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Abstract: The increasing amount of data in electromyographic (EMG) signal research has greatly
increased the importance of developing advanced data analysis and machine learning techniques
which are better able to handle “big data”. Consequently, more advanced applications of EMG pattern
recognition have been developed. This paper begins with a brief introduction to the main factors
that expand EMG data resources into the era of big data, followed by the recent progress of existing
shared EMG data sets. Next, we provide a review of recent research and development in EMG
pattern recognition methods that can be applied to big data analytics. These modern EMG signal
analysis methods can be divided into two main categories: (1) methods based on feature engineering
involving a promising big data exploration tool called topological data analysis; and (2) methods
based on feature learning with a special emphasis on “deep learning”. Finally, directions for future
research in EMG pattern recognition are outlined and discussed.
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1. Introduction

Recognition of human movements using surface electromyographic (EMG) signals generated
during muscular contractions, referred to as “EMG Pattern Recognition”, has been employed in a wide
array of applications, including but not limited to, powered upper-limb prostheses [1], electric power
wheelchairs [2], human-computer interactions [3], and diagnoses in clinical applications [4]. Compared
to other well-known bioelectrical signals (e.g., electrocardiogram, ECG; electrooculogram, EOG;
and galvanic skin response, GSR), however, the analysis of surface EMG signal is more challenging
given that it is stochastic in nature [5]. For upper-limb myoelectric prosthesis control, as an example,
many confounding factors have also been shown to greatly influence the characteristics of the EMG
signal and thus the performance of EMG pattern recognition systems. Just some of these challenges
include the changing characteristics of the signal itself over time, electrode location shift, muscle fatigue,
inter-subject variability, variations in muscle contraction intensity as well as changes in limb position
and forearm orientation [1,6–10].

To capture and describe the complexity and variability of surface EMG signals for more advanced
applications, a massive amount of information is therefore necessary.

Thanks to recent advancements in commercial EMG signal acquisition technologies, data storage
and management, and file sharing systems, the field is now moving into the era of “big data”.
Several factors have contributed to the recent expansion of EMG data resources such that big data
approaches are beginning to be viable. First, EMG data sets collected as part of individual research
studies are now being made available online instead of residing solely on hard drives within the
laboratories of individual researchers (e.g., [10–12]). Secondly, as in other research communities,
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the availability of benchmark EMG databases has been critical to the growth of the field [13]. Thirdly,
the development of high-density surface EMG systems has introduced the concept of a surface EMG
image and thus dramatically increased the volume of data [14,15]. Lastly, the increasing availability
of multi-modality sensor systems has generated larger amounts of data in which the EMG signal is
considered one of the most important sources of information [16,17]. Here, we present the current state
of existing shared EMG datasets, highlighting the opportunities and challenges in the development of
truly big EMG data.

To translate the vast and complex information in EMG signals into useful control signals
for prosthetic devices or a meaningful diagnostic tool for identifying neuromuscular diseases,
advanced data analysis and machine learning techniques capable of analyzing big data are needed.
Existing EMG pattern recognition approaches can be broadly divided into two categories: (1) methods
based on feature engineering and (2) methods based on feature learning. “Feature Engineering” and
feature extraction have been key parts of conventional machine learning algorithms. In EMG analysis,
short time windows of the raw EMG signal are extracted and augmented by extracting time and
frequency features aimed at improving information quality and density. Many studies have shown
that the quality and quantity of the hand-crafted features have great influence on the performance of
EMG pattern recognition [18–21].

Here, we review methods that can be applied to big data analytics involving a method rooted
in algebraic topology called “topological data analysis”. This method has recently been shown to
facilitate the design of an effective sparse EMG feature set across multiple EMG databases and scales
well with data set size [22].

Conversely, in “feature learning”, explicit transformation of the raw EMG signals is not required
as features are automatically created by the machine learning algorithms as they learn. The use of “deep
learning” therefore shifts the focus from manual (human-based) feature engineering to automated
feature engineering or learning. Although neural networks have been used in EMG research for several
decades, deep learning techniques have recently been applied to EMG pattern recognition. This is,
at least in part, due to the lack of sufficient EMG data availability to train these deep neural networks
in the earlier years of the field. With the advent of shared bigger EMG data sets and recent advances
in techniques for addressing overfitting problems, most emerging deep learning architectures and
methods have now been employed in EMG pattern recognition systems (e.g., [14,23,24]). In some cases,
both feature engineering and learning are combined by inputing pre-processed data or pre-extracted
features to a deep learning algorithm with some benefits having been shown (e.g., references [11,23,24]).
Here, we provide a comprehensive review of the recent research and development in deep learning for
EMG pattern recognition. Directions for future research are also outlined and discussed.

2. Big EMG Data

In addition to the fact that some research questions cannot be answered using single, small data
sets, larger samples are generally preferable to account for the large inter- and intra-subject variability
in surface EMG signals. Similarly, differences in instrumentation and data collection protocols can
introduce biases in small sample sizes. Over the last decade, a long-standing interest in acquiring the
large-scale EMG data sets has been increasingly fulfilled. The four main factors that have contributed to
expanding EMG data resources into the big data discussion are outlined and presented in this section.

2.1. Multiple Datasets

The first step in the successful open sharing of big data resources usually comes from a number
of individual researchers and research groups who are motivated to share data collected as part of
research studies. Although most EMG studies have collected data from small cohorts of participants
(n = 5–40), relatively large EMG data sets of several hundreds to thousands of subjects could be
easily gathered if their data was made available online along with their publications. However,
researchers have not typically published their data for a number of reasons. For one, the extra work
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required to prepare data before making them publicly available may not be worth the perceived
benefits. Furthermore, the collection of most data sets require significant investment in time and
effort, and thus researchers may prefer to release them only once they have extracted the maximum
perceived value and not at the time of the first publication. Keeping the data set private can preserve
the right to re-analyze the data in the future, either to apply different analytical techniques or to
investigate different research questions. In some cases, fear may also play a factor, as opening data
sets facilitates subsequent analyses that might uncover problems with the data or invalidate previous
results. Whatever the reason, many EMG data sets have remained hidden, residing solely on hard
drives within the laboratories of individual researchers.

With the advent of “data papers”, which allow researchers to publish their data sets as
citable scientific publications [25], more and more EMG data sets have been made available online.
Because theperformance of EMG pattern recognition can vary depending on subject, experimental
protocol, acquisition setup, and differences in pre-processing, multiple datasets are needed to ensure
the robustness and generalization of findings [22,26].

For instance, Kamavuako et al. [27] found that there was no consensus on the optimum value of
the threshold parameter of two of the most commonly used EMG features: zero crossings (ZC) and
slope sign changes (SSC), leading them to investigate the effect of threshold selection on classification
performance and on the ability to generalize across multiple data sets. Their results showed that the
optimum threshold is highly subject- and dataset-dependent, i.e., each subject had a unique optimum
threshold value, and, even within the same subject, the optimum threshold could change over time.
In practical use, it is desirable to build models that can generalize from one set of subjects to another,
one day to another, and from one setting to another. Therefore, they recommend a global optimum
threshold value yielding a good trade-off between classification performance and generalization based
on the global minimum classification error rate across four different EMG data sets.

The performance of many different EMG pattern recognition methods has been evaluated in a host
of studies over the last few decades. However, most previous studies have been limited in terms of the
relatively small sample sizes used for classification (small datasets) from one highly specific experiment
(constrained datasets), and most of them have studied either no or only one practical robustness issue.
A comparison of EMG pattern recognition methods using multiple EMG datasets could thus help
identify robust feature extraction and classification methods. Scheme and Englehart [21] re-evaluated
the performance of the commonly used Hudgins’ time domain features (ZC, SSC, mean absolute value
(MAV) and waveform length (WL) [28]) and several additional features (autoregressive coefficients, AR;
cepstral; coefficients, CC; Willison amplitude, WAMP; and sample entropy, SampEn) using six different
EMG data sets containing over 60 subject sessions and 2500 separate contractions. Khushaba et al. [29]
proposed a novel set of time domain features that can estimate the EMG signal power spectrum
characteristics using five different EMG data sets. Phinyomark et al. [26,30] investigated the effect of
sampling rate on EMG pattern recognition and then identified a novel set of features that are more
accurate and robust for emerging low-sampling rate EMG systems, using four different EMG data sets
containing 40 subject sessions with over 8000 separate contractions.

A summary of the existing shared EMG data sets for the classification of hand and finger
movements are listed in Table 1. These fifteen datasets represent over 160 subject sessions with
over 16,000 trials and more than 90,000 s of muscle contraction. Three of the datasets used sparse
EMG channels (i.e., requiring precise positioning of the electrodes over the corresponding muscle)
while the other twelve data sets employed wearable EMG armbands (i.e., multiple EMG sensors
positioned radially around the circumference of a flexible band; see reference [31] for a review).
The recent availability of consumer-grade wireless EMG armbands (such as the Myo armband by
Thalmic Labs) will enable more researchers to collect EMG data and thus, represents a real opportunity
for big data sharing. These data sets also include many of the dynamic factors that influence the
performance of EMG pattern recognition, including changes in limb position, change of forearm
orientation, varying contraction intensity, and between-day variability. An enormous variety of
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subjects, experimental protocols, acquisition setups, and pre-processing pipelines are clearly shown in
Table 1, and consequently, this group of currently available datasets can be used for a comprehensive
investigation of the generalization and robustness of EMG pattern recognition for myoelectric control.
It is important to note that some subjects may have participated in more than one study (different
subject sessions) for EMG datasets recorded from the same research group. Also, some datasets
(e.g., Khushaba et al. 2 [32], Khushaba et al. 3 [33], and Chan et al. [34,35]) are only partially available
online and require contacting the researchers who shared the data to access a full dataset.

2.2. Benchmark Datasets

As discussed, multiple datasets can be used to investigate the generalization and robustness
of EMG pattern recognition methods, but only to a certain extent. A major limitation of the
multiple-dataset investigation approach is the fact that EMG data from different data sets cannot
be combined into one larger set due to experimental and equipment differences. Without large
EMG datasets being collected using a single standardized protocol, it is difficult to investigate the
generality of the findings across gender, age, characteristics of the amputation, etc. Although there
are several recommendations for protocols, acquisition setups, and pre-processing pipelines such
as the European recommendations, written by the Surface ElectroMyoGraphy for the Non-Invasive
Assessment of Muscles (SENIAM) project (www.seniam.org), no solid benchmarking protocol and
experimental setup (e.g., the set of movements, electrode locations, sampling rate, and filtering) has
been adopted in previous studies. This is in stark contrast to other research communities that have
found substantial benefit in the wide acceptance of protocols, leading to publicly available benchmark
databases such as the 1000 Functional Connectomes Project and the Human Connectome Project
databases for resting state functional magnetic resonance imaging (rfMRI) [36]. The usefulness and
importance of benchmark databases have been clearly acknowledged in many research fields, and
the lack of such a benchmark in the EMG community is a major obstacle towards open sharing of big
EMG data.

In the earlier years, EMG studies were largely limited to large research centers that possessed
highly specific and expensive instrumentation and manpower to acquire EMG data acceptable to the
research community. This made it difficult for small laboratories to develop countries to contribute
meaningfully to the field. Moreover, because of constraints on funding, time, subjects, etc., the volume
of data was typically limited to the minimum required to verify a specific scientific hypothesis.
In myoelectric control, this has often consisted of approximately ten able-bodied subjects and/or a
few amputees.

The creation of a benchmark protocol and database would not only promote comparison
between methods, attracting additional researchers from the signal processing and machine learning
communities, but would also foster progress in big EMG data by encouraging the contribution of new
datasets from other research groups using the same experimental protocols.

Indeed, the EMG research field has lagged behind other biomedical research fields in the
development of big data sharing resources. The Non-Invasive Adaptive Prosthetics (NinaPro) database
may currently be the biggest and most widely known publicly available benchmark database to date.
The Ninapro project was launched in 2014 [13], and to date, consists of seven data sets [37–41]
containing surface EMG signals from the forearm and upper arm using 10–16 EMG channels together
with several additional modalities recorded from 117 able-bodied subjects and 13 amputees performing
a partial set of 61 pre-defined hand and fingers movements (Table 2). In total, there are more than
48,000 trials and 326,000 s of muscle contraction. Additional modalities (depending on dataset)
include inertial measurement units (IMU) or accelerometry data acquired using Delsys Trigno Wireless
electrodes or Myo armbands, kinematic hand data acquired using a 22-sensor CyberGlove II data
glove, wrist orientation data acquired using a two-axis Kübler IS40 inclinometer, finger force data
measured using an Finger-Force Linear Sensor (FFLS) device, and eye movement data using a Tobii
Pro Glasses 2 wearable eye tracker. All datasets are fully accessible upon successful registration
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at http://ninapro.hevs.ch. Data are stored anonymously and subject demographic information is
limited to gender, age, height, weight, laterality, and several clinical characteristics of the amputee
subjects. Supporting files for the experimental protocol and acquisition setup (e.g., stimulus videos
and software) can be obtained on an individual basis by contacting the Ninapro team.

Unfortunately, although a large number of movements and electrode locations have been proposed
by the Ninapro project, the maximum number of movements and electrode locations that can be
combined across the seven current EMG datasets are seven and eight, respectively. Similarly, there is
no consensus on sampling rate, filtering, resolution, gain, etc. due to the use of different EMG
acquisition devices, i.e., an Otto Bock MyoBock System for Ninapro 1, a Delsys Trigno Wireless EMG
System for Ninapro 2, 3, 6 and 7, a Cometa Wave Plus wireless EMG system for Ninapro 4, and Thalmic
Myo armbands for Ninapro 5. Some manipulation and transformation of data are therefore necessary
before combining EMG data across the Ninapro data sets.

2.3. High-Density Surface EMG

There are two common approaches to measuring EMG signals. One is to place electrodes precisely
over specific muscles (known as sparse multi-channel surface EMG), and the other is to use array-like
arrangements of electrodes that are placed over a muscle area. The latter is the more common approach
in the myoelectric control literature, as shown in Tables 1 and 2, but is often limited to a single row
of electrodes (i.e., an EMG armband) [31]. To increase the spatial information of electrical muscle
activity, high-density surface EMG (HD-sEMG or HD-EMG) has been proposed, which increases
the density and coverage of the electrodes. Typically, HD-sEMG employs a large two-dimensional
(2D) array of closely spaced electrodes with small size. The total number of electrodes that has been
proposed for HD-sEMG is in the range of 32 [12] to over 350 [42], while the maximum number of
electrodes for typical EMG armbands is 16 (Tables 1 and 2). The existing shared HD-sEMG data
sets, which use electrode arrays of 32, 128, and 192, are listed in Table 3. Due to the high sampling
frequencies used when measuring surface EMG (typically 1000 Hz or above), large three-dimensional
arrays, i.e., thousands of 2D images, can be obtained in just a few seconds of muscle contraction from a
single subject. For the csl-hdemg dataset, as an example, 6500 trials of 3-s muscle contraction were
recorded using a 192 electrode array sampled at 2048 Hz. As a result, there are over 39 million sEMG
images in this dataset alone. Hence, the development of HD-sEMG has dramatically increased the
volume of data.

The collected HD-sEMG data allows the analysis of EMG information in both the temporal and
spatial domains, leading to new possibilities for analyzing EMG signals using image processing
techniques. Two methods of analyzing these kinds of EMG signals include the HD-sEMG map
(a topographical image) and the sEMG image (an instantaneous image). Following conventional
EMG pattern recognition methods, the HD-sEMG map can be computed using the root mean
square (RMS) [42] or other amplitude-based feature extraction methods (e.g., MAV, WL, etc.) [43],
of individual channels distributed in 2D space. This map is thus also sometimes referred to as an
intensity or heat map. Often, the active region of the HD-sEMG map associated with a certain
muscle, the so-called activation map, is identified using an image segmentation method and used
as an input for subsequent feature extraction methods. Features extracted from HD-sEMG maps
can be based on intensity information (any signal magnitude and power feature [18,22]) and spatial
information (e.g., the mean shift [42] or the coordinates of the centre of gravity and maximum values
[44]). These maps and additional spatial-based features can be used to reduce the effect of confounding
factors that influence the performance of EMG pattern recognition such as the changing characteristics
of the signal itself over time and electrode location shift [45] as well as variations in muscle contraction
intensity [44]. However, this remains a relatively new sub-field, and novel image segmentation
and spatial feature extraction methods are still needed to improve the performance of robust EMG
pattern recognition.

http://ninapro.hevs.ch
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Instead of forming an image based on the signal magnitude taken from some time window of raw
sEMG signals, as is typically done, the instantaneous sEMG image can also be directly formed from the
raw sEMG signals [14]. This sEMG image is equivalent to the HD-sEMG map with a window length
of one sample. The number of pixels (resolution) in these sEMG images is then defined by the total
number of electrodes (e.g., an electrode array with eight rows and 16 columns forms an image with
8 × 16 pixels), while the number of instantaneous sEMG images captured per second is dictated by
the sampling rate used (e.g., a sampling frequency of 1000 Hz with 3 s of muscle contraction provides
3000 sEMG images). Without applying feature extraction methods, instantaneous sEMG images have
been treated as an image classification problem and thus classified using deep learning approaches.
A simple majority voting over several tens to several hundreds of frames can then be used to further
improve the recognition performance [14]. More details about deep learning and sEMG image analysis
are discussed in the Section 3.2.

It is important to note that increasing the number of electrodes is not strictly necessary to increase
the recognition performance. In fact, several studies have shown that there is little need to use all
EMG channels (over 100 electrodes), and instead, a properly positioned smaller set of electrodes
(e.g., 9 [44] and 20–80 [45]) can provide comparable results. There is, however, no consensus on
the global optimum number of electrodes yielding maximum recognition performance. Moreover,
the optimal EMG electrode sub-set is highly subject-dependent (even within the same experimental
protocol [41,46]), and further research is needed in this area. The use of HD-EMG has also thus far
been limited to controlled in-laboratory settings, limiting its practical applications.

2.4. Multiple Modalities

Because EMG captures the activity of muscles as part of the musculoskeletal system,
information about the same contractions or motions can also be measured using different types
of measuring techniques, instruments, and acquisition setups. The analysis of solely surface EMG
signals could therefore be considered as the analysis of a single modality. Due to the increasing
availability of multi-modality sensing systems, multi-modal analysis approaches are becoming a viable
option. Multiple modalities can be used to capture complementary information which is not visible
using a single modality, or to provide context for others. Even when two or more modalities capture
similar information, their combination can still improve the robustness of pattern recognition systems
when one of the modalities is missing or noisy.

Thus far, myoelectric control of powered prostheses is the most important and commercial application
of EMG pattern recognition. In this context, accelerometers have been the main supplementary modality
and are the most prevalent in shared surface EMG datasets, such as Khushaba et al. 5, Ninapro 2, 3, 5, 7,
and mmGest datasets (see Tables 1–3). Accelerometery has been shown to provide additional information
to EMG, especially to reduce the effects of limb position [47,48].

Outside of prosthesis control, other applications of EMG pattern recognition for which
multi-modality data sets exist include, for example, sleep studies, such as the Cyclic Alternating Pattern
(CAP) Sleep Database [49] and the Sleep Heart Health Study (SHHS) Polysomnography Database [50];
biomechanics, such as the cutting movement dataset [51] and the horse gait dataset [52]; and brain
computer interfaces, such as the Affective Pacman dataset [53] and the emergency braking assistance
dataset [54]. Recently, emotion recognition using multiple physiological modalities has gained attention
as another important application that has benefited from the incorporation of surface EMG.

Emotion Recognition

Emotion recognition is one of the larger growing disciplines of multi-modal research, along with
audio-visual speech recognition and multimedia content indexing and retrieval. The objective
assessment of human emotion can be performed using the analysis of subjects’ emotional expressions
and/or physiological signals. Until recently, most studies on emotion recognition and affective
computing have focused on the analysis of facial expressions, speech, and multimedia content to
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identify the emotional state of the subjects. With the growth of wearable technology, however,
physiological signals originating from the central and peripheral nervous systems have now gained
attention as alternative sources of emotional information.

One of the earliest examples of multi-modal emotion recognition based on physiological signals
was the study by Healey and Picard [55]. They recorded EMG from the trapezius muscle (tEMG),
several physiological signals involving electrocardiogram (ECG), galvanic skin resistance (GSR),
and respiration (Resp), and composite video records of the driver during real-world driving tasks
of 24 subjects. These signals were collected over a 50-min duration for each subject and used to
determine the driver’s level of stress. The data from 17 out of the 24 subjects publicly available
via PhysioNet [56]. An alternate common experimental approach is to use multimedia content
(e.g., music video clips and/or movie clips) as the stimuli to elicit different emotions of subjects.
Table 4 summarizes four such publicly available data sets. While the DEAP (a Database for Emotion
Analysis using Physiological signals) [57] and HR-EEG4EMO [17] datasets contain brain signals
acquired using electroencephalogram (EEG) sensors, the DECAF (a multimodal dataset for DECoding
user physiological responses to AFfective multimedia content) [58] dataset measures brain signals
using magnetoencephalogram (MEG) sensors. These datasets, however, are not limited to brain signals;
in fact, the BioVid Emo DB dataset [59] includes no brain signals at all. They also include various
combinations of the following peripheral nervous system signals: surface EMG from the zygomaticus
major muscle (zEMG), corrugator muscle (cEMG), tEMG, blood volume pressure (BVP), ECG, Resp,
skin temperature (Temp), peripheral oxygen saturation (SpO2), pulse rate (PR), and electrooculogram
(EOG). Facial videos were also recorded for all datsets. Another interesting multi-modal database is the
BioVid Heat Pain database [60]. The tEMG, zEMG, cEMG, ECG, GSR, and EEG signals were collected
along with facial videos from 86 subjects during exposure to painful heat stimuli. To gain access to
these datasets (other than Healey and Picard’s dataset), the EULA (End User License Agreement) must
be printed, signed, scanned, and returned via email to the authors of each dataset. Upon approval,
they will then provide a username and password that can be used to download the data.

Compared to the previously discussed surface EMG data sets, the volume of these multimodal
data sets is huge. For instance, the raw data from the 60-h MEG and peripheral physiological recordings
in the DECAF dataset alone make up more than 300 GB. Either due to instrumentation limitations,
or to limit the volume of data, unfortunately some of these datasets sampled EMG signals at lower
frequencies, such as 15.5 Hz for the Healey and Picard dataset and 512 Hz for DEAP and BioVid
Emo DB datasets (see Table 4). These lie well below the typical 1000-Hz sampling frequency for EMG
signals, below which the performance of EMG pattern recognition has been shown to suffer from the
loss of high frequency information [26,30].

2.5. Discussion

Although the EMG data sets outlined above are not as large as many other forms of big data,
these shared datasets are large enough that a single computer cannot process them within a reasonable
time (big volume) and they exhibit several big data quantities [61]. It is important to note that size is only
one characteristic of big data, with others being equally important in its definition [62]. Specifically,
big variety refers to the diversity of information within a single dataset or the diversity of multiple
datasets. This is a critical aspect of both big data and EMG research, since sub-populations and
different experimental conditions routinely favor different features and algorithms that are not shared
by others. Therefore, no single EMG data set, big or not, should be considered to be comprehensive,
and cross-validation of multiple datasets is recommended for the development of robust EMG pattern
recognition systems [22,26]. Although larger EMG data sets would be preferable, the current publicly
available EMG datasets (Tables 1–3) are sufficient to shed some light on the generalizability and
robustness of EMG pattern recognition (and, in particular, myoelectric control). Intuitively, big variety
also applies when surface EMG is analyzed together with other modalities such as EEG, MEG, and facial
video (Table 4).



Big Data Cogn. Comput. 2018, 2, 21 8 of 27

Big veracity refers to noise, error, incompleteness, or inconsistencies of big data. This can be
interpreted in many ways in the context of EMG, and, in particular, myoelectric control, as noisy,
incomplete, and inconsistent EMG data, often occurring in human experimentation. From an
application standpoint, the attribution of models built from normally-limbed subjects to amputees
or spinal cord injury patients, who may have very different or reduced musculature or muscle tone
and higher skin impedances, also introduces veracity challenges. As noted in the data sets of Table 2,
amputee subjects may not complete experiments due to fatigue or pain, and the number and placement
of electrodes is often reduced or changed due to insufficient space. Surface EMG signals are also
often corrupted by noise and interference while traveling through different tissues and equipment,
requiring dedicated hardware or compensatory pre-processing steps [63]. The development of EMG
feature extraction and classification methods that are robust to noise is also important [64,65], as is the
reduction of data (or dimensionality) when dealing with large-scale data sets. Determining relevant
and meaningful features from a given larger set of features which may contain irrelevant, redundant,
or noisy information is commonly accomplished using either feature selection [66–69] or feature
projection methods [70–73]. When properly executed, these methods not only reduce the impact of
noise and irrelevant information, but also the amount of computational time required for classification.

Big velocity refers to the rate at which data are generated and the speed at which they should be
analyzed. The speed at which decisions are made is integral to EMG applications, either as support for
clinical decisions based on EMG, or in real-time human–machine interfaces, such as with myoelectric
control. It is important to note that although real-time “user in the loop” experiments for myoelectric
control are important for providing a good representation of the usability of a system, these types of
studies are limited in their contributions to the growth of big EMG data. Necessarily, they allow only
for the direct comparison of selected methods within a single experimental session, do not allow for
later offline use (the data are collected during feedback, and not feed forward, control), and are difficult
to reproduce given the number of uncontrolled parameters. On the other hand, while benchmark
datasets may not incorporate feedback control, they allow other researchers to easily replicate results,
perform data analyses and compare different methods. Moreover, many currently shared EMG data
sets now include more realistic and dynamic movements which better approximate real-life conditions,
e.g., varying limb position, contraction intensity, etc. Nevertheless, real-time testing remains paramount
in the assessment of the true dynamic performance of EMG pattern recognition. Moreover, several key
metrics for measuring the efficacy of control can only be measured by performing real-time control
experiments, such as motion selection time and motion completion time (the time required to select
and complete the desired motion) [74] and the Fitts’ Law test-based metrics [75].

The advantages of big data sharing (or Big Value) for EMG pattern recognition have been discussed
throughout this section. Nevertheless, due to the limitations of the current benchmark database,
the development of a new, standardized benchmark database for big EMG data would be highly
beneficial. Such a benchmark could help to improve the reliability and reproducibility of research,
improve research practices, maximize the contribution of research subjects, help to back up valuable
data, reduce the cost of research within the EMG research community, and increase accessibility to the
field for new researchers.
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Table 1. Multiple electrocardiogram (EMG) data sets for myoelectric control: subject, experimental protocol, acquisition setup, and pre-processing pipeline.

Dataset Test Conditions Subjects Number of
Movements

Number of
Repetitions

Total Number
of Trials

Time Per
Trial (s)

Number of
Electrodes

Sampling
Rate (Hz)

Filtering
(Hz)

Resolution
(bits)

Sapsanis et al.
[76] a

A small number
of EMG channels

5N
(2M 3F) 6 30 900 6 2 500

BPF 15–500,
NF at 50 14

Khushaba
et al. 1 [77] b

A small number
of EMG channels

8N
(6M 2F) 10 6 480 5 2 4000 - 12

Ortiz-Catalan
et al. 1 [78] c EMG armband 20N

(10M 10F) 10 + rest 3 600 3 4 2000
BPF 20–400,

NF at 50 14

Mastinu et al.
[79] c

EMG armband,
Acquisition system

(3 sets)

8N
(6M 2F) 10 + rest 3 720 3 4 2000 - 16

Ortiz-Catalan
et al. 2 [80] c EMG armband 6N

(3M 3F) 26 + rest 3 468 3 8 2000
BPF 20–400,

NF at 50 16

Ortiz-Catalan
et al. 3 [81] c EMG armband 7N

(6M 1F) 26 + rest 3 546 3 8 2000
BPF 20–400,

NF at 50 16

Ortiz-Catalan
et al. 4 [82] c EMG armband 17N

(11M 6F) 26 + rest 3 1326 3 8 2000
BPF 20–400,

NF at 50 16

Khushaba
et al. 2 [32] b EMG armband 8N

(6M 2F) 15
3

(out of 6) 360 20 8 4000 - 12

Khushaba
et al. 3 [33] b EMG armband 8N

(7M 1F) 14
4

(out of 6) 448 5 8 4000 - 12

Khushaba
et al. 4 [83] b

Limb position
(5 positions),

EMG armband

11N
(9M 2F) 7 + rest 6 2310 5 7 4000 - 12
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Table 1. Cont.

Dataset Test Conditions Subjects Number of
Movements

Number of
Repetitions

Total Number
of Trials

Time Per
Trial (s)

Number of
Electrodes

Sampling
Rate (Hz)

Filtering
(Hz)

Resolution
(bits)

Khushaba
et al. 5 [10] b

Forearm orientation
(3 orientations),

Contraction intensity
(3 levels),

EMG armband

10N 6 + rest 3 1620 5 6 4000 - 12

Al-Timemy
et al. [84] b

Amputation,
Contraction intensity

(3 levels),
EMG armband

9A
(7M 2F) 6 5–11 1077 8–12 8 2000 - 16

Côté-Allard
et al. [11] d

Between-day
(2 days),

EMG armband

40N
(28M 12F) 6 + rest 4–12 3744 5 8 200 NF at 50 8

Chan et al.
[34,35] e

Between-day
(4 days) 30N 6 + rest 24 17,280 3 8 3000 BPF 1–1000 12

ISRMyo-I
[85] f

Between-day
(10 days),

EMG armband
6N 12 + rest 2 1440 10 16 1000 n/a n/a

Note that N, able-bodied (non-amputee) subject; A, amputee subject; M, male; F, female; BPF, band-pass filter, NF, notch filter. a http://archive.ics.uci.edu/ml/datasets/sEMG+
for+Basic+Hand+movements; b https://www.rami-khushaba.com/electromyogram-emg-repository.html; c https://github.com/biopatrec/biopatrec/tree/Data_Repository; d

https://github.com/Giguelingueling/MyoArmbandDataset; e http://www.sce.carleton.ca/faculty/chan/index.php?page=matlab; f http://dx.doi.org/10.21227/H26Q26.

http://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements
http://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements
https://www.rami-khushaba.com/electromyogram-emg-repository.html
https://github.com/biopatrec/biopatrec/tree/Data_Repository
https://github.com/Giguelingueling/MyoArmbandDataset
http://www.sce.carleton.ca/faculty/chan/index.php?page=matlab
http://dx.doi.org/10.21227/H26Q26
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Table 2. Benchmark EMG data sets for myoelectric control: subject, experimental protocol, acquisition setup, and pre-processing pipeline.

Dataset Test Conditions Subjects
Number of
Movements

Number of
Repetitions

Total Number
of Trials

Time Per
Trial (s)

Number of
Electrodes

Sampling
Rate (Hz)

Filtering
(Hz)

Resolution
(bits)

Ninapro 1
[37]

EMG armband
27N

(20M 7F)
52 + rest 10 14,040 5 10 100 RMS,

LPF at 5
12

Ninapro 2
[38]

EMG armband
40N

(28M 12F)
49 + rest 6 11,760 5 12 2000 NF at 50 16

Ninapro 3
[38]

Amputation,
EMG armband

11A
(11M)

49 + rest a 6 3234 5 12 b 2000 NF at 50 16

Ninapro 4
[39]

EMG armband
10N

(6M 4F)
52 + rest 6 3120 5 12 2000 BPF 10–1000

NF at 50
16

Ninapro 5
[39]

EMG armband
10N

(8M 2F)
52 + rest 6 3120 5 16 200 NF at 50 8

Ninapro 6
[40]

Between-day
(5 days),

EMG armband

10N
(7M 3F)

7 + rest 12 × 2 = 24 8400 4 14 2000 NF at 50 16

Ninapro 7
[41]

Amputation,
EMG armband

20N 2A 40 + rest c 6 5280 5 12 2000 NF at 50 16

Note that N, able-bodied (non-amputee) subject; A, amputee subject; M, male; F, female; LPF, low-pass filter; NF, notch filter; BPF, band-pass filter. a For subjects 1, 3, and 10, the
number of movements was respectively reduced to 39, 49, and 43 movements (including rest) due to fatigue or pain; b For subjects 7 and 8, the number of electrodes was reduced to
10 due to insufficient space; c For subject 21, the number of movements was reduced to 38 (including rest).
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Table 3. High-density surface EMG (HD-sEMG) datasets: subject, experimental protocol, acquisition setup, and pre-processing pipeline.

Dataset Test Conditions Subjects
Number of
Movements

Number of
Repetitions

Total Number
of Trials

Time Per
Trial (s)

Number of
Electrodes

Sampling
Rate (Hz)

Filtering
(Hz)

Resolution
(bits)

mmGest
[12] a

Between-day
(5 days),

HD-sEMG

5N
(4M 1F)

12 + rest 15 4500 ≈1.1 8 × 4 = 32 1000 - 12

CapgMyo (DB-a)
[15] b HD-sEMG 18N 8 + rest 10 1440 3–10 8 × 16 = 128 1000 BPF 20–380

BSF 45–55
16

CapgMyo (DB-b)
[15] b

Between-day
(2 days),

HD-sEMG
10N 8 + rest 10 1600 3 8 × 16 = 128 1000 BPF 20–380

BSF 45–55
16

CapgMyo (DB-c)
[15] b HD-sEMG 10N 12 + rest 10 1200 3 8 × 16 = 128 1000 BPF 20–380

BSF 45–55
16

csl-hdemg
[45] a

Between-day
(5 days),

HD-sEMG

5N
(4M 1F)

26 + rest 10 6500 3 8 × 24 = 192 2048 BPF 20–400 16

Note that N, able-bodied (non-amputee) subject; M, male; F, female; BPF, band-pass filter; BSF, band-stop filter. a https://www.uni-bremen.de/en/csl/research/motion-recognition.
htm; b http://zju-capg.org/myo/data/.

https://www.uni-bremen.de/en/csl/research/motion-recognition.htm
https://www.uni-bremen.de/en/csl/research/motion-recognition.htm
http://zju-capg.org/myo/data/
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Table 4. Multi-modal physiological datasets for emotion recognition: subject, experimental protocol, acquisition setup, and pre-processing pipeline for measuring
surface EMG.

Dataset Research Problem Affective States Types of Data Subjects Time Duration EMG Channels Sampling
Rate (Hz)

Healey and Picard
[55] a Driver stress recognition 3 levels of stress EMG, ECG, GSR, Resp,

facial video 17 of 24N 54–93 min 1 (tEMG) 15.5

DEAP
[57] b

Affect recognition
based music video stimuli

4 quadrants of the
valence-arousal space

EMG, BVP, GSR, Resp,
Temp, EOG, EEG,

facial video

32N
(16M 16F) 40 × 1-min 2 (tEMG, zEMG) 512

DECAF
[58] c

Affect recognition
based music video and

movie stimuli

4 quadrants of the
valence-arousal space

EMG, ECG, EOG, MEG,
facial video

30N
(16M 14F)

40 × 1 min,
36 × 80 s 1 (tEMG) 1000

HR-EEG4EMO
[17] d

Affect recognition
based film stimuli

2 classes of the
valence space

EMG, ECG, GSR, Resp,
SpO2, PR, EEG

40N
(31M 9F) 26 × 40 s − 6 min Electrodes located

on the cheeks 1000

BioVid Emo DB
[59] e

Affect recognition
based film stimuli 5 discrete emotions EMG, ECG, GSR,

facial video
86 of 94N
(44M 50F) 15 × 32 − 245 s 1 (tEMG) 512

BioVid
[60] e Heat pain recognition 5 levels of

pain intensity
EMG, ECG, GSR, EEG,

facial video
86 of 90N
(45M 45F) 80 × 4 s 3 (tEMG, zEMG, cEMG) 512

Note that N, able-bodied (non-amputee) subject; M, male; F, female; tEMG, trapezius EMG; zEMG, zygomaticus EMG; cEMG, corrugator EMG. a https://physionet.org/physiobank/
database/drivedb/; b http://www.eecs.qmul.ac.uk/mmv/datasets/deap/; c http://mhug.disi.unitn.it/wp-content/DECAF/DECAF.html; d https://www.technicolor.com/
dream/research-innovation/hr-eeg4emo-dataset; e http://www.iikt.ovgu.de/BioVid.html.

https://physionet.org/physiobank/database/drivedb/
https://physionet.org/physiobank/database/drivedb/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://mhug.disi.unitn.it/wp-content/DECAF/DECAF.html
https://www.technicolor.com/dream/research-innovation/hr-eeg4emo-dataset
https://www.technicolor.com/dream/research-innovation/hr-eeg4emo-dataset
http://www.iikt.ovgu.de/BioVid.html
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3. Techniques for Big EMG Data

Many methods for processing and analyzing EMG data have been proposed and tested; however,
most have been designed for, and restricted to, smaller datasets. Consequently, it is difficult for many
of these traditional methods to handle large-scale data effectively and efficiently. Considering shared
EMG data sets have only recently been released and that only a handful of recent methods are able
to handle big EMG data, research based on big EMG data remains relatively new. Novel methods
capable of analyzing such data could be developed either by modifying traditional methods to run
in parallel computing environments or by proposing new methods that natively leverage parallel
computing. These methods will become very important in turning any collected big EMG dataset into
a meaningful resource.

3.1. Feature Engineering

EMG pattern recognition systems typically consist of several inter-connected components: data
pre-processing, feature extraction, dimensionality reduction, and classification [1,2]. The stochastic
and non-stationary characteristics of the EMG signal make the instantaneous value unsuitable for
conventional machine learning algorithms [86]. Feature extraction, which transforms short time
windows of the raw EMG signal to generate additional information and improve information density,
is thus required before a classification output can be computed. During the past several decades,
numerous different EMG feature extraction methods based on time domain, frequency domain,
and time–frequency domain information have been proposed and explored [7,8,18–20,22,26,28–30].
Interesting EMG feature extraction methods include a set of ZC, SSC, MAV, and WL (the most
commonly used features [28]); AR and CC (the robust features for EMG electrode location shift,
variation in muscle contraction effort, and muscle fatigue [8]); WAMP (a robust feature against
noise [64,65]); SampEn (a robust feature against between-day variability [7]); and L-scale (an optimal
feature for wearable EMG devices [26]), to name a few. For extended coverage of window-based
EMG feature extraction methods, the reader is encourage to consult some of these aforementioned
studies [7,8,18–20,22,26,28–30].

To find the best combination of all available features, one would have to try all possible
combinations which is not practical and is even unfeasible for large data sets. Moreover, the best
combination for one application or scenario is not necessarily the best for others. Instead of evaluating
the performance of every possible combination, dimensionality reduction (feature selection and feature
projection) approaches have been employed to eliminate irrelevant, redundant, or highly correlated
features. More often than not, however, classical dimensionality reduction techniques cannot be
applied to big data, and it is therefore necessary to re-design and change the way the traditional
methods are computed.

One possible approach is to create methods that are capable of analyzing big data by modifying
traditional methods to work in parallel computing environments. For feature selection, some
potential and well-known population-based metaheuristic methods, such as genetic algorithm (GA),
particle swarm optimization (PSO), and ant colony optimization (ACO), have been found to be effective
in selecting an optimal EMG feature set (e.g., [67–69]). These feature selection methods have been
developed to work in parallel computing as well as on graphics processing units (GPU) [87,88].
Similarly, novel approaches have been proposed to run standard feature projection (e.g., principal
component analysis (PCA)) in parallel or on GPUs for big data dimensionality reduction [89,90].
The size of the data in most current studies, however, can be effectively processed using standard
methods in a single high performance computer, and thus, very few studies have concentrated on
using either parallel versions or GPU-based implementations [66].

Another approach is to develop new methods that work natively in a parallel manner. A method
called “topological simplification”, which is a topological data analysis (TDA) method, has been
recently shown to design an effective sparse EMG feature set across multiple EMG databases and to
scale well with dataset size [22]. Specifically, topological simplification, as exemplified by the Mapper
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algorithm [91], is an unsupervised learning method that can extract a topologically simplified skeleton
of complex and unstructured data by means of a series of local clusterings in overlapping regions of
the data space, and then linking together clusters that share common data points. Thanks to the local
nature of the clustering, Mapper naturally provides a separation of the complete problem into a set of
many smaller problems which are immediately amenable to parallelization and that are merged only
at the final step. Moreover, the local clusterings depend only on the distances between the points in
the overlapping regions; hence, a high-dimensional feature matrix is projected effectively down to a
small distance matrix. These properties make Mapper a very good tool for the analysis of big data as
this approach can be naturally performed in a framework of big data analysis such as the Google’s
MapReduce paradigm.

The output of this topological simplification approach has often been used to extract non-trivial
qualitative information from big data that is hard to discern when studying the dataset globally [92].
For EMG pattern recognition, this approach has been successfully used to create charts of EMG
features spaces that are robust and generalize well across three different EMG data sets containing
58 individual subjects and 27,360 separate contractions [22]. These charts highlight four functional
groups of state-of-the-art EMG features that describe meaningful non-redundant information allowing
for a principled and interpretable choice of EMG features for further classification. To use the output
of this approach for feature engineering and selection, we can evaluate measures (such as class
separability, robustness, and complexity) selecting from the fundamental and most interesting feature
groups to select the best representative features. Experimental results have shown that the Mapper
selected feature set achieves the same (or higher) level of classification accuracies using a support
vector machine (SVM) classifier as the set of features selected using an automatic brute-force feature
selection method based on sequential forward selection (SFS) [22]. Additionally, based on a ranking
of 81 features across 20 subjects, the computational cost of the Mapper method is approximately
21,600 times less than that of the SFS method. Furthermore, these topological feature maps could be
used to inform the design of novel EMG features that fall into sparse feature groups or form entirely
new groups of their own. For an extended coverage of the TDA and Mapper algorithms for biomedical
big data, the reader is encouraged to consult this book chapter [93].

After finding an optimal feature set, conventional machine learning approaches can be applied.
In the problem of EMG pattern recognition, commonly used classification algorithms include
SVM [26,94], linear discriminant analysis (LDA) [7,8], k-nearest neighbors (KNN) [20,95], multi-layer
perceptron neural network (MLP) [28,66], and random forests (RF) [7,96], to name a few.

3.2. Feature Learning

Although feature engineering has been the dominant focus for EMG pattern recognition so far,
feature learning, as exemplified by deep learning, has recently started to demonstrate better recognition
performance than carefully hand-crafted features. Indeed, in the past few years, deep learning has
made great progress in feature learning for big EMG data. In contrast to feature engineering and
conventional machine learning approaches, deep learning can take advantage of many samples to
extract high-level features by learning representations from low-level inputs. Deep learning algorithms,
however, require large training datasets to train large deep networks (a few hidden layers, each with
a large number of neurons) as well as an associated large number of parameters (millions of free
parameters). To train true deep neural networks, it is therefore necessary to re-consider the way
traditional large-scale neural networks are computed using parallel deep learning models, GPU-based
implementation, and optimized deep learning models.

One well-known parallel deep learning approach is deep stacking network (DSN) [97], which uses
a method of stacking simple processing modules. A novel parallel deep learning model called tensor
deep stacking network (T-DSN) [98] has been proposed to further improve the training efficiency of
DSNs using clusters of central processing units (CPU). Combinations of model- and data-parallel
schemes have also been implemented in a software framework called DistBelief [99] to deal with
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very large models (more than a billion parameters). GPU-based frameworks are another important
method for parallel deep learning models [100,101]. When high performance computing resources
(multiple CPU cores or GPUs) are not available, however, additional methods of improving training
efficiency are necessary. Model compression techniques, for example, have been successfully applied to
pattern recognition applications which commonly require implementation on embedded systems [102].
For real-time control, an incremental learning method is employed to update parameters when new
samples arrive while still preserving the network structure. An extended coverage of general deep
learning techniques for big data can be found in several reviews [100,101,103].

In general, though, deep learning models can be roughly grouped into three main categories:
unsupervised pre-trained networks, convolutional neural networks, and recurrent neural networks.
Although their application to surface EMG is relatively new, these three categories of models have
already been used to analyze the EMG signal. Table 5 details each of the previous EMG research works
utilizing deep learning methods.

3.2.1. Unsupervised Pre-Trained Networks (UPNs)

UPNs can further be divided into stacked auto-encoders and deep belief networks. Auto-encoder
neural networks are an unsupervised method that are trained to copy their inputs to their outputs using
a hidden layer as a code to represent the input. A deep auto-encoder (a.k.a. stacked auto-encoder, SAE)
is then constructed by stacking several auto-encoders to learn hierarchical features for the given input.
In contrast, a deep belief network (DBN) is composed of a stack of restricted Boltzmann machines
(RBM), generative stochastic neural network models that learn a joint probability distribution of
unlabeled training data. Both techniques employ two stages, pre-training and fine-tuning, to train the
models which can help to avoid local optima and alleviate the overfitting of models [104].

For EMG pattern recognition, DBN has been used to replace conventional machine learning
approaches to discriminate a five-wrist-motion problem using hand-crafted time domain features [24].
The results showed that DBN yields a better classification accuracy than LDA, SVM, and MLP, but that
the DBN requires lengthy iterations to attain good performance in recognizing EMG patterns without
overfitting. Subsequently, the same group of researchers also used split-and-merge algorithms
to reduce the overfitting problem and to improve the accuracy, and called the new approach a
split-and-merge deep belief network (SM-DBN) [105]. Wand and colleagues [106,107] also compared
deep neural networks to commonly used machine learning approaches for EMG-based speech
recognition, i.e., Gaussian mixture model (GMM), yielding accuracy improvements in almost all
classification cases. The DBN also provides good performance in recognizing human emotional states
(valence, arousal, and dominance) even when using the instantaneous value of surface EMG when
paired with several other physiological signals from the DEAP dataset [108].

UPNs can also be used instead of traditional unsupervised feature projection methods, such as
PCA and independent component analysis (ICA). As a data compression approach, for example,
SAE has been used to compress EMG and EEG data, and the results show that it significantly
reduces signal distortion for high compression levels compared to traditional EMG data compression
techniques, such as discrete wavelet transform (DWT), compressive sensing (CS), and ICA [109].
ICA, however, still performed better than SAE for low compression levels. As a regression approach,
DBN has been shown to outperform PCA in the estimation of human lower limb flexion and extension
joint angles during walking [110].

3.2.2. Convolutional Neural Network (CNN)

The CNN (or ConvNet) may be the most widely used deep learning model in feature learning and
is by far the most popular deep learning method for EMG pattern recognition (Table 5). CNN is quite
similar to ordinary neural networks but makes the explicit assumption that the inputs are image-based,
thus constraining the models in a tangible way (i.e., neurons are arranged in three dimensions).
The hidden layers of CNN typically consist of convolutional layers, pooling layers (sub-sampling
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layers), and fully connected layers, where the first two layers are used for feature learning on large-scale
images (i.e., the convolution operation acts as a feature extraction and the pooling operation acts as a
dimensionality reduction).

CNN has been successful in EMG pattern recognition, with better classification accuracies having
been found using CNN as compared to commonly used classification methods including LDA, SVM,
KNN, MLP, and RF (Table 5). Specifically, Geng et al. [14] evaluated the performance of CNN in
recognizing hand and finger motions based on sEMG from three public databases containing data
recorded from either a single row of electrodes or a 2D high-density electrode array. Without using
windowed features, the classification accuracy of an eight-motion within-subject problem achieved
89.3% on a single frame (1 ms) of an sEMG image and reached 99.0% and 99.5% using simple
majority voting over 40 and 150 frames (40 and 150 ms), respectively. Subsequently, Du et al. [15]
employed a similar approach with adaptation to achieve better performance for inter-session and
inter-subject scenarios. It should be noted that although CNNs can be quite responsive when used
with instantaneous sEMG ’images’ obtained from HD-sEMG, they still require a higher computational
load to handle both the high density inputs and the large-scale deep neural networks.

Although deep neural networks can be used directly with raw data, both data pre-processing and
feature engineering can further improve the performance of deep learning. For instance, use of the
right color space is important for image recognition using deep learning. One of the most widely used
pre-extracted features for deep learning is the spectrogram. Côté-Allard et al. [111,112], for example,
used CNNs with spectrograms as the input. Their results showed that CNN is not only accurate
enough to recognize complex motions, but is also robust to many confounding factors, such as short
term muscle fatigue, small displacement of electrodes, inter-subject variability, and long term use,
without the need for recalibration. They also proposed a transfer learning algorithm to reduce the
computational load and improve performance of the CNN, and used continuous wavelet transform
(CWT) as pre-extracted features [11]. Zhai et al. [113] proposed a self-recalibrating classifier that
can be automatically updated to maintain stable performance over time without the need for subject
retraining based on CNN using PCA-reduced spectrogram inputs. The results of this study [113]
support those of Côté-Allard et al. [11,111,112], and show that CNN models could be useful in
compensating continuous drift in surface EMG signals.

When short time windows of the raw EMG signal (150–200 ms) have been used as inputs to CNNs
with very simple architectures, however, the reported accuracies have been below those of classical
classification methods (i.e., RF for Ninapro 1 and 2, and SVM for Ninapro 3) [114]. This suggests that
deep learning algorithms are strongly influenced by several factors (including network models and
architectures, and optimization parameters), and thus, even after a good model and architecture is
found, there is still a need to search for potentially better hyper-parameters to improve the performance
of the algorithm.

3.2.3. Recurrent Neural Network (RNN)

In contrast to other deep learning models, RNNs take time series information into account,
i.e., rather than completely feed-forward connections, RNN might have connections that feed back
into prior layers. This feedback path allows RNNs to store the information from previous inputs and
model problems in time. Long short-term memory (LSTM) units and gated recurrent Units (GRUs) are
two of the prevailing RNN architectures. For EMG pattern recognition, a combination of the RNN
and CNN (RNN + CNN) has been proposed and showed better performance than support vector
regression (SVR) or CNN alone for estimating human upper limb joint angles [23]. Furthermore,
Laezza [115] evaluated the performance of three different network models, RNN, CNN, and RNN +
CNN, for myoelectric control. Their results showed that RNN alone provided the best classification
performance (91.81%), compared with CNN (89.01%) and RNN + CNN (90.4%). This may be due to
the fact that RNN and LSTM have advantages when processing sequential data like EMG time series.
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3.3. Discussion

From these more recent works, it is clear that EMG pattern recognition systems based on deep
learning can achieve better classification accuracies than their counterparts, e.g., LDA, SVM, KNN,
MLP, RF, and GMM. One of the key requirements for deep learning, however, is the availability of large
volumes of data. Based on the current size of available EMG data sets, more data recording is necessary.
When there is an insufficient amount of training data, the models tend to overfit to the data and end
up having poor generalization ability. In the case of EMG pattern recognition, moreover, the iteration
time can be long due to the need to find relevant features from raw EMG signals, possibly increasing
overfitting.

To avoid this overfitting problem, larger EMG training sets are important. In the absence
of more training data, techniques such as dropout, batch normalization, and early stopping
(e.g., References [102,113]) may be employed.

Another simple strategy to make sure that deep learning models can generalize well is to split
the dataset into three sets: training, validation, and test sets. Most previous EMG studies using deep
learning, however, have approached the model selection and parameter optimization processes without
statistical methods (i.e., a single run trial instead of cross validation [116]). Caution should therefore
be taken when comparing the classification performances of proposed deep learning algorithms with
more shallow learning conventional algorithms (e.g., LDA and SVM) which require a smaller training
dataset and whose presentation has more commonly employed cross validation.

In addition to larger EMG datasets and techniques for addressing overfitting problems,
several studies have employed both feature engineering and learning by inputing pre-processed
EMG data and/or pre-extracted EMG features to deep learning algorithms, and some benefits have
been shown. No comparison between different types of pre-extracted EMG features involving
window-based time domain features, time–frequency representation features, and EMG images,
has been made yet. As this area remains relatively new, however, future research should consider how
to integrate both feature engineering and feature learning together best for maximum benefit.

A key challenge and impediment to the clinical deployment of deep learning methods is their
high computational cost (i.e., long training times and high computational complexity). Because of the
stringent power and size restrictions of prosthetic components, most devices are built using embedded
systems. While it is possible for inference to be carried out on these systems, training with deep
learning must likely still be completed in an offline setting. A combined effort from the research
community at large is therefore still needed to develop faster algorithms and hardware with even great
processing power to deliver clinically viable deep learning based myoelectric control.

Another key challenge for the clinical use of deep learning methods for myoelectric prosthetic
control is the use of unsupervised domain adaptation or transfer learning methods [117] to reduce the
effect of confounding factors that affect the characteristics of surface EMG signals. Inter-subject and
inter-session variability are two main factors that have been studied so far (Table 5). These techniques
have been used to significantly reduce the amount of training data required for a new subject as well
as to alleviate the need for periodic re-calibration. Nevertheless, there are other real-life conditions that
must be addressed, including but not limited to, electrode location shift, muscle fatigue, variations in
muscle contraction intensit as well as variations in limb position and forearm orientation. Furthermore,
no study has yet to demonstrate real-time prosthesis control by amputees using deep learning
approaches. Additional efforts are needed on the development and optimization of transfer learning
and domain adaptation to leverage suitable information from able-bodied to amputee subjects. This is,
in part, due to the greater variability in musculature that amputees possess compared to intact-limbed
subjects, and it would be impractical to collect a large pre-training dataset from amputees.
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Table 5. Summary of EMG research studies that have used deep learning techniques.

Ref. Deep Learning
Model

Deep Learning
Software

Input Data
(Window Size/Overlap) Application Test Conditions Dataset

(Number of Subjects) Results

[24] UPN: DBN DeepLearnToolbox b Time domain features
(166 ms/83 ms)

Motion
recognition - Local data set (28)

2 EMG channels DBN > SVM > LDA

[105] UPN: SM-DBN DeepLearnToolbox b Time domain features
(166 ms/83 ms)

Motion
recognition - Local data set (28)

2 EMG channels SM-DBN > DBN

[106] UPN Original scripts
by Hinton a

Time domain features
(27 ms/10 ms)

Silent speech
interface - EMG-Array (20)

2 arrays: 1 × 8, 4 × 8 UPN > GMM

[107] UPN PyLSTM
(in-house toolbox)

Time domain features
(27 ms/10 ms)

Silent speech
interface -

EMG-UKA (11)
6 EMG channels UPN > GMM

[108] UPN: DBN n/a Raw EMG
(1 min)

Emotion
recognition

Multiple
modalities DEAP Multi-modal > EEG

[109] UPN: SAE n/a Raw EMG Data
compression

Multiple
modalities DEAP SAE > DWT, CS

[110] UPN: DBN n/a Full-wave rectified EMG
(sub-sampled with 100 Hz)

Joint angle
estimation Regression Local dataset (6)

10 EMG channels DBN > PCA

[14] CNN MXNet d sEMG image Motion
recognition -

CapgMyo DB-a,
csl-hdemg,
Ninapro 1,2

CNN > LDA, SVM,
KNN, MLP, RF (using
instantaneous values)

[15] CNN MXNet d sEMG image Motion
recognition

Inter-subject,
Between-day

CapgMyo DB-a,b,c,
csl-hdemg,
Ninapro 1

CNN > LDA, SVM,
KNN, RF (using

instantaneous values)

[111] CNN Theano e Time–frequency features
(285 ms/20 ms)

Motion
recognition

Inter-subject,
Between-day

Côté-Allard
et al. (18)

offline: 97.71%,
online: 93.14%

[112] CNN Theano e Time–frequency features
(260 ms/25 ms)

Motion
recognition Inter-subject Côté-Allard

et al. (35) offline: 97.81%
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Table 5. Cont.

Ref. Deep Leaning
Model

Deep Learning
Software

Input Data
(Window Size/Overlap) Application Test Conditions Dataset

(Number of Subjects) Results

[11] CNN Theano e Time-frequency features
(260 ms/25 ms)

Motion
recognition

Inter-subject,
Between-day

Côté-Allard
et al. (36),
Ninapro 5

Côté-Allard et al.: 98.31%
(for 7 motion classes),

Ninapro 5: 65.57%
(for 18 motion classes)

[113] CNN MatConvNet c Time-frequency features
(200 ms/100 ms)

Motion
recognition Amputation Ninapro 2,3 CNN > SVM

[114] CNN MatConvNet c Raw EMG
(150 ms)

Motion
recognition Amputation Ninapro 1,2,3 Ninapro 1,2: RF > CNN

Ninapro 3: SVM > CNN

[118] CNN n/a Raw EMG
(200 ms)

Motion
recognition Inter-subject Ninapro 1 CNN > SVM

[102] CNN Keras f +
TensorFlow g

Raw EMG
(150 ms/5 ms)

Motion
recognition

Compact
architecture

Local data set (10)
8 + 5 EMG channels CNN > SVM

[23] RNN + CNN n/a Time-frequency features
(50 ms/30 ms)

Joint angle
estimation Regression Local data set (8)

5 EMG channels RNN + CNN > CNN, SVR

[115] RNN CNTK h Time domain features
(200 ms/150 ms)

Motion
recognition Amputation Ninapro 7 RNN > RNN + CNN > CNN

Note that UPN, unsupervised pre-trained networks; DBN, deep belief network; SM-DBN, split-and-merge deep belief network; SAE, stacked auto-encoder; CNN, convolutional neural
network; RNN, recurrent neural network; SVM, support vector machine; SVR, support vector regression; LDA, linear discriminant analysis; GMM, Gaussian mixture model; KNN,
k-nearest neighbors; MLP, multi-layer perceptron neural network; RF, random forests; DWT, discrete wavelet transform; CS, compressive sensing; PCA, principal component analysis.
a http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html; b https://github.com/rasmusbergpalm/DeepLearnToolbox; c http://www.vlfeat.org/matconvnet/; d https:
//mxnet.apache.org/; e http://deeplearning.net/software/theano/; f https://keras.io/; g https://www.tensorflow.org/; h https://www.microsoft.com/en-us/cognitive-toolkit/.

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
https://github.com/rasmusbergpalm/DeepLearnToolbox
http://www.vlfeat.org/matconvnet/
https://mxnet.apache.org/
https://mxnet.apache.org/
http://deeplearning.net/software/theano/
https://keras.io/
https://www.tensorflow.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
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4. Conclusions

In recent years, big data and deep learning have become extremely active research topics in many
research fields, including EMG pattern recognition. Major advances have been made in the availability
of shared surface EMG data, such that there are now at least 33 data sets with surface EMG collected
from 662 subject sessions available online. This abundance of EMG data has enabled the resurgence
of neural network approaches and the use of deep learning. Even more EMG data is expected to
be made available in the near future due to technological advances (e.g., wireless wearable devices,
HD-sEMG sensors, and data sharing), and thus big data methods should continue to be investigated
and developed. All of the methods discussed in this paper show promise, provide inspiration for
future studies, and demonstrate the potential of developing more advanced applications of EMG
pattern recognition in the era of big data and deep learning.
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42. Jordanić, M.; Rojas-Martínez, M.; Mañanas, M.A.; Alonso, J.F.; Marateb, H.R. A Novel Spatial Feature for
the Identification of Motor Tasks Using High-Density Electromyography. Sensors 2017, 17, 1597. [CrossRef]
[PubMed]

43. Phinyomark, A.; Quaine, F.; Laurillau, Y.; Thongpanja, S.; Limsakul, C.; Phukpattaranont, P. EMG Amplitude
Estimators Based on Probability Distribution for Muscle–Computer Interface. Fluct. Noise Lett. 2013,
12, 1350016. [CrossRef]

44. Rojas-Martínez, M.; Mañanas, M.; Alonso, J.; Merletti, R. Identification of Isometric Contractions Based on
High Density EMG Maps. J. Electromyogr. Kinesiol. 2013, 23, 33–42. [CrossRef] [PubMed]

45. Amma, C.; Krings, T.; Böer, J.; Schultz, T. Advancing Muscle-Computer Interfaces with High-Density
Electromyography. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’15), Seoul, Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 929–938. [CrossRef]

46. Hwang, H.J.; Hahne, J.M.; Müller, K.R. Channel Selection for Simultaneous and Proportional Myoelectric
Prosthesis Control of Multiple Degrees-of-Freedom. J. Neural Eng. 2014, 11, 056008. [CrossRef] [PubMed]

47. Fougner, A.; Scheme, E.; Chan, A.D.C.; Englehart, K.; Stavdahl, Ø. Resolving the Limb Position Effect in
Myoelectric Pattern Recognition. IEEE Trans. Neural Syst. Rehabilit. Eng. 2011, 19, 644–651. [CrossRef]
[PubMed]

48. Radmand, A.; Scheme, E.; Englehart, K. On the Suitability of Integrating Accelerometry Data with
Electromyography Signals for Resolving the Effect of Changes in Limb Position during Dynamic Limb
Movement. J. Prosthet. Orthot. 2014, 26, 185–193. [CrossRef]

http://dx.doi.org/10.4018/978-1-4666-6090-8.ch015
http://dx.doi.org/10.1109/ICARCV.2012.6485374
http://dx.doi.org/10.1016/j.cmpb.2012.11.002
http://www.ncbi.nlm.nih.gov/pubmed/23290462
http://dx.doi.org/10.1109/TBDATA.2017.2734883
http://dx.doi.org/10.1109/TNSRE.2014.2328495
http://www.ncbi.nlm.nih.gov/pubmed/25486646
http://dx.doi.org/10.1038/sdata.2014.53
http://www.ncbi.nlm.nih.gov/pubmed/25977804
http://dx.doi.org/10.1371/journal.pone.0186132
http://www.ncbi.nlm.nih.gov/pubmed/29023548
http://dx.doi.org/10.1109/ICORR.2017.8009405
http://dx.doi.org/10.1186/s12984-017-0284-4
http://www.ncbi.nlm.nih.gov/pubmed/28697795
http://dx.doi.org/10.3390/s17071597
http://www.ncbi.nlm.nih.gov/pubmed/28698474
http://dx.doi.org/10.1142/S0219477513500168
http://dx.doi.org/10.1016/j.jelekin.2012.06.009
http://www.ncbi.nlm.nih.gov/pubmed/22819519
http://dx.doi.org/10.1145/2702123.2702501
http://dx.doi.org/10.1088/1741-2560/11/5/056008
http://www.ncbi.nlm.nih.gov/pubmed/25082779
http://dx.doi.org/10.1109/TNSRE.2011.2163529
http://www.ncbi.nlm.nih.gov/pubmed/21846608
http://dx.doi.org/10.1097/JPO.0000000000000041


Big Data Cogn. Comput. 2018, 2, 21 24 of 27

49. Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.;
Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, Rules, and Recording Techniques for the Scoring of
Cyclic Alternating Pattern (CAP) in Human Sleep. Sleep Med. 2001, 2, 537–553. [CrossRef]

50. Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.;
Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, Rationale, and Methods. Sleep 1997,
20, 1077–1085. [CrossRef] [PubMed]

51. Neptune, R.; Wright, I.; van den Bogert, A. Muscle Coordination and Function During Cutting Movements.
Med. Sci. Sports Exerc. 1999, 31, 294–302. [CrossRef] [PubMed]

52. Vögele, A.M.; Zsoldos, R.R.; Krüger, B.; Licka, T. Novel Methods for Surface EMG Analysis and Exploration
Based on Multi-Modal Gaussian Mixture Models. PLoS ONE 2016, 11, 1–28. [CrossRef] [PubMed]

53. Reuderink, B.; Nijholt, A.; Poel, M. Affective Pacman: A Frustrating Game for Brain-Computer Interface
Experiments. In Proceedings of the Intelligent Technologies for Interactive Entertainment; Nijholt, A., Reidsma, D.,
Hondorp, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 221–227.

54. Haufe, S.; Treder, M.S.; Gugler, M.F.; Sagebaum, M.; Curio, G.; Blankertz, B. EEG Potentials Predict Upcoming
Emergency Brakings During Simulated Driving. J. Neural Eng. 2011, 8, 056001. [CrossRef] [PubMed]

55. Healey, J.A.; Picard, R.W. Detecting Stress During Real-World Driving Tasks Using Physiological Sensors.
IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [CrossRef]

56. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.;
Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000,
101, e215–e220. [CrossRef] [PubMed]

57. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP:
A Database for Emotion Analysis Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31.
[CrossRef]

58. Abadi, M.K.; Subramanian, R.; Kia, S.M.; Avesani, P.; Patras, I.; Sebe, N. DECAF: MEG-Based Multimodal
Database for Decoding Affective Physiological Responses. IEEE Trans. Affect. Comput. 2015, 6, 209–222.
[CrossRef]

59. Zhang, L.; Walter, S.; Ma, X.; Werner, P.; Al-Hamadi, A.; Traue, H.C.; Gruss, S. “BioVid Emo DB”: A
Multimodal Database for Emotion Analyses Validated by Subjective Ratings. In Proceedings of the 2016
IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–6.
[CrossRef]

60. Walter, S.; Gruss, S.; Ehleiter, H.; Tan, J.; Traue, H.C.; Crawcour, S.; Werner, P.; Al-Hamadi, A.; Andrade, A.O.
The BioVid Heat Pain Database Data for the Advancement and Systematic Validation of An Automated Pain
Recognition System. In Proceedings of the 2013 IEEE International Conference on Cybernetics (CYBCO),
Lausanne, Switzerland, 13–15 June 2013; pp. 128–131. [CrossRef]

61. Demchenko, Y.; Grosso, P.; de Laat, C.; Membrey, P. Addressing Big Data Issues in Scientific Data
Infrastructure. In Proceedings of the 2013 International Conference on Collaboration Technologies and
Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 48–55. [CrossRef]

62. Gandomi, A.; Haider, M. Beyond the Hype: Big Data Concepts, Methods, and Analytics. Int. J. Inf. Manag.
2015, 35, 137–144. [CrossRef]

63. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Wavelet-Based Denoising Algorithm for Robust EMG
Pattern Recognition. Fluct. Noise Lett. 2011, 10, 157–167. [CrossRef]

64. Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. EMG Feature Extraction for Tolerance of 50 Hz
Interference. In Proceedings of the 4th PSU-UNS International Conference on Engineering Technologies,
Novi Sad, Serbia, 28–30 April 2009; pp. 289–293.

65. Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. EMG Feature Extraction for Tolerance of White Gaussian
Noise. In Proceedings of the International Workshop and Symposium Science Technology, Nong-khai,
Thailand, 15–16 December 2008.

66. Luo, W.; Zhang, Z.; Wen, T.; Li, C.; Luo, Z. Features Extraction and Multi-Classification of sEMG Using A
GPU-Accelerated GA/MLP Hybrid Algorithm. J. X-ray Sci. Technol. 2017, 25, 273–286. [CrossRef] [PubMed]

67. Karthick, P.; Ghosh, D.M.; Ramakrishnan, S. Surface Electromyography Based Muscle Fatigue Detection
Using High-Resolution Time-Frequency Methods and Machine Learning Algorithms. Comput. Methods
Prog. Biomed. 2018, 154, 45–56. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S1389-9457(01)00149-6
http://dx.doi.org/10.1093/sleep/20.12.1077
http://www.ncbi.nlm.nih.gov/pubmed/9493915
http://dx.doi.org/10.1097/00005768-199902000-00014
http://www.ncbi.nlm.nih.gov/pubmed/10063820
http://dx.doi.org/10.1371/journal.pone.0157239
http://www.ncbi.nlm.nih.gov/pubmed/27362752
http://dx.doi.org/10.1088/1741-2560/8/5/056001
http://www.ncbi.nlm.nih.gov/pubmed/21799241
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1109/TAFFC.2015.2392932
http://dx.doi.org/10.1109/SSCI.2016.7849931
http://dx.doi.org/10.1109/CYBConf.2013.6617456
http://dx.doi.org/10.1109/CTS.2013.6567203
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1142/S0219477511000466
http://dx.doi.org/10.3233/XST-17259
http://www.ncbi.nlm.nih.gov/pubmed/28269817
http://dx.doi.org/10.1016/j.cmpb.2017.10.024
http://www.ncbi.nlm.nih.gov/pubmed/29249346


Big Data Cogn. Comput. 2018, 2, 21 25 of 27

68. Purushothaman, G.; Vikas, R. Identification of A Feature Selection Based Pattern Recognition Scheme for
Finger Movement Recognition from Multichannel EMG Signals. Aust. Phys. Eng. Sci. Med. 2018, 41, 549–559.
[CrossRef] [PubMed]

69. Xi, X.; Tang, M.; Luo, Z. Feature-Level Fusion of Surface Electromyography for Activity Monitoring. Sensors
2018, 18, 614. [CrossRef] [PubMed]

70. Englehart, K.; Hudgin, B.; Parker, P.A. A Wavelet-Based Continuous Classification Scheme for Multifunction
Myoelectric Control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. [CrossRef] [PubMed]

71. Chu, J.U.; Moon, I.; Lee, Y.J.; Kim, S.K.; Mun, M.S. A Supervised Feature-Projection-Based Real-Time EMG
Pattern Recognition for Multifunction Myoelectric Hand Control. IEEE/ASME Trans. Mechatron. 2007,
12, 282–290. [CrossRef]

72. Chu, J.U.; Moon, I.; Mun, M.S. A Real-Time EMG Pattern Recognition System Based on Linear-Nonlinear
Feature Projection for a Multifunction Myoelectric Hand. IEEE Trans. Biomed. Eng. 2006, 53, 2232–2239.
[CrossRef] [PubMed]

73. Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C. Application of Linear Discriminant Analysis in
Dimensionality Reduction for Hand Motion Classification. Meas. Sci. Rev. 2012, 12, 82–89. [CrossRef]

74. Kuiken, T.A.; Li, G.; Lock, B.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Englehart, K.B. Targeted
Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms. JAMA 2009,
301, 619–628. [CrossRef] [PubMed]

75. Scheme, E.J.; Englehart, K.B. Validation of a Selective Ensemble-Based Classification Scheme for Myoelectric
Control Using a Three-Dimensional Fitts’ Law Test. IEEE Trans. Neural Syst. Rehabilit. Eng. 2013, 21, 616–623.
[CrossRef] [PubMed]

76. Sapsanis, C.; Georgoulas, G.; Tzes, A.; Lymberopoulos, D. Improving EMG Based Classification of Basic
Hand Movements Using EMD. In Proceedings of the 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5754–5757.
[CrossRef]

77. Khushaba, R.N.; Kodagoda, S.; Takruri, M.; Dissanayake, G. Toward Improved Control of Prosthetic Fingers
Using Surface Electromyogram (EMG) Signals. Expert Syst. Appl. 2012, 39, 10731–10738. [CrossRef]

78. Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. BioPatRec: A Modular Research Platform for the Control of
Artificial Limbs Based on Pattern Recognition Algorithms. Source Code Biol. Med. 2013, 8, 11. [CrossRef]
[PubMed]

79. Mastinu, E.; Ortiz-Catalan, M.; Håkansson, B. Analog Front-Ends Comparison in the Way of A Portable,
Low-Power and Low-Cost EMG Controller Based on Pattern Recognition. In Proceedings of the 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan,
Italy, 25–29 August 2015; pp. 2111–2114. [CrossRef]

80. Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B. Evaluation of Classifier Topologies for the Real-Time
Classification of Simultaneous Limb Motions. In Proceedings of the 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013;
pp. 6651–6654. [CrossRef]

81. Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. Real-Time Classification of Simultaneous Hand and Wrist
Motions Using Artificial Neural Networks with Variable Threshold Outputs. In Proceedings of the XXXIV
International Conference on Artificial Neural Networks (ICANN), Amsterdam, The Netherlands, 15–16 May
2013; pp. 1159–1164.

82. Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. Real-Time and Simultaneous Control of Artificial Limbs
Based on Pattern Recognition Algorithms. IEEE Trans. Neural Syst. Rehabilit. Eng. 2014, 22, 756–764.
[CrossRef] [PubMed]

83. Khushaba, R.N.; Takruri, M.; Miro, J.V.; Kodagoda, S. Towards Limb Position Invariant Myoelectric Pattern
Recognition Using Time-Dependent Spectral Features. Neural Netw. 2014, 55, 42–58. [CrossRef] [PubMed]

84. Al-Timemy, A.H.; Khushaba, R.N.; Bugmann, G.; Escudero, J. Improving the Performance Against Force
Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees. IEEE Trans.
Neural Syst. Rehabilit. Eng. 2016, 24, 650–661. [CrossRef] [PubMed]

85. Fang, Y.; Liu, H.; Li, G.; Zhu, X. A Multichannel Surface EMG System for Hand Motion Recognition.
Int. J. Hum. Robot. 2015, 12, 1550011. [CrossRef]

http://dx.doi.org/10.1007/s13246-018-0646-7
http://www.ncbi.nlm.nih.gov/pubmed/29744809
http://dx.doi.org/10.3390/s18020614
http://www.ncbi.nlm.nih.gov/pubmed/29462968
http://dx.doi.org/10.1109/10.914793
http://www.ncbi.nlm.nih.gov/pubmed/11327498
http://dx.doi.org/10.1109/TMECH.2007.897262
http://dx.doi.org/10.1109/TBME.2006.883695
http://www.ncbi.nlm.nih.gov/pubmed/17073328
http://dx.doi.org/10.2478/v10048-012-0015-8
http://dx.doi.org/10.1001/jama.2009.116
http://www.ncbi.nlm.nih.gov/pubmed/19211469
http://dx.doi.org/10.1109/TNSRE.2012.2226189
http://www.ncbi.nlm.nih.gov/pubmed/23193252
http://dx.doi.org/10.1109/EMBC.2013.6610858
http://dx.doi.org/10.1016/j.eswa.2012.02.192
http://dx.doi.org/10.1186/1751-0473-8-11
http://www.ncbi.nlm.nih.gov/pubmed/23597283
http://dx.doi.org/10.1109/EMBC.2015.7318805
http://dx.doi.org/10.1109/EMBC.2013.6611081
http://dx.doi.org/10.1109/TNSRE.2014.2305097
http://www.ncbi.nlm.nih.gov/pubmed/24710833
http://dx.doi.org/10.1016/j.neunet.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24721224
http://dx.doi.org/10.1109/TNSRE.2015.2445634
http://www.ncbi.nlm.nih.gov/pubmed/26111399
http://dx.doi.org/10.1142/S0219843615500115


Big Data Cogn. Comput. 2018, 2, 21 26 of 27

86. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Investigating Long-Term Effects of Feature Extraction
Methods for Continuous EMG Pattern Classification. Fluct. Noise Lett. 2012, 11, 1250028. [CrossRef]

87. Cantú-Paz, E.; Goldberg, D.E. Efficient Parallel Genetic Algorithms: Theory and Practice. Comput. Methods
Appl. Mech. Eng. 2000, 186, 221–238. [CrossRef]

88. Zhou, Y.; Tan, Y. GPU-Based Parallel Particle Swarm Optimization. In Proceedings of the 2009 IEEE Congress
on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 1493–1500. [CrossRef]

89. Zhang, T.; Yang, B. Big Data Dimension Reduction Using PCA. In Proceedings of the 2016 IEEE International
Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016; pp. 152–157.
[CrossRef]

90. Vogt, F.; Tacke, M. Fast Principal Component Analysis of Large Data Sets. Chemom. Intell. Lab. Syst. 2001,
59, 1–18. [CrossRef]

91. Singh, G.; Memoli, F.; Carlsson, G. Topological Methods for the Analysis of High Dimensional Data Sets and
3D Object Recognition. In Proceedings of the Eurographics Symposium on Point-Based Graphics, Prague,
Czech Republic, 2–3 September 2007.

92. Nicolau, M.; Levine, A.J.; Carlsson, G. Topology Based Data Analysis Identifies A Subgroup of Breast Cancers
with A Unique Mutational Profile and Excellent Survival. Proc. Natl. Acad. Sci. USA 2011, 108, 7265–7270.
[CrossRef] [PubMed]

93. Phinyomark, A.; Ibáñez-Marcelo, E.; Petri, G. Topological Data analysis of Biomedical Big Data. In Signal
Processing and Machine Learning for Biomedical Big Data; Sejdic, E., Falk, T.H., Eds.; CRC Press: Boca Raton, FL,
USA, 2018; Chapter 11, pp. 209–234.

94. Oskoei, M.A.; Hu, H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied
to Upper Limb. IEEE Trans. Biomed. Eng. 2008, 55, 1956–1965. [CrossRef] [PubMed]

95. Kim, K.S.; Choi, H.H.; Moon, C.S.; Mun, C.W. Comparison of k-Nearest Neighbor, Quadratic Discriminant
and Linear Discriminant Analysis in Classification of Electromyogram Signals Based on the Wrist-Motion
Directions. Curr. Appl. Phys. 2011, 11, 740–745. [CrossRef]

96. Verikas, A.; Vaiciukynas, E.; Gelzinis, A.; Parker, J.; Olsson, M.C. Electromyographic Patterns During Golf
Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness. Sensors 2016, 16, 592. [CrossRef]
[PubMed]

97. Deng, L.; Yu, D.; Platt, J. Scalable Stacking and Learning for Building Deep Architectures. In Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan,
25–30 March 2012; pp. 2133–2136. [CrossRef]

98. Hutchinson, B.; Deng, L.; Yu, D. Tensor Deep Stacking Networks. IEEE Trans. Pattern Anal. Mach. Intell.
2013, 35, 1944–1957. [CrossRef] [PubMed]

99. Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.; Senior, A.;
Tucker, P.; et al. Large Scale Distributed Deep Networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV, USA, 3–6 December 2012;
Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1223–1231.

100. Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525.
[CrossRef]

101. Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A Survey on Deep Learning for Big Data. Inf. Fusion 2018, 42, 146–157.
[CrossRef]

102. Hartwell, A.; Kadirkamanathan, V.; Anderson, S.R. Compact Deep Neural Networks for Computationally
Efficient Gesture Classification From Electromyography Signals. arXiv 2018, arXiv:1806.08641.

103. Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A Survey on Deep Learning in Big Data. In Proceedings of the 2017
IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 2,
pp. 173–180. [CrossRef]

104. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

105. Shim, H.M.; An, H.; Lee, S.; Lee, E.H.; Min, H.K.; Lee, S. EMG Pattern Classification by Split and Merge
Deep Belief Network. Symmetry 2016, 8, 148. [CrossRef]

http://dx.doi.org/10.1142/S0219477512500289
http://dx.doi.org/10.1016/S0045-7825(99)00385-0
http://dx.doi.org/10.1109/CEC.2009.4983119
http://dx.doi.org/10.1109/SmartCloud.2016.33
http://dx.doi.org/10.1016/S0169-7439(01)00130-7
http://dx.doi.org/10.1073/pnas.1102826108
http://www.ncbi.nlm.nih.gov/pubmed/21482760
http://dx.doi.org/10.1109/TBME.2008.919734
http://www.ncbi.nlm.nih.gov/pubmed/18632358
http://dx.doi.org/10.1016/j.cap.2010.11.051
http://dx.doi.org/10.3390/s16040592
http://www.ncbi.nlm.nih.gov/pubmed/27120604
http://dx.doi.org/10.1109/ICASSP.2012.6288333
http://dx.doi.org/10.1109/TPAMI.2012.268
http://www.ncbi.nlm.nih.gov/pubmed/23267198
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1016/j.inffus.2017.10.006
http://dx.doi.org/10.1109/CSE-EUC.2017.215
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.3390/sym8120148


Big Data Cogn. Comput. 2018, 2, 21 27 of 27

106. Wand, M.; Schultz, T. Pattern Learning with Deep Neural Networks in EMG-Based Speech Recognition.
In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, USA, 26–30 August 2014; pp. 4200–4203. [CrossRef]

107. Wand, M.; Schmidhuber, J. Deep Neural Network Frontend for Continuous EMG-Based Speech Recognition.
In Proceedings of the 17th Annual Conference of the International Speech Communication Association
(Interspeech), San Francisco, CA, USA, 8–12 September 2016; pp. 3032–3036.

108. Kawde, P.; Verma, G.K. Deep Belief Network Based Affect Recognition from Physiological Signals.
In Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer
and Electronics (UPCON), Mathura, India, 26–28 October 2017; pp. 587–592. [CrossRef]

109. Said, A.B.; Mohamed, A.; Elfouly, T.; Harras, K.; Wang, Z.J. Multimodal Deep Learning Approach for Joint
EEG-EMG Data Compression and Classification. In Proceedings of the 2017 IEEE Wireless Communications
and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [CrossRef]

110. Chen, J.; Zhang, X.; Cheng, Y.; Xi, N. Surface EMG Based Continuous Estimation of Human Lower Limb
Joint Angles By Using Deep Belief Networks. Biomed. Signal Process. Control 2018, 40, 335–342. [CrossRef]

111. Côté-Allard, U.; Nougarou, F.; Fall, C.L.; Giguère, P.; Gosselin, C.; Laviolette, F.; Gosselin, B. A Convolutional
Neural Network for Robotic Arm Guidance Using sEMG Based Frequency-Features. In Proceedings of
the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea,
9–14 October 2016; pp. 2464–2470. [CrossRef]

112. Côté-Allard, U.; Fall, C.L.; Campeau-Lecours, A.; Gosselin, C.; Laviolette, F.; Gosselin, B. Transfer
Learning for sEMG Hand Gestures Recognition Using Convolutional Neural Networks. In Proceedings
of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada,
5–8 October 2017; pp. 1663–1668. [CrossRef]

113. Zhai, X.; Jelfs, B.; Chan, R.H.M.; Tin, C. Self-Recalibrating Surface EMG Pattern Recognition for
Neuroprosthesis Control Based on Convolutional Neural Network. Front. Neurosci. 2017, 11, 379. [CrossRef]
[PubMed]

114. Atzori, M.; Cognolato, M.; Müller, H. Deep Learning with Convolutional Neural Networks Applied
to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.
Front. Neurorobot. 2016, 10, 9. [CrossRef] [PubMed]

115. Laezza, R. Deep Neural Networks for Myoelectric Pattern Recognition An Implementation for Multifunctional
Control. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018.

116. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep Learning for Healthcare Applications Based
on Physiological Signals: A Review. Comput. Methods Prog. Biomed. 2018, 161, 1–13. [CrossRef] [PubMed]

117. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V.
Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 2016, 17, 2030–2096.

118. Park, K.H.; Lee, S.W. Movement Intention Decoding Based on Deep Learning for Multiuser Myoelectric
Interfaces. In Proceedings of the 2016 4th International Winter Conference on Brain-Computer Interface
(BCI), Gangwon, Korea, 22–24 February 2016; pp. 1–2. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/EMBC.2014.6944550
http://dx.doi.org/10.1109/UPCON.2017.8251115
http://dx.doi.org/10.1109/WCNC.2017.7925709
http://dx.doi.org/10.1016/j.bspc.2017.10.002
http://dx.doi.org/10.1109/IROS.2016.7759384
http://dx.doi.org/10.1109/SMC.2017.8122854
http://dx.doi.org/10.3389/fnins.2017.00379
http://www.ncbi.nlm.nih.gov/pubmed/28744189
http://dx.doi.org/10.3389/fnbot.2016.00009
http://www.ncbi.nlm.nih.gov/pubmed/27656140
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29852952
http://dx.doi.org/10.1109/IWW-BCI.2016.7457459
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Big EMG Data
	Multiple Datasets
	Benchmark Datasets
	High-Density Surface EMG
	Multiple Modalities
	Discussion

	Techniques for Big EMG Data
	Feature Engineering
	Feature Learning
	Unsupervised Pre-Trained Networks (UPNs)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)

	Discussion

	Conclusions
	References

