive statistics. The latter require a
bounded quantity following a near normal distribution and including Equation (1). Thus,
the relative error normalized by the benchmark CFD solutions is

E =
Yt,num −Yt

Yt,num
. (35)

with the large database available, a z-distribution is assumed [63].
The update is assessed together with its original form in Figure 6. By comparing

the predicted loss of each cascade, the depicted trend in Figure 6a indicates a higher
estimation by the enhanced correlation. Distinct disparities occur at high loss levels,
whereas most points are clustered below the bisection at low levels, within a ±0.05 band.
Hence, Ag and its update moderately agree for low loss only. As per the convention
for scatter plots, the centered bar represents the mean and the other smaller and larger
bars delimit the 99% confidence interval and standard deviation, respectively. Figure 6b
uncovers a significant difference between Ag and its update, with approximately 10%
distance separating their confidence interval. Both populations have comparable spreads
but that of Ag is largely decentered, unveiling a systematic underestimation from the
Ag correlation. Their difference produces a coherent shift of its mean to the negative
side. However, contrary to any expectation, its spread has not shrunk, implying that the
update has inherently departed from its original model in terms of turbine aerodynamics
interpretation. A priori, if accuracy has to be improved, then the correlation should have
its relative error centered on 0 and standard deviation within ±15%, to deliver at least
∆Ptol = 66%. The numerical values are gathered in Table 2 and include the ∆Ptol of each
distribution.
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Figure 6. Comparison of Ag and enhanced correlations. (a) Total loss. (b) Total loss relative error.
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Table 2. Statistical solutions of the axial cascade database.

Method Descriptive Statistics

Parameters Ē [%] σ [%] ∆Ptol [%]

Ag 30.255 21.308 22.018
Enhanced 8.548 23.409 45.136

∆ −21.707 22.634 33.107

With the Ag correlation, it is possible to achieve the required accuracy with approx-
imately 25% chance. This result is opposite to the previous analysis, which reported an
optimistic ∆Ptol = 45.13% while retaining a comparable σ = 23.41 over 33 cascades [23].
It is very likely that the mean is susceptible to sample size bias, while the spread remains
invariant. The enhanced correlation outperforms by doubling ∆Ptol with a better position
of its mean error. This result has to be handled with care, as this would change with another
comparable cascade database with a shift of the mean error. On the other hand, the spread
manifests as a barrier marking the limit of low fidelity models. For this reason, accuracy
should be relegated to higher order methods.

7. Correlation Reliability

Adopting the approach of Horlock [64] and Coull and Hodson [32], trend consistency
is evaluated with the flow coefficient φ and stage loading ψ. The latter condition the turbine
stage velocity triangle and efficiency. Their early selection is guided by the famous Smith
chart [14], after fixing the stage number.

As a reminder, Figure 7 was established by tests on 70 cold single stage turbines which
reactions varied from 20% to 60%. These were designed with AVR = 1 and zero incidence.
Coull and Hodson supplemented the blade profiles associated to different areas of the chart.
The top left area is characterized by the highest turning and lowest efficiency airfoils to
satisfy the loading requirement. In this regard, accrued interblade passage convergence is
required to guide reduced momentum flows. Nevertheless, flow turning can be alleviated
for the same loading and efficiency by increasing φ and thus transiting to the top right area.
Eventually, the bottom area is characterized by low turning and higher efficiency airfoils
and the same consideration concerning the flow passage configuration.

Figure 7. Smith chart calibrated to zero tip loss and 50% reaction [14,32].

To demonstrate reliability, the enhanced correlation is expected to reproduce the same
topology by varying φ and ψ, as attempted by CC [17] and KO [5]. For this purpose,
the analysis begins with the design of a single LPT stage using the setting of Coull and
Hodson to acquire a common basis for comparison and explore the LPT for which the AM
correlations are known to fail [10]. Repeating stage, 50% reaction, a constant hub to tip
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ratio of 0.75 and parabolic camber are assumed. The first stage power requirement and
inlet boundary conditions are taken from the GE E3 LPT [65]. The design parameters s/c,
βout, velocity ratio VR= Wout/Win and H/c of the LPT rotor are plotted in Figure 8 over
the same ψ and φ range as the Smith chart, for reference. Consecutively, the LPT isentropic
efficiency is derived.
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Figure 8. Velocity triangle and geometric parameter ranges of the LPT rotor. (a) Pitch to chord ratio
s/c. (b) Exit flow angle βout. (c) Velocity ratio VR. (d) Aspect ratio H/c.

First, considering the profile loss efficiency in Figure 9, both contour plots unsurpris-
ingly share the same topology. Equations (2) and (21) differ by minor calibrations involving
the Zweifel criterion [11] and extending the auxiliary factors to Equation (24). Furthermore,
their bottom right area is identical, since Zweifel criterion matching is disabled for low
turning profiles at fs/c > 1.1. The abrupt break of the contour 0.02 arises from Kmod, which
alters its value when departing from nozzle profiles at low ψ [37]. In Figure 9a, profile
loss is minimized for most of the bottom area, reflecting low turning profiles, as shown
in Figure 8b. Greater ψ and fewer losses are feasible by increasing φ but at expense of
lower s/c, as in Figure 8a. Loss is aggravated towards the top left area, which conforms
to Figure 7. Figure 9b stands out with its comparatively lighter gradient, induced by the
adequate application of fs/c. With the exception of the bottom right area and according to
the results of Coull and Hodson [32], a loss level comparable to that of the semi-analytical
correlations of Denton [31] and Coull and Hodson [10], in Figure 10a,b, page 7, respectively,
is achieved.

Then, secondary losses differ in all possible aspects in Figure 10. The Ag secondary
loss [6] remains low for most of the domain and increases towards the top left area in
Figure 10a. This pattern is not shared by other AM family correlations [10]. Further insights
are offered by analyzing the components of Equation (8). Here, λAM displays a topology
similar to that of Figure 7 in Figure 11a. Its minimum is reached at the bottom left area
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and, curiously, remains invariant towards the top right direction. Meanwhile, amplification
takes place in all other directions, switching from curved to straight contours. On the other
hand, Z progressively grows accordingly, along ψ, to reach the steepest straight contour in
the top left area in Figure 11c. With a difference of O(103), it naturally plays a predominant
role in the product of Equation (8) and dictates the resulting topology. Thus, Figure 10a
disregards most features of Figure 11a and highlights losses with contours that are curved
by the auxiliary factors and the square root of Equation (19). Conversely, the lowest loss is
produced at greater ψ and gradually intensifies towards the bottom right area in Figure 10b.
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Figure 9. Profile loss efficiency with ψZ = 1.1, AVR = 1, i = 0, H/b = 6.5, 4.6 for stator and rotor.
(a) Aungier [6]. (b) Enhanced.
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Figure 10. Secondary loss efficiency with ψZ = 1.1, AVR = 1, H/b = 6.5, 4.6 for stator and rotor.
(a) Aungier [6]. (b) Enhanced.

The central question to be posed now is which correlation conforms to reality? Back
to Figure 11a, λAM is supposed to reflect the endwall vortices. In this regard, the increase
in the top left area is consistent, since it is backed by a sharper exit angle in Figure 8b and
lesser aspect ratio in Figure 8d. However, the other increase in the bottom right area is
unlikely. It is impossible to magnify the endwall vortices by decreasing turning/loading,
increasing aspect ratio and also lowering VR in Figure 8c. Moreover, a higher φ should not
favor the growth of secondary flows in the flow passage, as these are downwashed through
considerable momentum convection [7]. With these points in mind, it is seen that the
monotonous penetration depth of Figure 11b better matches the topology of Figure 8b–d.
The contour slope disruption in the top left area is triggered by the aspect ratio variation
for H/c < 2, ensuring discussion over the results of Teia [42]. Once again, there is a clear
divergence between the blade loadings in Figure 11c,d. Contrasting with Figure 11c, the
maximum is located in the bottom right area. This feature comes from the s/c at the denom-
inator in Equation (28) and is substantiated by Figure 8a, in which the minimum occupies
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the same area. Z originally accounted for s/c as uncovered in Equation (13) but dispensed
with its contribution, as confirmed herein. Furthermore, secondary loss increase under high
φ and low ψ was also produced by the trusted CC [17] and Traupel [25] correlations [10].
Despite the absence of similarity with Figure 7, consistency in the enhanced correlation
is comparatively augmented. In particular, the difference between the components of
Equation (19) is mitigated to O(10).
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Figure 11. Rotor secondary loss components with ψZ = 1.1, AVR = 1, H/b = 4.6. (a) Ainley
parameter λAM. (b) Vortex penetration depth Zte/2H. (c) Ainley loading Z. (d) Generalized lift
solidity coefficient CL/s/c.

Eventually, the isentropic efficiency key to correlation reliability is depicted in Figure 12.
The trend of Ag in Figure 12a is clearly driven by the profile loss in Figure 9a. In that
respect, the bowed contours that are supposed to be inscribed in the domain of Figure 7
are stretched towards higher φ. As a consequence, losses induced by large φ are under-
estimated by the correlation. In addition, the update reveals to be more conservative in
the quantification of the losses, as the first identified contour is 0.91 in Figure 12b. The
latter exhibits an almost complete bow but is not comparable to those of the Smith chart, as
it covers too much area. Hence, it can only enable a global trend consistency. Although
overstretching to high φ is reduced, its expansion occasions over and under estimations in
the bottom and top areas, respectively. Variation of contour level or sensitivity to design
parameters is lessened. These weaknesses are occasioned by the secondary loss in which
H/c = 2 is held constant for most of the domain, as shown in Figure 11b. This is somewhat
expected, as Equation (30) of Benner et al. [13] was not intended for the current treatment
regarding H/c. The model’s conservativeness could be alleviated through a larger H/c, if
justified. For now, the threshold H/c = 2 is untouched, as the reasonable conservativeness
in preliminary design provides an adequate margin for subsequent modifications.
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Figure 12. Isentropic efficiency with ψZ = 1.1, AVR = 1, H/b = 6.5, 4.6 for stator and rotor.
(a) Aungier [6]. (b) Enhanced.

The enhanced correlation has introduced additional design parameters or degrees
of freedom, in hopes of reaching a better control on design. These are summarized in
Appendix A Table A1 and their number amounts to three to five for the profile and
secondary losses, respectively. The following analysis retains four static and rotating
cascades [26,60,65,66] with distinct κ and with their operating conditions altered with a
back pressure within±10% of its nominal value. This aims to evaluate the change of Yt over
the prescribed operation range, drawing on the approach of Wei [9]. Again, CFD solutions
form the benchmark. AVR determined in the early velocity triangle and knowingly set to
unity in the AM correlations is concurrently highlighted to demonstrate its relevance as a
design parameter. The results of the static and rotating cascades normalized by on design
CFD values are depicted in Figure 13. The cascades are not identified to their references in
the plots to foster randomness, as reliability must not be biased by the turbine origin.
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Figure 13. Total loss variation of four cascades. (a) Stators. (b) Rotors.

The distance separating each pair of curves relates to accuracy. It is worth mentioning
that two out of four cascades achieve the early tolerance interval and this conform with the
estimated ∆Ptol = 45%. AVR varies for different operating conditions and extends as far
as 15% its nominal value in Figure 13b. This parameter has demonstrated its nontriviality
and hence justifies the generalization of Equations (22) and (28). By diminishing the
back pressure, AVR increases and vice-versa. For the static cascades in Figure 13a, the
trend of each pair of curves similarly results in an acceptable global consistency. If strict
consistency is imposed, then the curves should have synchronous slopes that conserve their
separation at each variation. Whereas, for the rotating cascades in Figure 13b, serious trend
disruptions are displayed introducing undesirable uncertainties. One cascade undergoes
slope switchover to negative values at AVR = 1.05. Moreover, there are two cascades for
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which a considerable slope mismatch is seen. The first starts from AVR = 1.05 along the back
pressure increase. The second even covers the entire range around AVR = 1. Contrasting
with Figure 13a, the reason for these divergences becomes rather straightforward. CFD can
capture the impacts of rotation on secondary flows and, thus, loss mechanism, whereas
correlations built upon cascade tests and calibrated to turbine data cannot. As a matter of
fact, parameters or factors relating to rotation are absent in the correlations. In this view,
reliability is globally guaranteed in stators and compromised in rotors because of rotation.
Clearly, this observation constitutes the most sound argument against the use of cascades
as benchmark of the correlations, as presented in the early review.

8. Conclusions

In this paper, historical insight was provided into the numerous features of the AM
correlations, whose most authoritative contributions were given by AM, DC, KO, and Ag.
These models were established empirically using measurements on turbine cascades and
deliver a standardized solution for the configurations considered in the experiments. As
a consequence, the range of applications of the models are biased towards the types of
turbine cascades used to develop the correlations. An important restriction of the AM
correlations is related to the profile loss, which is established through interpolation between
nozzle and impulse blade empirical charts. This implies the prior setting of the velocity
distribution over the blade surface, which follows from measurements on a restricted set of
turbine cascade configurations. Another restriction is related to the secondary loss, which
draws on the classical lifting-line theory of Carter and associates wingtip trailing vortices
with blade passage vortices. Further investigation revealed a mathematical mistake in the
secondary loss formulation and an undesirable link with the profile loss.

In light of these issues, an update to the profile and secondary losses was proposed
in this work, building upon the correlations of Ag. For the profile loss, the addressed
points are:

• The substitution of metal angle θin by the flow angle βin.
• The scaling of the AM optimum pitch to chord s/cAM by the Zweifel optimum pitch

to chord s/cZ. This, notably, preserves of the slope of the AM profile losses Yp,βin=0◦

and Yp,βin=−βout and adapts the AM correlation to other design rules.
• The use of a Reynolds number Res based on the suction surface length.
• The substitution of the auxiliary factor Ki by a more suitable incidence loss Yinc,

proposed by Benner et al.
• The reuse of the KO trailing edge loss Yte,KO affected by the profile loss auxiliary factors.

As for the secondary loss, the addressed points are:

• The replacement of the classical secondary flow model of AM and Carter by the
endwall vortices model of Sharma and Butler.

• The use of the product of the elemental lift solidity coefficient CL,out/s/c and vortex
penetration depth Zte instead of the heuristic Ainley loading Z and parameter λAM.

• The invariance of the auxiliary factor KAR beyond the threshold aspect ratio H/c = 2.
• The definition of a new auxiliary factor Ksc, to determine the variation of the secondary

loss with the pitch to chord ratio s/c.

With a database of 109 cascades available, the prediction of the new correlation is
benchmarked against the cascade numerical solution. Using descriptive statistics and
expressing accuracy as the probability of achieving a relative error within ±15%, the im-
provement yields ∆Ptol = 45% against the ∆Ptol = 22% of Ag. Although there is a clear
improvement, these results are largely dependent on the choice of a finite database for
which the representativeness of the population is unknown. Nevertheless, this quantifi-
cation should provide an estimate of the results and raise confidence in the use of the
enhanced correlation. Regarding reliability, the new correlation ensures global consistency
by reproducing the Smith chart [14] and off design stator loss variation. In addition, the
analysis points out a correlation conservativeness in the design of the typical LPT, which is
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due to insensitivity to the secondary loss correlations beyond H/c = 2. Severe trend dis-
ruptions are identified during the application of the proposed enhanced correlation on four
rotating cascades, the mismatches with CFD compromise its reliability in rotating flows.
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Nomenclature

Acronyms
Ag Aungier
AM Ainley and Mathieson
BSM Benner and Sjolander and Moustapha
CFD Computational fluid dynamics
CFL Courant–Friedrich–Levy
DC Dunham and Came
E3 Energy efficient engine
KO Kacker and Okapuu
LPT Low pressure turbine
MKT Moustapha and Kacker and Tremblay
VandV Verification and validation
Z Zweifel
Symbols
β Relative flow angle [◦]
∆Φ Kinetic loss coefficient [-]
∆Ptol Tolerance interval probability [-]
δ∗ Endwall displacement thickness [m]
γ Stagger [◦]
κ Meanline radius ratio [-]
λAM Ainley parameter [-]
φ Flow coefficient [-]
ψ Blade loading [-]
ψZ Zweifel loading [-]
σ Standard deviation [-]
θ Metal angle [◦]
A Cross section area [m2]
b Axial chord [m]
c True chord [m]
CL Lift coefficient [-]
CD,s Secondary drag coefficient [-]
d Annulus diameter [m]
dLE Leading edge diameter [m]
E Relative error [-]
e Surface roughness [m]
ec Back curvature [m−1]
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Fθ Tangential loading [-]
fs/c Scaling factor [-]
H Blade height [m]
H′ Distance to endwall vortices [m]
i Incidence [◦]
K Auxiliary factor [-]
k Heat ratio coefficient [-]
KAR Aspect ratio correction [-]
Ki Incidence factor [-]
Kmod Technology factor [-]
KM Expansion correction factor [-]
Km Profile correction factor [-]
Kp Mach correction factor [-]
KRe Reynolds correction factor [-]
Ksc Pitch to chord ratio correction [-]
Kte Trailing edge correction factor [-]
M Mach number [-]
o Throat width [m]
p Pressure [Pa]
r Meanline radius [m]
Re Reynolds number [-]
Res Suction length Reynolds number [-]
s Pitch [m]
tmax Maximum thickness [m]
tte Trailing edge thickness [m]
W Relative velocity [m/s]
WeLE Leading edge wedge [◦]
Yp Profile loss [-]
Ys Secondary loss coefficient [-]
Yt Total loss coefficient [-]
Ycl Tip clearance loss coefficient [-]
Yex Supersonic loss coefficient [-]
Yinc Incidence loss coefficient [-]
Ysh Shock factor [-]
Yte Trailing edge loss coefficient [-]
Z Ainley loading [-]
Zte Vortex penetration depth [m]
AVR Axial velocity ratio [-]
CR Convergence ratio [-]
VR Velocity ratio [-]

Superscripts
− Average
Subscripts
Enh Enhanced
hub Hub
in Inlet
is Isentropic
m Mean
n Normal
num Numerical
out Outlet
r Relative
t Total
tip Tip
z Axial
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Appendix A

Table A1. Dimensionless parameters of the AM correlations.

Parameters Yp,AM Ys,AM Yp,Ag Ys,Ag Yte,Ag Yex,Ag Yp Ys Yte

s/c ∈ ∈ ∈ ∈
tmax/c ∈ ∈ ∈

θin ∈ ∈ ∈ ∈ ∈
θout ∈ ∈
βin ∈ ∈ ∈ ∈
βout ∈ ∈ ∈ ∈ ∈ ∈ ∈
tte/s ∈
o/s ∈
ec/s ∈ ∈
Mr,in ∈ ∈ ∈ ∈ ∈
Mr,out ∈ ∈ ∈ ∈ ∈ ∈

Re ∈ ∈
Res ∈ ∈ ∈
e/c ∈ ∈ ∈ ∈ ∈

k ∈ ∈
i ∈ ∈ ∈

dLE/s ∈
WeLE ∈

Aout/Ain ∈
rhub/rtip ∈

H/c ∈ ∈
AVR ∈ ∈
ψZ ∈ ∈

tte/o ∈ ∈
δ∗/H ∈

γ ∈ ∈
κ ∈

Reference Equation (2) Equation (8) Equation (3) Equation (19) Equation (7) Equation (4) Equation (20) Equation (33) Equation (24)
Total 5 5 12 8 3 1 17 13 7
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