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Abstract: In this paper, we tackle air quality forecasting by using machine learning approaches
to predict the hourly concentration of air pollutants (e.g., ozone, particle matter (PM2.5) and sulfur
dioxide). Machine learning, as one of the most popular techniques, is able to efficiently train a model
on big data by using large-scale optimization algorithms. Although there exist some works applying
machine learning to air quality prediction, most of the prior studies are restricted to several-year
data and simply train standard regression models (linear or nonlinear) to predict the hourly air
pollution concentration. In this work, we propose refined models to predict the hourly air pollution
concentration on the basis of meteorological data of previous days by formulating the prediction over
24 h as a multi-task learning (MTL) problem. This enables us to select a good model with different
regularization techniques. We propose a useful regularization by enforcing the prediction models of
consecutive hours to be close to each other and compare it with several typical regularizations for
MTL, including standard Frobenius norm regularization, nuclear norm regularization, and `2,1-norm
regularization. Our experiments have showed that the proposed parameter-reducing formulations
and consecutive-hour-related regularizations achieve better performance than existing standard
regression models and existing regularizations.

Keywords: air pollutant prediction; multi-task learning; regularization; analytical solution

1. Introduction

Adverse health impacts from exposure to outdoor air pollutants are complicated functions
of pollutant compositions and concentrations [1]. Major outdoor air pollutants in cities include
ozone (O3), particle matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxides
(NOx), volatile organic compounds (VOCs), pesticides, and metals, among others [2,3]. Increased
mortality and morbidity rates have been found in association with increased air pollutants (such as O3,
PM and SO2) concentrations [3–5]. According to the report from the American Lung Association [6],
a 10 parts per billion (ppb) increase in the O3 mixing ratio might cause over 3700 premature deaths
annually in the United States (U.S.). Chicago, as for many other megacities in U.S., has struggled
with air pollution as a result of industrialization and urbanization. Although O3 precursor (such as
VOCs, NOx, and CO) emissions have significantly decreased since the late 1970s, O3 levels in Chicago
have not been in compliance with standards set by the Environmental Protection Agency (EPA) to
protect public health [7]. Particle size is critical in determining the particle deposition location in the
human respiratory system [8]. PM2.5, referring to particles with a diameter less than or equal to 2.5 µm,
has been an increasing concern, as these particles can be deposited into the lung gas-exchange region,
the alveoli [9]. The U.S. EPA revised the annual standard of PM2.5 by lowering the concentration to
12 µg/m3 to provide improved protection against health effects associated with long- and short-term
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exposure [10]. SO2, as an important precursor of new particle formation and particle growth, has also
been found to be associated with respiratory diseases in many countries [11–15]. Therefore, we selected
O3, PM2.5 and SO2 for testing in this study.

Meteorological conditions, including regional and synoptic meteorology, are critical in
determining the air pollutant concentrations [16–21]. According to the study by Holloway et al. [22],
the O3 concentration over Chicago was found to be most sensitive to air temperature, wind speed
and direction, relative humidity, incoming solar radiation, and cloud cover. For example, a lower
ambient temperature and incoming solar radiation slow down photochemical reactions and lead to less
secondary air pollutants, such as O3 [23]. Increasing wind speed could either increase or decrease the
air pollutant concentrations. For instance, when the wind speed was low (weak dispersion/ventilation),
the pollutants associated with traffic were found at the highest concentrations [24,25]. However, strong
wind speeds might form dust storms by blowing up the particles on the ground [26]. High humidity is
usually associated with high concentrations of certain air pollutants (such as PM, CO and SO2) but
with low concentrations of other air pollutants (such as NO2 and O3) because of various formation and
removal mechanisms [25]. In addition, high humidity can be an indicator of precipitation events, which
result in strong wet deposition leading to low concentrations of air pollutants [27]. Because various
particle compositions and their interactions with light were found to be the most important factors in
attenuating visibility [28,29], low visibility could be an indicator of high PM concentrations. Cloud can
scatter and absorb solar radiation, which is significant for the formation of some air pollutants (e.g.,
O3) [23,30]. Therefore, these important meteorological variables were selected to predict air pollutant
concentrations in this study.

Statistical models have been applied for air pollution prediction on the basis of meteorological
data [31–35]. However, existing studies on statistical modeling have mostly been restricted to simply
utilizing standard classification or regression models, which have neglected the nature of the problem
itself or ignored the correlation between sub-models in different time slots. On the other hand, machine
learning approaches have been developing for over 60 years and have achieved tremendous success
in a variety of areas [36–41]. There exist various new tools and techniques invented by the machine
learning community, which allow for more refined modeling of a specific problem. In particular,
model regularization is a fundamental technique for improving the generalization performance of
a predictive model. Accordingly, many efficient optimization algorithms have been developed for
solving various machine learning formulations with different regularizations.

In this study, we focus on refined modeling for predicting hourly air pollutant concentrations
on the basis of historical metrological data and air pollution data. A striking difference between this
work and the previous works is that we emphasize how to regularize the model in order to improve
its generalization performance and how to learn a complex regularized model from big data with
advanced optimization algorithms. We collected 10 years worth of meteorological and air pollution
data from the Chicago area. The air pollutant data was from the EPA [42,43], and the meteorological
data was from MesoWest [44]. From their databases, we fetched consecutive hourly measurements
of various meteorological variables and pollutants reported by two air quality monitoring stations
and two air pollutant monitoring sites in the Chicago area. Each record of hourly measurements
included meteorological variables such as solar radiation, wind direction and speed, temperature,
and atmospheric pressure; as well as air pollutants, including PM2.5, O3, and SO2. We used two
methods for model regularization: (i) explicitly controlling the number of parameters in the model;
(ii) explicitly enforcing a certain structure in the model parameters. For controlling the number of
parameters in the model, we compared three different model formulations, which can be considered in
a unified multi-task learning (MTL) framework with a diagonal- or full-matrix model. For enforcing
the model matrix into a certain structure, we have considered the relationship between prediction
models of different hours and compared three different regularizations with standard Frobenius
norm regularization. The experimental results show that the model with the intermediate size and
the proposed regularization, which enforces the prediction models of two consecutive hours to be
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close, achieved the best results and was far better than standard regression models. We have also
developed efficient optimization algorithms for solving different formulations and demonstrated their
effectiveness through experiments.

The rest of the paper is organized as follows. In Section 2, we discuss related work. In Section 3,
we describe the data collection and preprocessing. In Section 4, we describe the proposed solutions,
including formulations, regularizations and optimizations. In Section 5, we present the experimental
studies and the results. In Section 6, we give conclusions and indicate future work.

2. Related Work

Many previous works have been proposed to apply machine learning algorithms to air
quality predictions. Some researchers have aimed to predict targets into discretized levels.
Kalapanidas et al. [32] elaborated effects on air pollution only from meteorological features such
as temperature, wind, precipitation, solar radiation, and humidity and classified air pollution into
different levels (low, med, high, and alarm) by using a lazy learning approach, the case-based reasoning
(CBR) system. Athanasiadis et al. [45] employed the σ-fuzzy lattice neurocomputing classifier to predict
and categorize O 3 concentrations into three levels (low, mid, and high) on the basis of meteorological
features and other pollutants such as SO2, NO, NO2, and so on. Kurt and Oktay [33] modeled
geographic connections into a neural network model and predicted daily concentration levels of SO2,
CO, and PM10 3 days in advance. However, the process of converting regression tasks to classification
tasks is problematic, as it ignores the magnitude of the numeric data and consequently is inaccurate.

Other researchers have worked on predicting concentrations of pollutants. Corani [46] worked on
training neural network models to predict hourly O3 and PM10 concentrations on the basis of data from
the previous day. Mainly compared were the performances of feed-forward neural networks (FFNNs)
and pruned neural networks (PNNs). Further efforts have been made on FFNNs: Fu et al. [47] applied
a rolling mechanism and gray model to improve traditional FFNN models. Jiang et al. [48] explored
multiple models (physical and chemical model, regression model, and multiple layer perceptron) on
the air pollutant prediction task, and their results show that statistical models are competitive with the
classical physical and chemical models. Ni, X. Y. et al. [49] compared multiple statistical models on the
basis of PM2.5 data around Beijing, and their results implied that linear regression models can in some
cases be better than the other models.

MTL focuses on learning multiple tasks that have commonalities [50] that can improve the efficiency
and accuracy of the models. It has achieved tremendous successes in many fields, such as natural
language processing [37], image recognition [38], bioinformatics [39,40], marketing prediction [41], and so
on. A variety of regularizations can be utilized to enhance the commonalities of the related tasks, including
the `2,1-norm [51], nuclear norm [52], spectral norm [53], Frobenius norm [54], and so on. However, most
of the former machine learning works on air pollutant prediction did not consider the similarities
between the models and only focused on improving the model performance for a single task, that is,
improving prediction performance for each hour either separately or identically.

Therefore, we decided to use meteorological and pollutant data to perform predictions of hourly
concentrations on the basis of linear models. In this work, we focused on three different prediction
model formulations and used the MTL framework with different regularizations. To the best of
our knowledge, this is the first work that has utilized MTL for the air pollutant prediction task.
We exploited analytical approaches and optimization techniques to obtain the optimal solutions.
The model’s evaluation metric was the root-mean-squared error (RMSE).

3. Data Collection and Preprocessing

3.1. Data Collection

We collected air pollutant data from two air quality monitoring sites and meteorological data
from two weather stations from 2006 to 2015 (summarized in Table 1). The air pollutant data in this
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study included the concentrations of O3, PM2.5 and SO2. We downloaded the air pollutant data from
the U.S. EPA’s Air Quality System (AQS) database (https://www.epa.gov/outdoor-air-quality-data),
which has been widely used for model evaluation [42,43]. We selected the meteorological variables
that would affect the air pollutant concentrations, including air temperature, relative humidity, wind
speed and direction, wind gust, precipitation accumulation, visibility, dew point, wind cardinal
direction, pressure, and weather conditions. We downloaded the meteorological data from MesoWest
(http://mesowest.utah.edu/), a project within the Department of Meteorology at the University of
Utah, which has been aggregating meteorological data since 2002 [44].

The locations of the two air quality monitoring sites and two weather stations are shown
in Figure 1. The Alsip Village (AV) air quality monitoring site is also located in a suburban
residential area, which is in southern Cook County, Illinois (AQS ID: 17-031-0001; latitude/longitude:
41.670992/−87.732457. The Lemont Village (LV) air quality monitoring site is located in a
suburban residential area, which is in southwestern Cook County, Illinois (AQS ID: 17-031-1601;
latitude/longitude: 41.66812/−87.99057. The weather station situated in Lansing Municipal Airport
(LMA) is the closest meteorological site (MesoWest ID: KIGQ; latitude/longitude: 41.54125/−87.52822)
to the AV air quality monitoring site. The weather station positioned at Lewis University (LU) is the
closest meteorological site (MesoWest ID: KLOT; latitude/longitude: 41.60307/−88.10164) to the LV
air quality monitoring site.

Table 1. Summary of measurement sites and observed variables.

Measurement Sites Variables

Alsip Village (AV) Ozone concentration and PM2.5 concentration
Lemont Village (LV) Ozone concentration and sulfur dioxide concentration

Lansing Municipal Airport (LMA)
Temperature, relative humidity, wind speed and direction,

wind gust, precipitation accumulation, visibility, dew point,
wind cardinal direction, pressure, and weather conditions

Lewis University (LU) The same as for LMA site

Figure 1. Locations of measurement sites. Blue stars denote the two air quality monitoring sites.
Red circles denote the two meteorological sites.

3.2. Preprocessing

We paired the collected meteorological data and air pollutant data on the basis of time to obtain
the required data format for applying the machine learning methods. In particular, for each variable,
we formed one value for each hour. However, the original data may have contained multiple records
or missing values at some hours. To preprocess the data, we calculated the hourly mean value of each
numeric variable if there were multiple observed records within an hour and chose the category with
the highest frequency per hour for each categorical variable if there were multiple values. Missing
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values existed for some variables, which was not tolerable for applying the machine learning methods
used in this study. Therefore, we imputed the missing values by using the closest-neighbor values
for four continuous variables and one categorical variable: wind gust, pressure, altimeter reading,
precipitation, and weather conditions. We deleted the days that still had missing values after imputing.
We applied dummy coding for two categorical variables, the cardinal wind direction (16 values, e.g.,
N, S, E, W, etc.) and weather conditions (31 values, e.g., sunny, rainy, windy, etc.). Then, we added the
weekday and weekend as two boolean features. Finally, we obtained 60 features in total (9 numerical
meteorological features, 16 dummy codings for wind direction, 31 dummy codings for weather
conditions, 2 boolean features for weekday/weekend, 1 numerical feature for pollutants, and 1 bias
term). We applied normalization for all the features and pollutant targets to make their values fall in
the range [0, 1].

4. Machine Learning Approaches for Air Pollution Prediction

In this section, we describe the proposed approaches for predicting the ambient concentration of
air pollutants.

4.1. A General Formulation

Our goal is to predict the concentration of air pollutants of the next day on the basis of the historical
meteorological and air pollutant data. In this work, we have focused on using the former day’s data to
predict the next day’s hourly pollutants. In particular, we let (xi; yi) denote the ith training data, where
yi ∈ R24×1 denotes the concentration of a certain air pollutant on a day, and xi = (ui; vi) denotes the
observed data on the previous day that include two components, where a semicolon “;” represents
the column layout. The first component ui = (ui,1; . . . ; ui,D) ∈ R24·D×1 includes all meteorological
data over 24 h for the previous day, where ui,j ∈ R24×1 denotes the jth meteorological feature of the
24 h and D is the number of meteorological features; the second component vi ∈ R24×1 includes the
hourly concentration of the same air pollutant on the previous day. The general formulation can be
expressed as

min
W

1
n

n

∑
i=1
‖ f (W, xi)− yi‖2

2 + ϕ(W) (1)

where W denotes the parameters of the model, f (W, xi) denotes the prediction of the air pollutant
concentration, and ϕ(·) denotes a regularization function of the model parameters W.

Next, we introduce two levels of model regularization. The first level is to explicitly control the
number of model parameters. The second level is to explicitly impose a certain regularization on the
model parameter. For the first level, we consider three models that are described below:

• Baseline Model. The first model is a baseline model that has been considered in existing studies
and has the fewest number of parameters. In particular, the prediction of the air pollutant
concentration is given by

fk(W, xi) =
D

∑
j=1

e>k ui,j · wj + e>k vi · wD+1 + w0, k = 1, . . . , 24

where ek ∈ R24×1 is a basis vector with 1 at only the kth position and 0 at other positions;
w0, w1, . . . , wD, wD+1 ∈ R are the model parameters, where w0 is the bias term. We denote this
model by W = (w0, w1, . . . , wD+1)

>. It is notable that this model predicts the hourly concentration
on the basis of the same hourly historical data of the previous day and that it has D + 2 parameters.
This simple model assumes that all 24 h share the same model parameter.
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• Heavy Model. The second model takes all the data of the previous day into account when
predicting the concentration of every hour of the second day. In particular, for the kth hour,
the prediction is given by

fk(W, xi) =
D

∑
j=1

ui,j
>wk,j + v>i wk,D+1 + wk,0, k = 1, . . . , 24

where wk,j ∈ R24×1, j = 1, . . . , D + 1 and wk,0 ∈ R. This model is defined by

W =


w1,0 w2,0 . . . w24,0

w1,1 w2,1 . . . w24,1

. . . . . . . . . . . .
w1,D+1 w2,D+1 . . . w24,D+1


We note that each column of W corresponds to the prediction model for each hour. There are
a total of 24 × (24 ×(D + 1) + 1) parameters. It is notable that the baseline model is a special
case by enforcing all columns of W to be the same and because each wk,j has only one non-zero
element at the kth position.

• Light Model. The third model is between the baseline model and the heavy model. It considers
the 24 h pattern of the air pollutants in the previous day and the same hourly meteorological data
of the previous day to predict the concentration at a particular hour. The prediction is given by

fk(W, xi) =
D

∑
j=1

e>k ui,j · wk,j + v>i wk,D+1 + wk,0, k = 1, . . . , 24

where wk,j ∈ R, j = 1, . . . , D and wk,D+1 ∈ R24×1. This model is defined by

W =


w1,0 w2,0 . . . w24,0

w1,1 w2,1 . . . w24,1

. . . . . . . . . . . .
w1,D+1 w2,D+1 . . . w24,D+1


It is also notable that each column corresponds to the predictive model for one hour and that W
has a total of 24× (D + 1) + 24× 24× 1 parameters.

4.2. Regularization of Model Parameters

In this section, we describe different regularizations for the model parameter matrices W in the
heavy and light models. We consider the problem using MTL, in which predicting the concentration
of air pollutants over one hour is one task. In the literature, a number of regularizations have been
proposed by considering the relationship between different tasks. We first describe three baseline
regularizations in the literature and then present the proposed regularization that takes the dimension
of time into consideration for modeling the relationship between models at different times.

• Frobenius norm regularization. Frobenius norm regularization is a generalization of standard
Euclidean norm regularization to the matrix case, for which

ϕ(W) = λ||W||2F

where λ > 0 is a regularization parameter.
• `2,1-norm regularization. `2,1-norm regularization has been used for feature selection in MTL.

The norm is formed by first computing the `2-norm of each row of the W matrix (across different
tasks) and then computing the `1-norm of the resulting vector. In particular, for W ∈ Rd×K,
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‖W‖2,1 =
d

∑
j=1
‖Wj,∗‖2

where Wj,∗ denotes the jth row of W. We consider a `2,1-norm regularizer ϕ(W) = λ‖W‖2,1.
• Nuclear norm regularization. The nuclear norm is defined as the sum of singular values of

a matrix, which is a standard regularization for enforcing a matrix to have a low rank. The
motivation for using a low-rank matrix is that models for consecutive hours are highly correlated,
which could render the matrix W to be low rank. We denote by ‖W‖∗ the nuclear norm of a matrix
W; the regularization is ϕ(W) = λ‖W‖∗.

• Consecutive close (CC) regularization. Finally, we propose a useful regularization for the
considered problem that explicitly enforces the predictive models for two consecutive hours
to be close to each other. The intuition is that usually the concentrations of air pollutants for two
consecutive hours are close to each other. We denote the model by W = (w1, . . . , wK) and by
Cons(W) = [(w1 −w2), (w2 −w3), ..., (wK−1 −wK)]. The CC regularization is given by

ϕ(W) = λ
K−1

∑
j=1
‖wj −wj+1‖

p
p (2)

where p = 1 or p = 2.

4.3. Stochastic Optimization Algorithms for Different Formulations

With the exception that the Frobenius norm regularized model (with `2-norm CC regularization
or not) has a closed-form solution, we solved the other models via advanced stochastic optimization
techniques. We denote the following: F(W, xi) = [ f1(W, xi), ..., f24(W, xi)] and Yi = [yi,1, ..., yi,24];
the total number of features is D. Although the standard stochastic (sub)gradient method [55] could
be utilized to solve all the formulations considered in this work, it does not necessary yield the
fastest convergence. To address this issue, we considered advanced stochastic optimization techniques
tailored for solving each formulation.

4.3.1. Optimizing `2,1-Norm Regularized Model

We utilized the accelerated stochastic subgradient (ASSG) method [56] with proximal mapping to
optimize this model. The algorithm runs in mutliple stages, and each stage calls the standard stochastic
gradient method with a constant step size. To handle the non-smooth `2,1-norm, we used proximal
mapping [57]. The stochastic gradient descent part is

W ′t = Wt−1 − 2ηs
∂F(Wt−1, xi)

∂Wt−1
e>(F(Wt−1, xi)−Yi) (3)

where ηs is the stage-wise step size, i is a sampled index, and e is a vector with 1 for all its elements.
Then a proximal mapping is as follows (denoted by λ̃ = 2ηsλ):

Wt = arg min
W
‖W −W ′t‖2

F + λ̃‖W‖2,1 (4)

The above problem has analytical solutions. We denote wi as a column vector for W> and w′i as a
column vector for W ′>t . Then the solution to Equation (4) can be computed by the following [51]:

wi =


(1− λ̃

‖w′i‖2
)w′i, λ̃ > 0, ‖w′i‖2 > λ̃

0, λ̃ > 0, ‖w′i‖2 ≤ λ̃

w′i, λ̃ = 0

(5)
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The pseudocode of the algorithm is as follows:

Algorithm 1: ASSG method with proximal mapping solving `2,1-norm regularized model.
Input: X, Y, W0, η0, S, and T
for s = 1, . . . , S do

ηs = ηs−1/2
for t = 1, . . . , T do

sample i ∈ {1, ..., n}
update W ′t using Equation (3)
update Wt using Equation (4)

end
W0 = ∑T

t=1 W1/WT
end
Output: W0

4.3.2. Optimizing Nuclear Norm Regularized Model

The challenge in solving the nuclear norm reguralized problem of most optimization algorithms
lies with computing the full singular value decomposition (SVD) of the involved matrix W, which
is an expensive operation. To avoid full SVD, the SVD-free convex–concave algorithm extension to
a stochastic setting (SECONE-S) [58] was employed to solve the problem. The algorithm solves the
following minimum–maximum problem:

min
W∈RD×K

max
U∈RD×K

1
n

n

∑
i=1
‖F(W, xi)−Yi‖2

2 + λtr(U>W)− ρ[‖U‖2 − 1]+

Then stochastic gradient descent and ascent are used to update W and U at each iteration:

Wt = Wt−1 − ηt−1(2
∂F(Wt−1, xi)

∂Wt−1
e>(F(Wt−1, xi)−Yi) + λUt−1)

Ut = Ut−1 + τt−1(λWt−1 − ρ∂[‖Ut−1‖2 − 1]+)
(6)

where ρ ≥ ‖Y‖2
F and ∂[‖Ut‖2− 1]+ can be computed by u1v>1 1[σ1 > 1], with (u1, v1) being the top-left

and -right singular vectors of Ut and σ1 being the top singular value. The pseudocode for the algorithm
is as follows:

Algorithm 2: SECONE-S solving nuclear norm regularized model.
Input: X, Y, T, η0, and τ0

for t = 1, . . . , T do
sample i ∈ {1, ..., n}
update Wt and Ut using Equation (6)
ηt = η0/

√
t, and τt = τ0/

√
t

end
Output: ŴT = ∑T

t=1 Wt/T

4.3.3. Optimizing Consecutive Close Regularized Model

The challenge of tackling the proposed CC regularization lies in that the standard proximal
mapping cannot be computed efficiently. We addressed this challenge by using the alternating-direction
method of multipliers. We utilized a recently proposed locally adaptive stochastic alternating-direction
method of multipliers (LA-SADMM) [59] to solve the CC regularized model. Below, we discuss the
updates for the choice of p = 1 (i.e., using the `1-norm) in Equation (2). The updates for the choice of
p = 2 can be derived similarly.



Big Data Cogn. Comput. 2018, 2, 5 9 of 15

The objective function can be written as

min
W∈RD×K

1
n

n

∑
i=1
‖F(W, xi)−Yi‖2

2 + λ‖WE‖1,1

Here, E = (ê1, ..., êk−1), where êi = (0, ..., 1,−1, ..., 0)T , i = 1, ..., k − 1, the ith element is 1 and the
(i + 1)th element is −1. Therefore, Cons(W) = WE. A dummy variable U = WE was introduced to
decouple the last term from the first term, and a Lagrangian function was formed as follows:

L(W, U, Λ) =
1
n

n

∑
i=1
‖F(W, xi)−Yi‖2

2 + λ‖U‖1,1 − tr(Λ>(WE−U)) +
β

2
‖WE−U‖2

F (7)

where Λ is the Lagrangian multiplier and β is the penalty parameter.
This could then be solved by optimizing each variable alternatively. The update rules for SADMM

are as follows:

Wτ = arg min
W∈RD×K

L(W, Uτ−1, Λτ−1) = arg min
W∈RD×K

F̃(Wτ−1, xi) + tr{∂F̃(Wτ−1, xi)

∂W

>
(W −Wτ−1)}

+
β

2
‖WE−Uτ−1 −

1
β

ΛT
τ−1‖2

F +
‖W −Wτ−1‖2

F
ητ−1

Uτ = arg min
U∈RD×K

L(Wτ , U, Λτ−1) = arg min
U∈RD×K

γ‖U‖1,1 +
β

2
‖WτE−U − 1

β
ΛT

τ−1‖2
F

Λτ = Λτ−1 − β(WτE−Uτ)
T

(8)

where F̃(Wτ−1, xi) = ‖F(Wτ−1, xi)−Yi‖2
2.

LA-SADMM solves the problem more efficiently by doing stage-wise penalty increasing.
The pseudocode for the algorithm is as follows:

Algorithm 3: LA-SADMM solving consecutive close (CC) regularized problem with `1-norm.
Input: X, Y, W0, U0, Λ0, β1, η1, S, and T
for s = 1, . . . , S do

for τ = 1, . . . , T do
sample i ∈ {1, ..., n}
update Wτ , Uτ , and Λτ using Equation (8)

end
WT = ∑T

τ=1 Wτ/T
W0 = WT , U0 = UT , and Λ0 = ΛT
βs+1 = 2βs, and ηs+1 = ηs/2

end
Output: WT

4.4. Extensive Discussion

It is noteworthy that the main contribution of this work is the incorporation of model parameter
reduction and MTL with regularization into air pollutant prediction. As the previous content has
illustrated, for the parameter reduction part, our light formulation reduces model parameters by
removing heavy meteorological parameters of the other hours for one hour’s submodel. For the MTL
part, we considered that there could be some similarities for consecutive hours’ models; therefore,
we could add appropriate regularizers for this purpose.

The high-level idea of MTL lies in transfer learning, which generally aims to transfer knowledge
from a related source task to a target task and consequently improve the performance for the target
task. There are multiple variants for transfer learning, such as inductive transfer learning, transductive
transfer learning and unsupervised transfer learning, and the approaches for transfer learning mainly
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include instance transfer, feature-representation transfer, parameter transfer and relational-knowledge
transfer [60]. One of the most common examples is feature-representation transfer for deep neural
networks. After either supervised or unsupervised learning from other related datasets, the pretrained
model can be appropriately reused for learning the target task with a better performance. The MTL
technique in this work is an example of parameter transfer in an inductive-transfer-learning setting.

A similar idea can be applied to other kinds of work. First, if the submodels are not built for each
hour but for each day (or even for each location from a spatial perspective), we can still apply the
parameter reduction idea that only keeps more important information and removes the information
with low priority. Second, for the MTL part, we can still add regularizations for the similarities of
the submodels. Furthermore, in this work, the submodel wi was a linear regression model; it is also
practical to replace it with support vector regression (SVR), nonlinear regression, neural networks,
and so on. Finally, the techniques used in this work can be further combined with many other transfer
learning techniques, such as feature-representation transfer for deep neural networks.

5. Experiments

We used the names of the paired air quality monitoring sites and two weather stations to denote
the two datasets, that is, LU–LV and LMA–AV. LU–LV contained the data to predict the concentration
of the two air pollutants O3 and SO2. LMA–AV contained the data to predict the concentration of the
two air pollutants O3 and PM2.5.

We compared 11 different models that were learned with different combinations of model
formulations and regularizations. The 11 models were the following:

• Baseline: the baseline model with standard Frobenius norm regularization.
• Heavy–F: the heavy model with standard Frobenius norm regularization.
• Light–F: the heavy model with standard Frobenius norm regularization.
• Heavy–`2,1: the heavy model with `2,1-norm regularization.
• Heavy–nuclear: the heavy model with nuclear-norm regularization.
• Heavy–CCL2: the heavy model with CC regularization using the `2-norm.
• Heavy–CCL1: the heavy model with CC regularization using the `1-norm.
• Light–`2,1: the light model with `2,1-norm regularization.
• Light–nuclear: the light model with nuclear-norm regularization.
• Light–CCL2: the light model with CC regularization using the `2-norm.
• Light–CCL1: the light model with CC regularization using the `1-norm.

It is noteworthy that we also added the standard Frobenius norm regularizer for the
heavy/light–nuclear, –CCL2, and –CCL1 models, because their regularizers were mainly considered
for controlling the similarities of submodels and may not have been enough for preventing overfitting.
We divided each dataset into two parts: training data and testing data. Each model was trained on
the training data with proper regularization parameters and the learning rate selected on the basis
of 5-fold cross-validation. Each trained model was evaluated on the testing data. The splitting of the
data was done by dividing all days into a number of chunks of 11 consecutive days, for which the first
8 days were used for training and the next 3 days were used for testing. We have used the RMSE as
the evaluation metric.

We first report the improvement of each method over the baseline method. The improvement
was measured by a positive or negative percentage over the performance of the baseline method,
that is, (RMSE of compared method - RMSE of the baseline method)×100/RMSE of the baseline
method. The results are shown in Figures 2 and 3. To facilitate the comparison between different
methods, for each air pollutant of each dataset, we report two figures, with one grouping the results by
regularizations and the other grouping the results by the model formulations. From the results, we can
see that (i) the light model formulation had a clear advantage over the heavy model formulation and
the baseline model formulation, which implied that controlling the number of parameters is important
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for improving generalization performance; and (ii) the proposed CC regularization yielded a better
performance than other regularizations, which verified that considering the similarities between
models of consecutive hours is helpful. We also report the exact RMSE of each method in Table 2.
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Figure 2. Improvement of different methods over the baseline method for Lewis University–Lemont
Village (LU–LV) dataset.
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Figure 3. Improvement of different methods over the baseline method for Lansing Municipal
Airport–Alsip Village (LMA–AV) dataset.
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Table 2. Root-mean-squared error (RMSE) for all approaches and datasets. The best approaches are
marked as bold.

Approaches LMA-AV: O3 LMA-AV: PM2.5 LU-LV: O3 LU-LV: SO2

Baseline 0.1324 0.0399 0.0971 0.0334
Heavy–F 0.1193 0.0394 0.0882 0.0333

Heavy–`2,1 0.12569 0.041 0.0883 0.033591
Heavy–nuclear 0.1197 0.0398 0.0893 0.0333
Heavy–CCL2 0.11896 0.0391 0.0882 0.033148
Heavy–CCL1 0.11897 0.039134 0.0882 0.033261

Light–F 0.1158 0.0372 0.0848 0.0331
Light–`2,1 0.11591 0.037 0.085376 0.033411

Light–nuclear 0.1161 0.0368 0.0849 0.0326
Light–CCL2 0.116 0.0369 0.0845 0.03253
Light–CCL1 0.11535 0.03684 0.085 0.03248

Finally, we compared the convergence speed of the employed optimization algorithms with their
standard counterparts. In particular, we compared the ASSG and SSG methods for optimizing the
`2,1-norm regularized problem, and SSG for solving the nuclear norm regularized problem, and and
SADMM for solving the CC regularized problem. The results are plotted in Figure 4 and demonstrate
that the employed advanced optimization techniques converged much faster than the classical
techniques.
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Figure 4. Optimization techniques.

6. Conclusions

In this paper, we have developed efficient machine learning methods for air pollutant prediction.
We have formulated the problem as regularized MTL and employed advanced optimization algorithms
for solving different formulations. We have focused on alleviating model complexity by reducing the
number of model parameters and on improving the performance by using a structured regularizer.
Our results show that the proposed light formulation achieves much better performance than the
other two model formulations and that the regularization by enforcing prediction models for two
consecutive hours to be close can also boost the performance of predictions. We have also shown that
advanced optimization techniques are important for improving the convergence of optimization and
that they speed up the training process for big data. For future work, we will further consider the
commonalities between nearby meteorology stations and combine them in a MTL framework, which
may provide a further boosting for the prediction.
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