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Abstract: Collaborative filtering (CF) approaches, which provide recommendations based on
ratings or purchase history, perform well for users and items with sufficient interactions.
However, CF approaches suffer from the cold-start problem for users and items with few ratings.
Hybrid recommender systems that combine collaborative filtering and content-based approaches have
been proved as an effective way to alleviate the cold-start issue. Integrating contents from multiple
heterogeneous data sources such as reviews and product images is challenging for two reasons. Firstly,
mapping contents in different modalities from the original feature space to a joint lower-dimensional
space is difficult since they have intrinsically different characteristics and statistical properties, such
as sparse texts and dense images. Secondly, most algorithms only use content features as the prior
knowledge to improve the estimation of user and item profiles but the ratings do not directly provide
feedback to guide feature extraction. To tackle these challenges, we propose a tightly-coupled deep
network model for fusing heterogeneous modalities, to avoid tedious feature extraction in specific
domains, and to enable two-way information propagation from both content and rating information.
Experiments on large-scale Amazon product data in book and movie domains demonstrate the
effectiveness of the proposed model for cold-start recommendation.
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1. Introduction

Recommender systems have been important tools for many business applications with broad
economic impact [1–4]. Successful systems span various platforms, including Netflix’s movie
recommendations, Amazon’s book recommendations, and Pandora’s music recommendations.
Constructing more accurate and personalized recommendation algorithms can help users to find
items that they truly like from thousands or millions of items, which is important for the benefit of
both users and businesses.

Collaborative filtering (CF), one of the most popular approaches to recommender systems, can
recommend top items favored by the like-mined based on a collection of user ratings or purchase
history [1,5–8]. A famous example is Netflix, where a group of users rate a set of movies to indicate
their preferences and the system recommends movies tailored to individuals based on rating patterns.
The success of collaborative filtering models largely depends on sufficient interaction history, and hence
the prediction accuracy dramatically degrades for users and items with fewer interactions, which
is known as the cold-start problem. In fact, a large portion of users and items are “cold” in many
applications. For example, in the Netflix movie rating dataset of 480 k users and 17 k items, most users
only rate a few movies.

On the other hand, content-based approaches extract content features such as the demographic
information of users and the textual descriptions of items and recommend items with similar contents,
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which can be used to alleviate the cold-start problem. A prominent content model extracting text
features [9] has been successfully applied to news recommendations such as Yahoo!’s Today module,
where lots of daily news emerge and there are little historical data per user. In fact, content-based
models and collaborative filtering approaches complement each other, which motivates us to adopt
hybrid systems integrating both contents and collaborative filtering in a unified way.

To construct a hybrid collaborative filtering model with contents more effectively, it is highly
desirable to exploit correlation or complementary information from different resources and learn
more expressive representations than single-view learning. For example, in Amazon’s product
recommender system, millions of items in women’s clothing emerge everyday with both textual
and visual descriptions. A customer likes a dress because of the visual cues such as color and style
and non-visual cues such as material and fitting inferred from text descriptions. Fusing content
features from different input modalities and mapping them to similar users can further improve
recommendation accuracy.

How to efficiently integrate heterogeneous contents into collaborative filtering remains a challenge
for two main reasons. First, in classic matrix-factorization based collaborative filtering methods,
both users and items are mapped into a lower-dimensional Euclidean space, so that a rating is
approximated as a similarity function between a user and an item. It is challenging to map item contents
in different modalities from original feature space to a joint lower-dimensional space, since they
have intrinsically different characteristics and statistical properties, such as sparse texts and dense
images. Generally, feature mapping algorithms tailored to unimodal data cannot be directly applied
to multimodal data. Secondly, most algorithms only use content features as the prior knowledge
to improve the estimation of user and item profiles. However, the ratings do not directly provide
feedback to guide feature extraction. A tightly coupled framework is therefore needed so that more
effective user and items embeddings can be automatically learned from both content features and
rating information.

In this paper, we propose to tackle the above challenges by learning effective feature
representations from multi-modal data through a unified deep network, to avoid tedious feature
extraction in specific domains, and to enable two-way information propagation from both content
and rating information. Specifically, we integrate feature learning and rating prediction into a unified
deep learning architecture, where item embeddings are learned through auto-encoders to extract
item semantic representations from heterogeneous contents, and the correlation of items and user
embeddings is used to predict ratings. The objective function is to minimize both feature reconstruction
error and rating prediction error.

To summarize, our unified deep network model tends to couple the collaborative filtering models
with content information more effectively. In particular, the content correlation between different
modalities is captured by the shared embeddings, and the embeddings of users and items adapt to
each other in a way that the prediction of ratings can be largely improved. Experimental results on
large-scale benchmark recommendation datasets such as Amazon Movies and Books demonstrate that
our proposed algorithm significantly outperforms existing methods.

2. Related Work

There are two major categories of recommendation algorithms: content-based filtering and
collaborative filtering. The former measures a user’s satisfaction with an item based on the user
information and item features [10–12]. For example, item features include textural descriptions such
as genres and synopses, and visual cues from posters. User features may include demographic
information, location, activity context, and device capability. Collaborative filtering goes beyond
content-based methods to correlate users and items based on the assumption that users prefer items
favored by the like-minded [1,5,13–19].

One challenge of collaborative filtering is that the performance is largely affected by several factors
such as the number of items, the number of users, and the density of observed ratings. Hybrid models
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have been proposed in [20–22] by incorporating content features such as item genres and information
extracted from user social network as prior knowledge to improve the estimation of user and item
profiles and thus improve the recommendation accuracy for cold-start cases. However, in most cases,
features are usually extracted from a single domain and the processes of representation learning and
rating prediction are totally independent. Some extensions such as [23] explore tightly coupled
approaches to integrate topic modeling and collaborative filtering for more accurate document
recommendations. Some other recent studies [24,25] deal with the content-based, collaborative-based,
and hybrid mechanisms in multimedia information retrieval.

Deep learning [26,27] has emerged recently to be one of the most powerful approaches to learn
robust and complex features directly from data and has shown great success in various fields such as
computer vision [28,29]. Multi-modal deep learning has been applied in both traditional unsupervised
and supervised learning tasks [30–32] to fuse multiple data resources with novel applications such as
medical diagnosis [33]. Earlier attempts of deep learning applications in recommender systems
include [34], which introduces restricted Boltzmann machines to model user-item correlations.
However, these models are typically simple neural network models and do not incorporate any
content information. Recent work integrating deep learning with collaborative filtering mostly
focuses on extracting content features from single modality such as texts [35–37] or images [38–40].
A few exceptions such as [41] extract latent features from multi-modality contents including both texts
and images through auto-encoders to improve rating prediction accuracy. Specifically, the embedding
vectors are learned through auto-encoders in each modality separately and then the summation of
those vectors are used to predict final ratings. However, the latent spaces learned from different
modalities are not necessarily well aligned. Our framework differs from others in that it learns a shared
embedding from all modalities simultaneously, which can be generally applied to incorporating
heterogeneous contents such as texts and images.

3. Methods

3.1. Problem Definition and Model Overview

We consider the problem of rating prediction for recommendations, where a recommendation
model is learned to predict the users’ ratings on unseen items given previous ratings. As an example,
one can imagine a commercial website that stores user rating history and use that information to
predict the users’ ratings (preferences) for their future visits. The ratings can be explicit, e.g., users
give 1 to 5 stars, or implicit, e.g., users take an action or not, corresponding to a rating of 0 or 1.
Let U = {u1, u2, . . . , um} be the set of users and V = {v1, v2, . . . , vn} be the set of items. The collection
of past ratings is a set of 3-tuples R = {(i, j, rij)}, where i ∈ U, j ∈ V, and rij is user i’s rating on item j.

One type of state-of-the-art recommendation models is based on matrix factorization (MF) [1,16].
The past ratings can be represented as a (sparse) matrix R. Through matrix factorization, one can learn
a low-dimensional latent vector u for each user and a low-dimensional latent vector v for each item.
User i’s rating on item j can be predicted as u>i vj, where ui and vj are the low-dimensional vectors
associated with user i and item j, respectively.

In order to improve rating predictions, it is helpful to incorporate content information from
multiple domains, e.g., a poster (visual domain) and reviews (text domain) of a movie. Figure 1
shows the model of our approach. At a high level, the model can be divided into two main parts:
(1) an autoencoder-based, multimodal feature extraction and fusion framework, which consists of three
components including domain-specific encoding networks E(k) for each domain k, domain-specific
decoding networks D(k) for each domain k, and a fusion network F. Taking content data from multiple
domains as inputs, the framework generates an embedding (feature) vector for each item that fuses
multi-domain information; (2) rating prediction with the fused embedding vector. Let xe(j) be the
embedding (feature) vector of item j. The new rating prediction becomes the following:

u>i (vj + xe(j)). (1)
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In next subsections, we give details on our deep fusion framework and the rating prediction learning.
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Figure 1. Rating prediction with deep fused embedding.

3.2. Deep Fusion for Multimodal Embedding

We propose a general deep fusion framework for multimodal embedding (feature extraction).
(Note that we use embedding and features/feature extraction interchangeably since they all refer to
finding a representation for the data). In multimodal embedding, data from multiple domains are
available to describe an object. We seek an embedding vector (feature vector) that combines information
from different domains to represent the item and achieve better performance than single-view learning
by using this representation. In this sense, our embedding is also task related because different tasks
may involve different aspects of the item. In this paper, we target our multimodal embedding for
rating prediction.

An intuitive approach to using data from multiple domains is to compute an embedding
independently for each domain. Then one can obtain an overall embedding by summing/averaging
the domain-specific embedding vectors. However, such embedding (feature vectors) cannot capture
correlations across different domains.

Consider a movie, a poster of the movie, and a text summary of the movie. One may take
a hierarchical generative view on how to derive the poster and the summary. Let z be a variable
describing the characteristics of the movie. z determines the distribution of two other variables,
zp and zs. zp is associated with the characteristics of the poster and determines a distribution from
which we can sample the poster. zs is the same for the summary. This simple generative view
shows that some features of the movie (z) may be connected to both the poster and the summary.
The alternative approach described above treats the two domains independently and cannot extract
these features well.

We design our deep fusion network based on this generative view. As shown in Figure 1,
for each domain, our framework has a sub-network that extracts domain-specific features
(e.g., those corresponding to zp or zs) from the domain input. These features are then fed to
(the first half of) the central fusion network that combines the features from multiple domains and
further extracts fused high-level features (e.g., those corresponding to z). In such a fashion, the fused
high-level features can capture correlations between different domains and provide a better description
of the characteristics of the item represented by multi-domain inputs. We utilize these fused high-level
features in rating prediction later.

Our deep fusion network is modified from stacked denoise autoencoder (SDAE) [42].
The embedding (feature extraction) component that we describe above can be viewed as
an multi-domain fusion encoder. Different from probabilistic models, with autoencoder, the encoder is
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coupled with a decoder for training. Our deep fusion framework contains a decoding structure that
consists of several components too. First, the fused high-level features go through several layers of
(joined) decoding (the second half of the central fusion network). Then, for each individual domain,
we have a domain-specific decoder that reconstructs the data for that domain.

A deep neural network consists of multiple layers of neurons. Given an input data point z (a row
vector) and a layer l, we have the following computation within a layer that generates output xl :

xl = σ(zWl + bl), (2)

where Wl and bl are the weights and the bias of the layer respectively. Function σ is a nonlinear
function. To simplify the notation, for layer l, we denote the above computation by Netl and have
xl = Netl(z). A sequence of layers can be stacked such that the output of layer l− 1 serves as the input
to layer l, i.e., xl = Netl(xl−1) for all l > 0 in the sequence and x0 is the input to the stack. For a stack
S of |S| layers (we use | · | as the operator that returns the number of layers), we denote by NetS this
computation and have

x|S| = NetS(x0), (3)

where x|S| is the output of the last layer (layer |S|). (Note that if |S| = 0, the output of the stack is the
same as the input).

For each domain d, let xd be an original input data point from the domain and x̃d be the
noise-corrupted input. Specifically, the input in text domain is represented as a bag-of-words vector and
we randomly mask some entries of the input by making them zero. For image domain, the inputs are
corrupted with Gaussian noise. We have a stack of domain-specific encoding layers (encoder) for each
domain d. We call this stack of layers E(d), and denote its computation by NetE(d). Suppose that there
are k domains. The encoders produce a set of k output vectors {x1

c , x2
c . . . , xk

c}, where xi
c = NetE(i)(x̃i).

We denote by xt = x1
c ||x2

c || · · · ||xk
c the concatenation of these vectors.

At the center of our network is the stack of layers (F) that fuses features from multiple
domains. (We call it the fusion network.) It takes xt as input and generates output xp = NetF(xt).
The first half of the stack serves as (fuse) encoder and the second half of the stack as (fuse) decoder.
The embedding computed by our framework thus is the output of the layer |F|/2 in the network F,
i.e., xe = NetF(1/2)(xt), where F(1/2) is the first half of the network F. We refer to the second half
as F(2/2).

During the training, the model is given corrupted domain inputs, and is trained to predict the
original inputs as a result of decoding. The final decoding involves a set of domain-specific decoders
(D(d) for each domain d). Each decoder takes xp as input and output a reconstruction NetD(d)(xp) for
the original input xd. We call the reconstruction xd

r .
A summary of notations we introduced is given in Table 1.
The process to compute xe and xr is summarized in Algorithm 1.
In an unsupervised setting, one may minimize the reconstruction loss:

Lrec = ∑
d
||xd

r − xd||22 (4)

to train the model and use the trained model to obtain multimodal embedding for the data.
However, as we have discussed earlier, embedding is task related. Therefore, we consider
a semi-supervised model where the training involves both the reconstruction loss and a task-specific loss.
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Table 1. Summary of Notations.

u, v user and item latent vector
rij user i’s rating on item j
d data domain

xd, x̃d input and corrupted input from d
E(d) domain-specific encoding network for d
D(d) domain-specific decoding network for d

F fusion network
NetS(·) computation done by network S

xd
r reconstruction for domain d input

xe the embedding vector
Θ parameters of network (E, D and F)

Algorithm 1: Computing xe and xr for a single item.

Input: Inputs x1, x2, . . . , xk from k domains
Output: xe and {xi

r}k
i=1

foreach i in 1, 2, . . . , k do
Generate corrupted input x̃i by adding noise to xi

xi
c = NetE(i)(x̃i)

xt = concat({xi
c}k

i=1);
xe = NetF(1/2)(xt);
xp = NetF(2/2)(xe);
foreach i in 1, 2, . . . , k do

xi
r = NetD(i)(xp)

return xe, {xi
r}k

i=1

3.3. Heterogeneous Domain-Specific Encoders and Decoders

Although we present the domain-specific encoders and decoders as regular (fully connected)
neural networks in the description of our deep fusion framework, there is no technical constraint that
limits the type of the neural networks being used. One can use convolutional networks or other types
of neural networks. Our deep fusion is an unified framework for multimodal embedding that can
incorporate heterogeneous domain encoders (decoders).

The capability of combining different types of encoders (decoders) is particularly pertinent when
we fuse image domain with other domains. Many studies have shown that convolutional neural
networks render much better performance with images than regular fully connected networks [28,43].
As a result, it is more suitable to first apply a convolutional network that extracts domain-specific
features from the images, and then use these features in multimodal fusion, where they will be
combined with features from other domains to generate high-level features that involve all the domains.

Since it is a general understanding that deep models require large datasets to train, a deep
convolutional network can be a good choice for the domain-specific encoder (decoder) if there is a large
amount of data. On the other hand, in a situation where the number of images in the dataset is quite
limited (comparing to that of the ImageNet), it would not be ideal to use such data to train both a deep
convolutional network and a deep fusion model.

One may employ a less-deep convolutional network as the domain-specific encoder (decoder).
But a less-deep network (e.g., a convolutional network of 2–3 layers) has some drawbacks. For large
images (several hundred by several hundred pixels), the feature vector obtained by unrolling the
feature map produced by the convolutional network may have a very high dimensionality. In order to
get lower dimensionality, one may apply a very large filter size, stride, or pooling window. These are
not the best practices for convolutional networks. Oftentimes, people choose to shrink the image to
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a small size instead. However, shrinking causes loss of details in the image (e.g., a movie poster of
50 × 50 pixels will not be elaborate).

Given these considerations, there is a third solution in our framework to deal with image domain
when data are limited. Borrowing the idea from transfer learning, one could employ a pretrained
existing model as image domain feature extractor. There are quite a few existing models such as
AlexNet and VGG_net that are already trained and available. It is one of the benefits from our unified
fusion framework to incorporate existing trained models for multi-domain fused embedding.

3.4. Learning Rating Prediction with Deep Fusion

We apply our deep fusion framework to extract information from multiple domains and integrate
such information in rating prediction. For our model presented in Figure 1, the variable values that
we need to learn are the low-dimensional latent vector for users {ui}, the low-dimensional latent
vector for items {vj}, and the parameters of the whole neural network Θ. (Note that once we have
the network parameters, each item’s fused embedding vector, i.e., xe, can be computed by using the
procedure in Algorithym 1.)

We use a training process that minimizes a combination of reconstruction loss and rating loss to
obtain the values for the parameters. Equation (4) provides the reconstruction loss for a single item.
The rating loss for a single user-item pair (i, j) is given by:

Lrating = (rij − u>i (vj + xe(j)))
2. (5)

Putting both errors together and adding regularizations, we have the following overall loss:

L = ∑(i,j,∗)∈R
(
rij − u>i (vj + xe(j))

)2

+λ1∑j ∑d ||xd
r(j) − xd

j ||22 +λ2∑t ||ut||22 +λ3∑t ||vt||22,
(6)

where λ1, λ2, and λ3 are model parameters. λ1 controls the trade-off between rating loss and reconstruction
loss while λ2 and λ3 control the regularization. To solve the minimization problem, we used stochastic
gradient descending (SGD).

4. Experiments

We conducted a collection of experiments to evaluate our proposed model and its variations.
We also compared the proposed models to some other state-of-the-art models. Our experiments
used two datasets: the book dataset and the movie dataset, both from Amazon product dataset [38].
In the following, we first describe the datasets, the models used in comparison and the experiment
configuration. Then we discuss the experimental results.

4.1. Datasets

The Movie dataset contains reviews of movies, movie images, and movie ratings. We use movies’
and TVs’ review data and their metadata from Amazon product dataset (http://jmcauley.ucsd.edu/
data/amazon). The reviews contain 4,607,047 pieces of review information including user ID, movie
ID, rating, and textual review. The metadata contains 208,321 pieces of image information including
movie ID and image link. The ratings range 1–5. Traditional benchmark datasets such as Movielens1M
are relatively dense. The density is around 4% and each user has at least 20 ratings. We would like to
process datasets to better simulate cold-start scenarios. Specifically, we get 5921 users after removing
users with fewer than 40 ratings, and then we get 10,520 movies after removing movies with fewer
than 80 ratings or without image. This results in 394,980 valid ratings between these users and movies
and the rating density is around 0.63%. Around 20% users will have fewer than 20 ratings among
the selected movies. Book dataset: We use books’ review data and metadata from Amazon product
dataset. From 8,898,041 pieces of raw review information and 2,370,585 pieces of raw metadata, we get

http://jmcauley.ucsd.edu/data/amazon
http://jmcauley.ucsd.edu/data/amazon
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9085 users after removing users with fewer than 100 ratings, and then we get 13,333 books after
removing books with fewer than 100 ratings. This results in 553,840 valid ratings between these users
and books and the rating density is around 0.46%. Around 30% users will have fewer than 20 ratings
among the selected books. In comparison with traditional benchmark datasets, our processed datasets
better simulate cold-start scenarios.

For the review data, we concatenate all reviews for each movie into a single review file, and then
use Bag-of-Words model to convert the review file into a 5000-dimension vector. In terms of image
domain, some models use raw images as domain input. For the other models, we apply pretrained
AlexNet [28] to the images and obtain image features. These features are then used as image domain
inputs. We resize our image data to 227× 227 and feed them to AlexNet. The outputs from the neurons
before the softmax operation in AlexNet are used as image domain inputs. This type of inputs has
a dimensionality of 1000.

4.2. Models Used in Experiments

In our deep fusion network, for both the text and image domains, the inputs are directly
concatenated and fed to the fusion autoencoder. (Note that the image domain inputs are the features
derived from trained AlexNet.) For each domain, there is a one-layer domain-specific decoder
to reconstruct the input. A 5-layered network is used as our central fusion network (network F).
The output of the 3rd layer is the fused embedding. All neurons in the network are rectified linear units.

We compare our deep fusion rating prediction with several other models. These models utilize
two other types of networks: standard autoencoder with fully connected layers (FCAE) and standard
autoencoder with convolutional and fully connected layers (SCAE). Compressed features with
dimension m extracted from the last layer of encoder are used as the embedding of the data. FCAE is
a 6-layer fully-connected neural network with the first 3 layers as an encoder and the last 3 layers
as a decoder. The number of neurons used in each layer of FCEA is: 1000, 500, m, 500, 1000, 5000,
respectively, and Sigmoid function is used as the activation function for all layers. SCAE, mainly
for images, is a 6-layer neural network, in which the first two layers and the last two layers are
convolutional, and the third and fourth layers are fully-connected. The number of convolutional
filters and window size in each layer of SCAE are: (20, 5, 5), (20, 5, 5), m, 81, 920, (20, 5, 5), (3, 5, 5),
respectively. We use rectified linear unit (ReLU) as the activation function for each layer, and RMSProp
as the optimizer for SCAE.

We now list the models used in our experiments and a quick comparison of the model properties
is given in Table 2.

Table 2. Comparison of Models

Method Fused Embedding PretrainedEmbedding Coupled Rating

MF 7 7 7

MF + T 7 7 7

CTR 7 3 7

MF + I 7 7 7

MF + IT 7 7 7

MF * IT 7 3 7

MF + Ip 7 7 3

MF + IpT 7 7 3

MFUIpT 3 3 3

MF: This is the traditional matrix factorization model [1], no review or image information is added.
The rating of user i on item j is simply predicted as u>i vj. MF + T: Matrix factorization with embedding
vector from the reviews. Note that, different from our main model, embedding vector is derived
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through unsupervised training in this model. A FCAE is trained on the review data (text domain) in
an unsupervised fashion at first to generate an embedding for the review data (eT). The embedding
vector is incorporated in the matrix factorization for rating prediction, i.e., the rating of user i on item j
is predicted as u>i (vj + eT). In this scenario, we say that learning of the embedding vector and learning
of the rating are not coupled. CTR: Collaborative topic regression [23] integrates topic modeling (bag of
words) and CF simultaneously. The learning of embeddings and the rating predictions are coupled.
A pair-wise loss function is used to measure the differences of relative preferences of pairs of items.
MF + I: Same as MF + T with a SCAE in place of the FCAE to learn image features.

MF + IT: Same as MF + T and MF + I but includes embedding from both the reviews (eT) and the
images (eI), using a FCAE for the reviews and a SCAE for the images. The rating of user i on item j is
predicted as u>i (vj + eT + eI). Again, the embedding learning and the rating learning are not coupled.

MF * IT: This is a simplified version of the model proposed in [41], where the input contains
text and visual domains. A FCAE is used for text domain data and a SCAE for image domain data.
Different from MF + T, MF + I, and MF + IT, the embedding learning and the rating learning are coupled
in this model. The loss function used in training includes both a reconstruction loss (for embedding)
and a rating loss. On the other hand, the text domain and the image domain embeddings are extracted
using two separate autoencoders. In this case, we say that the embedding is not fused embedding.

MF + Ip: This is a slight variation of the model proposed in [39], which integrates only contents
in image domain to improve recommendation. The difference is in that we use item-wise loss
function while they use pair-wise loss function. The reason that we use item-wise loss function
is to make the comparison consistent with the strongest baseline [41]. MF + Ip is the same as MF + I
except that the image domain inputs are features extracted by AlexNet rather than the raw images.
Accordingly, this model uses a FCAE instead of SCAE because we view AlexNet features as a feature
vector, rather than a feature map. Same as MF + I, the embedding learning is not coupled with the rating
learning. MF + IpT: Same as MF + Ip with text domain inputs added. We use a FCAE for the text
domain embedding. The embedding learning and the rating learning are not coupled. MFUIpT: This is
our main model (model in Figure 1). It uses features extracted by AlexNet as image domain inputs
and generates a fused embedding for both image and text features. The training for the embedding and
the rating is coupled.

4.3. Evaluation Scheme

We measure the performance of a rating prediction model by computing the error between the
predicting ratings and the real rating of items. In particular, we use mean squared error (MSE) and mean
absolute error (MAE) to evaluate the performance. In addition, to compare with rank-based models,
we rank the test items by rating scores and adopt normalized discounted cumulative gain (NDCG) to
measure ranking quality. We use 5-fold cross-validation technique to evaluate both Book and Movie
datasets. To optimize the user latent ui and item latent vj in matrix factorization, we implement the
stochastic gradient descent (SGD) algorithm. The parameters include the dimension of latent vector
m, the learning rate lr, the regularization factor λ, the batch size batch, and the number of iterations
iter. For Movie dataset, we use lr = 0.015 and λ = 0.15. For Book dataset, we use lr = 0.003 and
λ = 0.2. For both datasets, latent factors m changes from 50, 100, 150, 200 to 300. The parameter
settings are shown in Table 3. m denotes the dimension of latent vector, lr is the learning rate, λ is the
regularization factor, batch is the batch size, and iter is the number of iterations.
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Table 3. Parameter Settings of Different Parts.

Movie Dataset Book Dataset

MF

m = 50, lr = 0.01, λ = 0.15 m = 50, lr = 0.006, λ = 0.2
m = 100, lr = 0.01, λ = 0.15 m = 100, lr = 0.006, λ = 0.2

m = 150, lr = 0.015, λ = 0.15 m = 150, lr = 0.003, λ = 0.2
m = 200, lr = 0.015, λ = 0.15 m = 200, lr = 0.003, λ = 0.2
m = 300, lr = 0.015, λ = 0.15 m = 300, lr = 0.003, λ = 0.2

FCAE lr = 0.05, batch = 32, iter = 500 lr = 0.05, batch = 32, iter = 500

SCAE lr = 0.01, batch = 32, iter = 100 lr = 0.01, batch = 32, iter = 100

5. Results and Discussion

Figure 2 shows the MSE (top) and MAE (bottom) of different rating prediction models
across different embedding dimensions for the Movie dataset (left) and the Book dataset (right).
For both datasets, the hybrid models (models that include content information such as images and
reviews) outperform the pure matrix factorization model (MF), across all embedding dimensions.
As an example, consider MSE for the movies dataset. In average (across embedding dimensions),
the MF + T model achieves 1.3% improvement over the pure matrix factorization model (MF) and
the MF + I achieves 2.3% improvement. For the books dataset, the MF + T model achieves 0.73%
improvement and the MF + I achieves 4.3% improvement. This agrees with the well-known view in
recommendation research that hybrid systems often give better performance.

A second observation from the result is that in all cases, coupling the learning of the embedding
and that of the rating always provides some benefit. MFUIpT (MF * IT) is the best (second best)
performers across all embedding dimensions and datasets. As we have discussed earlier, embedding is
task related. Different tasks may involve different aspects of an item. Features that are discriminative
for one task may not be so for another task and general features derived from unsupervised learning
may not be beneficial to a particular task. Our results show such a trend clearly. The performance
of the decoupled models where the embeddings are learned through unsupervised learning cannot
match that of the coupled models.

There is another separation between the decoupled models and the coupled ones. For the coupled
models, within the range tested in our experiments, increasing embedding dimension leads to slightly
better performance (our model MFUIpT in most cases) or the performance stays roughly the same
(MF * IT in most cases). On the other hand, for the decoupled models, the performance, in most cases,
gets worse when the embedding dimension increases. We notice that the performance of the pure
matrix factorization model, MF, decreases when the latent dimension increases. (Latent dimension
is always the same as the embedding dimension if a model uses embedding.) It is likely that with
a high latent dimension, MF reaches overfitting quickly. Hence, its performance deteriorates when
dimension increases. Although the decoupled models still perform better than MF, the benefit from
their embedding vectors is not large enough to reverse the trend (i.e., performance deteriorating
due to overfitting with high dimension). On the other hand, although the coupled models use the
same base model (MF), their embedding vectors are more beneficial and can reverse (or cancel)
the overfitting trend.

The effect of the features from AlexNet is mixed. There are cases where using such features can
benefit while there are also other cases where they give slightly worse performance than SCAE with
raw images.
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Figure 2. Rating prediction measured by mean squared error (MSE) and mean absolute error (MAE)
with respect to latent dimension size on Movie (left) and Book (right).

Across all dimensions and all datasets, our main model, MFUIpT, is constantly the best
performer. As an example, we compare it with the second best model MF * IT. For the Movie
dataset, the MF * IT model achieves improvement from 4.39% to 14.67% with respect to the base
model MF, when the embedding dimension changes from 50 to 300. The average improvement is
9.43%. Our main model achieves improvement from 7.74% to 18.45% compared to MF. The average
improvement is 13.15%. Furthermore, as we have discussed earlier, the base model MF overfits at high
dimensions and its performance decreases. Our model can reverse such trends, even at the highest
dimension. These results indicate that our model has a performance advantage over all other models.
Given our model and MF * IT are both coupled models, a main part of our model’s performance
advantage is due to the fused embedding, which is capable of extracting features involving multiple
domains.

In Table 4, we compare two of the previous rating-based recommendation models with rank-based
recommendation model CTR on Movie dataset. The latent dimension for all models is set to 50 and all
parameters are optimized through cross-validation. Since the first two models integrate both image
and text features, they perform better (with higher NDCG) than single-modal model CTR (text).

Table 4. Movie recommendation performance using rank-based metric normalized discounted
cumulative gain (NDCG) at top K positions.

Method k = 5 k = 10 k = 15 k = 20

MF * IT 0.9320 0.9513 0.9587 0.9619

MFUIpT 0.9370 0.9546 0.9614 0.9644

CTR 0.8978 0.9265 0.9376 0.9425
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Figure 3 shows the illustrative examples of our recommendation model. The top row is the movie
user case and the bottom row is the book user case. The three items on the left side of the bar are
selected from users’ favorite items with the highest ratings, and the three items on the right are top
items recommended by our model. For each item, we show both image content such as a movie
poster and a book cover, and text content that is the most frequent word in the corresponding reviews.
First of all, we can see that features from different domains can complement each other and provide
better descriptions of the characteristics of the items. For example, for most movies listed on the top,
their images are mostly about people and it is difficult to identify the finer genres. By reading the
text, we know that some movies are intense drama like “The Hunt” and some are relaxing comedy
like “Nurse Jackie”. In addition, some of the books are very good examples of “Don’t judge a book by
its cover”. In particular, the book “Prayers for sale” is simply a blue background with white characters
and it is hard to guess what the content is about, so text can help.
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Figure 3. Case study for a Movie user (top) and a Book user (bottom): (Left) user’s top 3 favorite items.
(Right) top 3 items our model recommends.

For both cases, we can see that our model successfully captures the users’ tastes and provides
reasonable recommendations. Specifically, from the three liked movies “The Hunt”, “Enough Said” and
“Nurse Jackie”, we can speculate that the movie user likes drama and romantic comedy, with a specific
taste on movies discussing relationship management. Our model recommends “Mr. Ripley”,
“Philomena”, and one Streep’s movie, which aligns with the user’s taste. Similar phenomena can
be observed for the book user. It seems that the user likes books about religious, family, friendship,
and cooking from the three training examples and the recommendations mirror the taste.

Finally, the case study perfectly illustrates the effectiveness of our hybrid modeling via deep
embedding, which benefits from both collaborative filtering and content filtering. For very popular
items such as “Nurse Jackie” and Streep’s movie, they can be linked via rating patterns. lower-rated
items such as “Friendship Bread” and “The cooking school”, which may not be linked together by
collaborative filtering methods, can be linked through text content similarities.

6. Conclusions

We have considered the rating prediction problem with content information in recommender
systems. To utilize the information that often includes data from multiple domains, we have proposed
a deep fusion framework for multimodal embedding. The key characteristic of our framework is the
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fused embedding that produces high-level features combining multiple domains tightly. We have
trained the deep fusion embedding with rating prediction in a closely coupled fashion. To evaluate
our model, we have conducted a set of experiments and compared it with other existing models
and variations. The experimental results have shown that rating prediction with our deep fusion
embedding gives the best performance in all experiments across all datasets. This demonstrates the
effectiveness of our model. As future work, we would like to explore more network structures to
generate fused embedding for data from vastly different domains, for recommendation tasks and
other applications.
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