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Abstract: Synesthesia is a psychological phenomenon where sensory signals become mixed. Input to
one sensory modality produces an experience in a second, unstimulated modality. In “grapheme-color
synesthesia”, viewed letters and numbers evoke mental imagery of colors. The study of this
condition has implications for increasing our understanding of brain architecture and function,
language, memory and semantics, and the nature of consciousness. In this work, we propose a
novel application of deep learning to model perception in grapheme-color synesthesia. Achromatic
letter images, taken from database of handwritten characters, are used to train the model, and to
induce computational synesthesia. Results show the model learns to accurately create a colored
version of the inducing stimulus, according to a statistical distribution from experiments on a sample
population of grapheme-color synesthetes. To the author’s knowledge, this work represents the first
model that accurately produces spontaneous, creative mental imagery characteristic of the synesthetic
perceptual experience. Experiments in cognitive science have contributed to our understanding
of some of the observable behavioral effects of synesthesia, and previous models have outlined
neural mechanisms that may account for these observations. A model of synesthesia that generates
testable predictions on brain activity and behavior is needed to complement large scale data collection
efforts in neuroscience, especially when articulating simple descriptions of cause (stimulus) and effect
(behavior). The research and modeling approach reported here provides a framework that begins to
address this need.

Keywords: synesthesia; deep learning network; color perception; generative adversarial network;
cognitive modeling; character recognition; GPU computing

1. Introduction

1.1. Background

Synesthesia is a psychological phenomenon where sensory signals become mixed; input to
one sensory modality produces an experience in a second, unstimulated modality [1]. For example,
the experience of colors may be induced by seeing or hearing digits, letters or words. In “grapheme-color
synesthesia”, viewed letters and numbers evoke mental imagery of colors. These color associations are
involuntary, idiosyncratic and highly consistent over time [2]. The study of synesthesia has implications
for furthering our understanding of brain architecture and function, as well as creative processes,
language acquisition, and learning and memory performance [3]. The study of consciousness itself
may benefit from investigation of synesthesia [4].

Due to the significance of synesthesia across disciplines, the scientific literature is rich with
studies aiming to account for its physiological origins and behavioral manifestations. Investigations
into cognitive and behavioral aspects and neurological substrates are reviewed by Hubbard and
Ramachandran [1] and Rouw et al. [5].

Cognitive models have been proposed to identify partitions of cognition and perception in
synesthesia. In [6], multiple interconnected pathways of form and color analysis under visual or
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auditory stimuli are modeled. Symbol and color representation domains interact with semantic
identification at higher stages of processing. An important contribution of the model in [6] is explicit
description of the levels of inducer processing, from preconscious feature analysis to ultimate production
of synesthetic assignment of color to the input.

Descriptions of the neurological basis of synesthesia center on two main theories. These theories
posit that the synesthetic brain has either: (1) cross-activation between color processing area V4 and
proximal visual word form area in the fusiform gyrus [7]; or (2) disinhibited feedback between circuits
of bottom-up sensory input and higher-level visual areas [8]. Functional neuroimaging studies
dynamically localize activated cortical regions in synesthetic perception versus controls [9], and provide
valuable insight to validate and continue to develop such theories [10].

Rouw and co-workers [5] reviewed a number of studies elucidating the differences between
synesthetes and controls based on functional MRI (fMRI) experiments. Their summary noted that
six different regions of the brain were involved in overlapping research results, located in areas
responsible for sensor, motor and attention and control processes. Synesthesia is clearly a very complex
phenomenon, integrating neural activities and cognition associated with diverse functional regions
of the brain.

1.2. Deep Learning Models

Deep learning facilitates machine learning from large scale data. Complicated, abstract
representations of structure in computer vision, language processing, and many other domains
can be explored [11,12]. Previously, computationally laborious problems in pattern recognition or
artificial intelligence relied on the ability to engineer features from raw data that could be used to learn
representation or mappings. Deep learning architectures develop internal representations naturally
from this data, enabling new insights to emerge from empirical data for detection or classification
applications [12].

Hinton demonstrated that multilayer generative models could learn the joint distribution of
handwritten digit images and their labels [13]. These deep belief networks learned latent representations
of the input in densely-connected hidden layers. Generative models were shown capable of: (1) learning
low-level features in an unsupervised manner; and (2) learning very large numbers of parameters
without over-fitting [13].

More recently, Goodfellow [14] introduced generative adversarial networks (GANs), a general
framework for training deep learning networks. GANs eliminate the need for difficult probabilistic
computations when learning hidden layer parameters.

The central idea of GANs is to establish competition between two deep network models—the
discriminator (D) and the generator (G). G is tasked with generating samples G(z) (drawn from pz(z))
that appear to D as having been drawn from the actual distribution pdata(x). D must learn to discern
between real data, and artificial data created by G. In this numerical game, model parameters are
optimized alternatively to solve the minimax objective function

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1− D(G(z)))] (1)

This formulation has an unique global optimum representing the real data distribution
pdata(x) [14]. This is true even when the prior distribution pz(z) is random noise. Extensions of
the GAN framework condition D and G on additional information such as class label [15,16].

1.3. Contribution of Present Study

A GAN is developed in the present work, in which both D and G are implemented as multilayer
convolutional neural networks, as described in Section 2.3. The trained generator network G is a model
for grapheme-color synesthesia.
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Achromatic letter images, taken from database of handwritten characters [17], are used to
stimulate the model and induce “computational” synesthesia. G learns to create a colored version
of the inducing stimulus, according to a statistical distribution from experiments on grapheme-color
synesthetes [18]. The identity of each symbol determines its concurrent color [8].

To the author’s knowledge, this work represents the first model that accurately produces
spontaneous, creative mental imagery characteristic of the synesthetic perceptual experience.
The GAN deep architecture can learn and (generalize) from gigabytes of example data in an efficient
manner not feasible using alternative computing paradigms, without overfitting the training data.
Several fundamental characteristics of color-letter synesthesia are present in this model. These include:

• Automatic induction of the psychological experience (in the trained GAN) [6];
• Invariance of colors across changes in form of inducing symbols [19];
• Stability of synesthetic associations over time [20]; and
• Learnability of synesthesia by non-synesthetes [21,22].

The current study is motivated to provide a template to reconcile the spectrum of experimental
results on functional and structural aspects of this remarkable condition, as informed by behavioral
and cognitive studies. Neuroimaging investigations collect huge amounts of data, even down to the
granularity of single neuronal firings. These studies correlate regions and timings of brain activity under
specific stimuli. Behavioral experiments begin with hypotheses and confirm, refute or modify these
hypotheses after observation of results. The integration and interpretation of these two investigative
fronts is a substantial objective.

Given the complexity of biological and cognitive processes involved in synesthesia, a path
forward would benefit from a unifying computational approach. Significant scientific questions may
be addressed moving forward following the suggestions of the current research. How do cognition
and behavior arise from the interactions between activated neurons and assemblies under external
sensory input? An ongoing challenge is to uncover causal relationships between “big neural” and
“big behavioral” data [23]. Deep learning models are able to abstract neurological structures and
representations at any desired level of detail, and process information given copious volumes of input
data. The deep learning modeling and approach reported here provides a framework that begins to
address this need.

2. Methods

2.1. Handwritten Letters Database

Handwritten letter images for training were extracted from the EMNIST dataset [17]. The raw
images are stored as 28× 28 pixels, in 8-bit integer format. A modeling sample comprising the EMNIST
uppercase letters was constructed using the By_Class subset and annotations. We excluded lowercase
letters and numeric digits resulting in 220,304 examples. Counts of individual letters in this sample
varied from 2850 (letter ‘K’) to >29,000 (letter ‘O’); qualitatively, moderate variance in handwritten
morphological structure for given letters was observed. No balancing of the 26 letter-classes was
carried out; the aim here was not to develop a discriminative model for classification. (The EMNIST
data can be obtained at: https://www.nist.gov/itl/iad/image-group/emnist-dataset.)

2.2. Synesthesia Color-Letter Pairs

Each grayscale letter image was converted to a 3-channel (R,G,B) image using experimental
statistics of perceived colors in grapheme-color synesthesia as reported by Witthoft et al. [18]. The most
frequently reported letter-color pairings from a large cohort of synesthetes (n = 6588) were used to
represent the sample population (c.f. Figure 1 in [18]), recognizing that significant idiosynchratic
differences in color experienced for a given letter exists between individuals. These aggregate “modal”
colors for each letter were used to develop the basic examples for generative colorization model
learning in the current study. These pairings are listed in Table 1.

https://www.nist.gov/itl/iad/image-group/emnist-dataset


Big Data Cogn. Comput. 2018, 2, 8 4 of 8

(a) Early generator input. (b) Early generator color induction.

Figure 1. Synesthetic letter colorization by the evolving generative network: (a) generator input;
and (b) generator output. Early training: 1st epoch; <3000 iterations. One letter per column. Iteration
count progresses from top to bottom.

Table 1. Grapheme-color associations of 6588 synesthetes. The most common color assignment reported
for each letter is shown. After [18].

Color Letters

Red A, M, R
Blue B, D, T, W

Green E, F, G
Yellow C, L, S, Y
Orange H, J, K, N, U
Purple P, Q, V
White I, O
Black X, Z

2.3. Numerical Implementation

The conditional GAN model of grapheme-color synesthesia perception was adapted from a
deep convolutional neural network (CNN) implementation described in [24]. The generator network
encodes the input image by six successive hidden layers, each outputting a reduced-dimensional
image relative to the preceding layer. The representation of features of the original input image is
increasingly abstracted and noise-filtered after each encoding layer of processing [25].

For example, the encoding layers H decrease pixel resolution as follows: Input: 64 × 64
(×3 grayscale/color channels, for G, D respectively); H1: (64 × 64→32 × 32 × 64); H2: (32 × 32
× 64→16 × 16 × 128): H3: (16 × 16 × 128→8 × 8 × 256); H4: (8 × 8 × 256→4 × 4 × 512); H5: (4 × 4
× 512→2 × 2 × 512); H6: (2 × 2 × 512→1 × 1 × 512).

Six decoding layers follow; these layers invert the compression operations by deconvolution
producing the resulting image, which is 64 × 64 (×3 channels) in dimension. G outputs three channels
of putatively colorized letters for assessment of accuracy by D.

The final output of the generator is an image with synthetic colorization. The discriminator has
similar multilayer convolutions, ultimately outputting a reduced image and probabilities of the input image
being real or synthetic. Additional details of the GAN architecture appear in [24]. (See [24] Appendix 1.
The image colorization GAN adapted here is based on code from the repository: https://github.com/
sawhney-kartik/gan-colorization).

We developed code to download, extract and pre-process EMNIST handwritten letters [17];
synthetically colorize the raw examples based on synesthesia statistics [18]; and to train, test, analyze

https://github.com/sawhney-kartik/gan-colorization
https://github.com/sawhney-kartik/gan-colorization
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and visualize results of the generative learning process. Deep learning experiments were carried out
using the TensorFlow software library and Python language API [26]. The models were developed on
a CPU/GPU-based system (i5-3470 16 GB RAM; NVIDIA GeForce GTX 1050 Ti 4 GB on-board).

Transformations and processing for each training image followed the protocol of [24]
(An additional pre-processing step taken here was to digitally upsample the EMNIST images from
28 × 28 to 64 × 64 pixel format): (1) convert example (R,G,B) image (described in Sections 2.1 and 2.2)
to CIE Lab color space; (2) present the L (grayscale) channel to the input of the generative model G;
(3) output synthetic a,b channel data from G, and reconstruct a full three-channel (L,a,b) color image;
(4) present real and artificial images to discriminator D; (5) evaluate objective function (Equation (1));
and (6) backpropagate errors through both networks, updating weights using stochastic gradient descent.

Generative model training was performed for three epochs on a random sample of 125,000 images
(three epochs, for a total 375,000 iterations) from the EMNIST dataset. Periodically, generated images
were converted back to (R,G,B) color space and stored to disk for human observation and post-analysis.

3. Results

Results of synesthetic letter colorization by the generative network are presented in Figure 1.
Figure 1a displays typical inputs and Figure 1b the corresponding outputs in the very early phases of
model training (<3000 iterations).

Each panel contains samples for one handwritten letter per column. Iteration count progresses
from top to bottom. The top-most row on the right-hand side shows the true modal color-letter pairings
from the experimental distribution reported in [18] (Table 1). Letters are presented in random order
and are unbalanced; the example count seen for each letter is therefore not uniform across the alphabet.

At this stage of learning, the generative network is not producing realistic colored images matching
the true distribution. Several letters begin to appear to align with their synesthetic concurrents,
but most others miss the mark. The letters often perceived as either black or white in color-grapheme
synesthesia (I,O,X,Z) are already reproduced fairly well. This is intuitively correct, as the generator
does not need to learn to produce color for 2/3 of the raw pixel data for achromatic exemplars.

Following additional optimization of the GAN, more realistic results are observed. Consider the
images shown in Figure 2. After three epochs of training, the synesthesia model generates colored
letters with high accuracy. The colors produced are nearly indistinguishable from the actual
distribution. Accuracy of color reproduction in the 26 × 26 grid is over 99%; very few instances
(G: row 7; F: row 18; K: row 2; O: row 15; Q: row 13; and Y: row 9) are incorrectly colored.

(a) Trained generator input. (b) Trained generator color induction.

Figure 2. Synesthetic letter colorization by the trained generative network: (a) generator input;
and (b) generator output. Late training: 3rd epoch, ∼375,000 iterations. One letter per column.
Iteration count progresses from top to bottom.
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The results exhibited in Figure 2 are typical of those observed in out-of-sample tests on
∼95,000 additional handwritten letter examples. Once the generator learns the true distribution
of color–letter associations, the concurrent response remains consistent under additional stimuli.

4. Discussion

This research contributes the idea of applying a very general modeling paradigm (generative
adversarial deep networks) to study synesthesia. We developed and applied a generative deep
neural network to model perception in grapheme-color synesthesia. Grayscale letters are used to
stimulate the model, which colorizes each letter. Training data were taken from experiments on a large
sample of synesthetes [18], combined with a database of handwritten letters [17]. The spontaneous,
creative mental imagery characteristic of the synesthetic perceptual experience is accurately reproduced
by the model.

Automatic and consistent response to characters or digits are fundamental to synesthesia,
even when the stimulus is non-physical (i.e., conceived in the mind’s eye) [19]. Recognition of the
identity of a symbol determines its concurrent color [2,8]. In the present model, the generative network
hidden layer weights encode information on pixel intensities describing the structure of each letter
(and its identity) when perceived in two dimensions. We suggest that a similar mechanism may
regulate the process of letter identification and association with color in synesthesia.

A model of synesthesia that generates testable predictions on brain activity and behavior is
needed [2]. The experimental collection of “big data” in neuroscience leads to increased complexity
of analysis and the distillation of conclusions, especially when articulating simple descriptions of
cause (stimulus) and effect (behavior) [23]. The deep learning modeling and approach reported here
represents a first step towards the integration of full scale fMRI functional neurological data with
cognitive-behavioral experiments.

The present model reproduces the mechanism of character recognition and learned color
association that characterizes color–letter synethesia. After three presentations of each example
image (in total, 375,000 iterations), highly accurate color–letter associations are generated by the
model. We sought some confirmation of the number of letter presentations required to learn or
induce synesthesia in the literature. In Colizoli et al. [21], non-synesthetes were trained by reading
colored books, with four high-frequency letters presented in colored text. Subjects were subsequently
shown to exhibit behavior indicative of synesthesia on a number of tests, including a modified
“Stroop task” [27], a standard test for synesthetic effects. After reading a single artificially colored book
(containing 49,000 words), the Stroop effect was observed (i.e., increased response times to letter–color
paired stimuli incongruent with training pairs). Using this 49,000 word count threshold, the average
number of letters per word in English (4.79) and the relative frequencies of occurrence of letters in
the English language, a short simulation was programmed to estimate counts of each letter expected
in a random sample of 49,000 × 4.79 letters, approximately one book in [21]. The simulation results
suggest average expected training letter counts in [21] would be as follows:

[E = 29,792; T = 21,258; A = 19,014; O = 17,704; I = 16,391; N = 15,820; S = 14,904; H = 14,232; R = 13,959;
D = 10,208; L = 9293; C = 6629; U = 6426; M = 5697; W = 5401; F = 5278; Y = 4762; G = 4604; P = 4585;
B = 3492; V = 2318; K = 1852; J = 369; X = 326; Q = 217; Z = 179].

In the current deep learning model, after ≈ 3000 letter iterations, learning of synesthetic
color–letter association was still incomplete. This is a lower threshold in the GAN model. It is not
possible to draw definitive conclusions on statistical relevance to experiments in [21], but clearly
something on the order of 104 colored examples (high frequency letters) are sufficient to learn
synesthesia in behavioral experiments. The deep learning observations are roughly in accordance with
these observations.

Three particularly ambitious areas in which to apply and extend this research are summarized below.
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1. Functional brain imaging. Studies aimed to identify and localize structure and function within
the synesthesia experience [5]. Experimental data from functional magnetic resonance imaging
or other modalities could be used to build a complementary deep learning model with more
explicit mapping of layers to physiologic modular components than used in the current
study. Such a model could provide additional insights to refine the competing hypotheses
of cross-activation (increased linkage between proximal regions) [7] or disinhibited feedback from
higher-level cortical areas [8] in synesthesia. The architecture of the generative network used here
comprised fully-connected, convolutional neural layers; different architectural designs could be
developed (e.g., direct cross-wiring, or recurrent connections) to directly simulate and compare
the relative accuracy and plausibility of these competing theories. This is beyond the current
investigative scope.

2. Language learning and memory. Studying synesthesia may advance our understanding of human
perception and information arrangement [6]. One theory proposed in [3] advances the idea
that grapheme–color synesthesia develops in part by children to learn category structures;
a fundamental task in literacy development is to recognize and discriminate between letters.
Therefore, synesthesia might arise as an aid to memory. More generally, the ability to discern
statistical regularities of printed letters or learn complex rules for letter combinations would assist
learning at subsequent stages of literacy development [3]. In [28], small sample experiments
suggested that additional sensory dimensions in synesthesia aid in memory tasks when compared
to controls. We submit that the generative modeling approach of the current work may be useful
to develop and test hypotheses in studies of language acquisition, memory and semantics.

3. Consciousness studies. Synesthesia can give insight into the neural correlates of consciousness,
through interaction between sensory inputs and their mediation by semantics in the induction
of phenomenal subjective experience [4]. Connecting neural activations with subjective aspects
of consciousness (perception of shape, color, and movement of an object) is potentially
achievable following a systematic experimental approach [29]. In deep learning, understanding
representations within deep layers is easy at the layer level; at the level of individual neurons,
such understanding is much more difficult [30]. Extensions of the deep learning model reported
here may help to advance toward these formidable objectives.
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The following abbreviations are used in this manuscript:

GAN Generative adversarial network
GPU Graphics processing unit
CPU Central processing unit
CNN Convolutional neural network
fMRI Functional magnetic resonance imaging
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