
big data and 
cognitive computing

Article

The Next Generation Cognitive Security Operations
Center: Network Flow Forensics Using
Cybersecurity Intelligence

Konstantinos Demertzis 1,* , Panayiotis Kikiras 2, Nikos Tziritas 3, Salvador Llopis Sanchez 4

and Lazaros Iliadis 1

1 Department of Civil Engineering, School of Engineering, Democritus University of Thrace, Xanthi 67100,
Greece; liliadis@civil.duth.gr

2 Department of Computer Science, School of Science, University of Thessaly, Lamia 35131, Greece;
kikirasp@uth.gr

3 Research Center for Cloud Computing, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518000, China; nikolaos@siat.ac.cn

4 Communications Department, Universitat Politecnica de Valencia, Valencia 46022, Spain;
salllosa@masters.upv.es

* Correspondence: kdemertz@fmenr.duth.gr; Tel.: +30-694-824-1881

Received: 25 October 2018; Accepted: 20 November 2018; Published: 22 November 2018 ����������
�������

Abstract: A Security Operations Center (SOC) can be defined as an organized and highly skilled
team that uses advanced computer forensics tools to prevent, detect and respond to cybersecurity
incidents of an organization. The fundamental aspects of an effective SOC is related to the ability to
examine and analyze the vast number of data flows and to correlate several other types of events from
a cybersecurity perception. The supervision and categorization of network flow is an essential process
not only for the scheduling, management, and regulation of the network’s services, but also for attacks
identification and for the consequent forensics’ investigations. A serious potential disadvantage of
the traditional software solutions used today for computer network monitoring, and specifically for
the instances of effective categorization of the encrypted or obfuscated network flow, which enforces
the rebuilding of messages packets in sophisticated underlying protocols, is the requirements of
computational resources. In addition, an additional significant inability of these software packages is
they create high false positive rates because they are deprived of accurate predicting mechanisms.
For all the reasons above, in most cases, the traditional software fails completely to recognize
unidentified vulnerabilities and zero-day exploitations. This paper proposes a novel intelligence
driven Network Flow Forensics Framework (NF3) which uses low utilization of computing power
and resources, for the Next Generation Cognitive Computing SOC (NGC2SOC) that rely solely on
advanced fully automated intelligence methods. It is an effective and accurate Ensemble Machine
Learning forensics tool to Network Traffic Analysis, Demystification of Malware Traffic and Encrypted
Traffic Identification.

Keywords: network flow forensics; Security Operations Center; network traffic analysis;
traffic identification; demystification of malware traffic; ensemble machine learning

1. Introduction

Network traffic analysis [1] is the method of capture, studying and analyzing network traffic flow
for the purpose of performance, security and network services management. The basic strategy to
network traffic analysis is a payload-based classification tactic [2] where the list of packages is sorted
based on the payload, such as Mac (Layer 2), IP address (Layer 3), source/destination ports (Layer 4)
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and protocols. An alternative is the statistical analysis method of the traffic behavior that is ordered
based on characteristics such as interpacket arrival, session, timestamp and so on.

On the other hand, malware is a kind of malicious software used to gain access to network
infrastructures without permission, to collect personal information or disrupt computer operation
and facilities. It can use any event-handling procedures such as source code, dynamic scripts, or
any other active content. Innovative malware types can obfuscate and remain concealed through
infection and operation with sophisticated techniques that use ambiguous filenames, alteration of file
features, or operation under the pretense of valid software and services to prevent investigation and
deletion. Furthermore, the malicious process often tries to destabilize the entire system by bypassing
the antivirus software and obfuscate active procedures, network services, and threads from suspicious
URLs or registry values [3].

Moreover, the fast-growing use of encrypted traffic is changing the threat landscape. Nowadays,
many services and software packages are using a type of encryption as the primary method to
secure the sensitives information [4]. By the same logic, cybercriminals use advanced and highly
sophisticated types of malicious operations based on progressive encryption to hide malware payload,
command and control activities, or information exfiltration. Most malware types are developed to
access silently and continue to exist for an extended period, to take ownership and get full control of
the equipment, and to interconnect (via encryption) with the botmaster and its Command and Control
(C&C) servers [4].

This paper suggests a novel network forensics framework for security operating centers that relies
solely on fully adaptive computational intelligence approaches. It is an effective and accurate ensemble
machine learning forensics tool that uses low utilization of computing power and resources to analyze
instantly or in real time the network flow to identify encrypted or malware traffic. It is a novel cognitive
analytics framework that employs an ensemble architecture which combines Support Vector Machine
(SVM) [5], Artificial Neural Network (ANN) [6], Random Forest (RF) [7] and k-Nearest Neighbors
(k-NN) [8] to investigate malicious activities from data flows in real time. The reason for using the
ensemble technique is that complex multifactorial problems such as the one under consideration
contain strong multi-variability that can be analyzed and finally solved by the sensitivity of the
overlapping models. In addition, an ensemble model is appropriate to effectively express the
mathematical modeling of data vectors that are used to describe complicated relationships, such
as the one between normal and malicious network traffic. The combination of four different algorithms
facilitates the sorting process, making each classifier more robust, and it accelerates the convergence of
the generic multiple model, which is less noisy than any single one [9]. Thus, this approach offers
generalization and avoids overfitting which is one of the basic targets in machine learning.

The rest of the paper is organized as follows. Section 2 presents the related work about the traffic
analysis systems that have used machine learning methods. Section 3 describes the proposed NF3
model. Section 4 defines the methodology. Section 5 describes the ensemble of algorithms used by
NF3. Section 6 describes the datasets. Section 7 presents the results. Section 8 contains the conclusions.

2. Related Work

The basic drawback of software to analyze network flows is that these applications do not offer
the deep packet level details required for comprehensive analysis, as they do not have the access to
each packet in the traffic flow to achieve high level application analysis. In addition, the precision of
the analysis depends a portion on the sample rate selected. The higher is the sample rate, the more
precise is the analysis. The type of sampling also plays a vital issue in the accuracy of outcomes.
The supported sample rates are dependent on the software vendors [10].

Furthermore, all network infrastructures need to support the appropriate protocols for a
comprehensive network flow analysis. Moreover, when working with many network flows,
the bandwidth overhead as well as computer resources requirements for analysis procedures will have
a substantial impact on the system [11].
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Besides, operators are aided by visual means when analyzing big data. Their interpretation of the
reality on the screen may vary due to their skills and knowledge. An inherent and implicit demand for
proof of the effectiveness is to maximize operators’ cyber situation awareness by adopting meaningful
visualization tools as part of a comprehensive decision-support mechanism [12].

A major issue of these applications, including consistent advanced applications that rely on
Deep Packet Inspection (DPI) [13] methods, is the use of signature to achieve threat identification.
For this signature-based malware identification, an imperfect signature capability can be used to
recognize the well-known events, provided the correct packet is sampled and the signature exists.
Unfortunately, up-to-date malicious code appear that are not predictable, and these newly released
forms can only be distinguished from benign files and activity by behavioral analysis or another
progressive technique [14].

For example, the most recent types of malware are looking at establishing secret communications
with the remote C&C servers on a systematic basis, so that cybercriminals can transfer the malicious
payload to the compromised devices (bots) using hardcoded pool lists of IP addresses. Specifically,
to remain hidden by the IDS/IPS, the botnets communicate using secret dynamic DNS services that
are implemented in high port numbers to generate the next rendezvous-point with the botmasters.
These rendezvous-points are characterized by a mixture of hundreds of random IP addresses and
a very small Time-To-Live (TTL) for each partial DNS Resource Record. In addition, the use of
sophisticated cryptography in malware code with the combination of the Blind Proxy Redirection
(BPR) method that repeatedly redirects the requests to another group of backend servers to spoil traces
and disappear the underlying networking details makes it very difficult to identify the C&C servers by
law enforcement [15,16]. Hence, the botnets have become more complicated [3].

The most effective method for cyber-attacks prevention and effective investigation of malware
communications is the demystification of malware traffic. Moreover, this is the primary technique to
estimate the behavior of the malicious process, the intention of attacks and the degree of impairment
caused by these activities [3].

The latest sophisticated malware uses the chaotic construction of the Tor network [17] to encrypt
the botnet traces and modify the paths of an attack [18]. This encrypted peer-to-peer network,
based on manifold layers of sophisticated encryption, complex virtual circuits and overlays that
change frequently [19], certifies the secrecy among the compromised machines and the hidden services
on a botnet.

Moreover, a characteristic that adds complexity in the investigation process of Tor-based malware
is the fact that these types of malware operate in the transport layer of the OSI model, thus the network
flow shows clients of the Secure Socket Interface (SOCKS) which operates in the session layer [20].
As a result, Tor uses port 443, so the generated traffic simulates the legitimate HTTPS traffic.

One of the most reliable methods to successfully identify the Tor-generated traffic flow is
statistical analysis and the investigation of the changes in the Secure Sockets Layer (SSL) protocol [20].
For example, a statistical analysis about the related domain name, the time-to-live, etc. can identify the
Tor sessions in a network full of HTTPS traffic [3,16,19,20].

NF3 is an artificial intelligence (AI) computer security technique [21–26]. Machine learning (ML)
methods, using static [27] and dynamic [28] investigation to classify malicious contend [29], to achieve
network traffic arrangement [30], to analyze malware traffic [31] and to identify botnets [32], has been
done in the past. In contrast, numerous writers suggest different classifications methods or discovery
procedures, presenting alternative classes of botnet detection [33,34]. Generally, the traffic analysis
with machine learning-based methods has proved effective in the investigation of some of the biggest
and most harmful cyber-attacks over the past decade [35–37].

On the other hand, Hsu et al. [38] proposed a real-time system for detecting botnets based on an
anomaly detection system that inspects the delays in HTTP/HTTPS client requests with interesting
outcomes. In addition, the authors of the study [39] employed several machine learning models to
categorize the SSH flow, with limited features of the payload. Alshammari et al. [40] proposed an
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accurate ensemble system that classifying the SSH traffic without extracting features from the payload.
Holz et al. [41] investigated a precise method to trace botnets. Almubayed et al. [42] presented a method
that measures the performance of several algorithms to identify the encrypted traffic in a network.
Chaabane et al. [43] described an in-depth study about HTTP, BitTorrent and Tor traffic and a method
to identify these protocols from user’s behavior. There are several similar studies that propose methods
to locate the encrypted relay nodes of the Tor network [44,45]. Mees et al. [46] developed a multi-aspect
tri-dimensional picture, specific to the cyber domain, to provide a starting point calculation of the cyber
situation by computing mission-specific features and related metrics with expert knowledge using
fuzzy logic. Llopis et al. [12] presented a comparative analysis between visualization techniques, using
the operational picture concept, to support incident handling. The mentioned authors anticipated
that visualization could be enhanced by using AI algorithms to classify information and support
decision making.

3. Proposed Framework

Since cyber systems’ security is an extremely complex process, SOCs administrators cannot be
based only in the use of isolated protection products installed on each checkpoint aiming to avoid an
incident. The detection of an intrusion in the network should not be a manual and time-consuming
process, which would offer an important advantage to the attackers. Following this point of view,
the use of more effective methods of network supervision, with capabilities of automated control,
are important to estimate the behavior of malware, the aim of cyber-attacks and the degree of
impairment caused by malware activities.

Updating the SOC and its transformation into a NGC2SOC are also important. The ideal
NGC2SOC includes advanced machine learning solutions for real-time analysis of both known and
unknown threats; instant reports; data visualization tools; and other sophisticated solutions that
minimize the risk of critical assets as well as fully automate the restoration of cyber security issues.

Unlike other techniques that have been proposed in the literature focused on single flow
analysis approaches [17,18], the dynamic ensemble model of NF3 reduces the overfit without special
requirements and computer resources.

The algorithmic approach of the proposed NF3 includes in Stage 1 a feature extraction process
from network flows, as shown in the depiction of the proposed NF3 model (Figure 1). In Stage 1,
these features are concurrently checked by each learning algorithm to produce an ensemble averaging
model (Stage 2 in Figure 1). In an ensemble averaging model, for every instance of test dataset, the
average predictions are calculated.

The analysis is about determining the normal or abnormal network traffic (network traffic
analysis). If the analysis gives a positive result (Stage 3 in Figure 1) and the traffic is categorized as
abnormal, it will be analyzed to specify the abnormality (demystification of malware traffic) that is
taking place (Botnet, Crimeware, APT, Attack, or CoinMiner). On the contrary, normal traffic will be
checked (Stage 4 in Figure 1) to identify encrypted traffic (encrypted traffic identification) and the
protocol it uses (Tor, SSH, SSLweb, SSLP2P, SCP, and Skype) (Stage 5 in Figure 1) or to identify which
application is being used for non-encrypted traffic (FTP, HTTP, DNS, and SMTP) (Stage 6 in Figure 1).
Figure 1 is a representation of the algorithmic approach of the proposed NF3 model.
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4. Methodology

4.1. Ensemble Learning

Implementing NF3 is based on the optimal usage and the combination of reliable algorithms,
which create a complete, innovative, computationally intelligent ensemble machine learning
framework to solve a real cyber security problem. Ensemble approaches are meta-algorithms
that syndicate numerous machine learning methods into one forecasting model to reduce variance
(bagging), bias (boosting), or improve estimates (stacking) [47].
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The main imperative advantages of ensemble models are that they produce more stable
implementations, often improving the entire prediction, and they are capable of generalization [48].
This is a critical requirement of machine learning models so that they can adapt properly to new,
previously unseen data.

An ensemble forecasting method may not necessarily yield the maximum performance, but it
definitely decreases the overall risk of a particularly poorer choice. On the other hand, it should be
related by a detailed examination of the elements or structure and it should explain in-depth some
critical decision points correlated to the procedure and use of the approach [9,47,48]. Some of these
points are presented below.

4.2. Ensemble Size

The number of predictors comprised in the conception of an ensemble model has a big influence
on the performance of the entire model. The detailed exploration of the optimal number of classifiers is
a constant research issue as well as a constant consultation among researchers, and it should be noted
that there are very limited studies that address this matter [9,47,48].

In this study, comprehensive statistical research was used to determine the appropriate number of
classifiers [49]. More recently, after the publishing of the “law of diminishing returns in ensemble
construction” [9,47–50], it is suggested that the ideal number of classifiers that can yield the highest
precision in an ensemble model for a dataset is equivalent to the obtained number of classes. However,
it is generally accepted that a priori determination of the number of classifiers without scientific
evidence is a precarious decision that does not guarantee the quality of the model.

To materialize the NF3 model, four classifiers were used according to “the law of diminishing
returns in ensemble construction” principle. In addition, statistical tests carried out and the final
ensemble size were decided with trial and error method.

4.3. Model Selection

The selection processes of the appropriate predictors to be comprised in an ensemble
method [9,47–50] should be based on the restrictions’ settings and configurations that can take into
consideration different decision boundaries. For example, the obvious choice of classifiers with the
smallest error in training data is considered as not proper for generating ensembles, as performance in
a training dataset, even when cross validation is used, may be misleading in terms of classification
performance in unknown data [51].

For this process to be effective, individual classifiers should not only display a certain level of
diversity, but they should also use different operating parameters and different sets of training data,
thus allowing different decision boundaries to be created, which can be combined to reduce the overall
error [9,51].

In general, the selection was based on a heuristic method that considered the basic properties of
how these algorithms face each situation, for instance: Are parametric models (ANN parametric,
Kernel SVM non-parametric, etc.) suitable? How should outliers be handled? (For example, RF using a
subgroup of training sets with bagging and subgroups of features can help reduce the effect of outliers
or extreme values.) How should noise be handled? (For example, KNN has some nice properties:
it is repeatedly nonlinear, it can detect linear or nonlinear dispersed data, and it tends to achieve
good results with many data vectors.) The final decision was made using the statistical trial and
error method.

4.4. Identification of the Weights of Different Models of Ensemble

An analysis that should accompany the training of an ensemble model should aim to find the
optimal weights of the algorithms involved [9,47–51]. The weight vector is a very critical function in
the training process of an Ensemble model, as it is used in the process of determining the reliability of
predictors and the trustworthiness of their classification. In the case of higher weights, a question is
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raised of how they play a more important role in defining the process of classifiers’ combination and
how they determine the confidence of the overall model. The usual practice of employing the same
weight for all algorithms and averaging the forecasts [51,52] is a rough heuristic technique to address
this challenge, which is not totally based on scientific evidence.

To create a NF3 ensemble model, the identification of the weights of different models was
completely based on the statistical trial and error method described above.

4.5. Reliability of Ensemble

The slight difference of forecast performance in a machine learning model is one of the most
important distinctive attributes for evaluating the reliability and intercity of the ensemble model.
In particular, when dispersion is low and prediction solutions are consistent across multiple tests,
the model is more reliable, unlike large dispersion cases, which suggest high uncertainty rates in the
final forecast [52].

Ideally, the spread of the expected error should be concentrated near a value that can be
described as the average error [9,47–52]. Essentially, for a prediction to be considered reliable,
the observed state should behave as if it was derived from the prediction probability distribution.
On the contrary, the combination of fixed categorizers for the compilation of an ensemble predictive
model is a less advantageous tactic as this will not help to improve the generalization ability of the
final model. Therefore, a very important reliability factor of an ensemble model is the diversity of
the selected classifiers, which can be achieved with different architectures, parameter settings and
training techniques.

To construct the NF3 model, various algorithms were selected based on the function method
and their parameterization, which is accomplished by using different architectures, hyperparameter
settings and training techniques.

4.6. Importance of Ensemble

Timeliness is a key issue at SOC levels, which is why they use combined cyber threat intelligence
capabilities. Implementing NF3 is based on the optimal usage and combination of reliable algorithms,
which create a complete ensemble machine learning framework to solve a real cyber security
problem. Ensemble methods are more stable models and offer generalization. In machine learning,
generalization denotes the aptitude of a model to be effective across a variety of inputs. Specifically,
an ensemble model such as the proposed NF3 can fit unseen patterns such as zero-day malware or
attacks. This is a major innovation that significantly improves the performance of the SOC/NOC,
against sophisticated zero-day exploits.

5. Ensemble of Algorithms

The algorithms used and the individual determination and usage parameters of the proposed
ensemble framework are briefly presented below.

5.1. Support Vector Machine (SVM)

SVM is mainly a classifier that creates hyperplanes in a multidimensional space that separates
decision boundaries of dissimilar classes [5]. It assumes that the data are linearly separable. The SVM
employs a reiterative training procedure to build an ideal hyperplane the error function is minimal
when maximizing the margin subjected to a set of linear constraints. This procedure can be considered
as an optimization problem that can be resolved by quadratic programming. Generally, the nonlinear
data are transformed to a higher dimension to reach linear separation. For example, the kernel trick
is an efficient method to transform the original data space into a high dimension that has an explicit
dividing margin between classes of data. There are few tuning parameters and so the typical technique
is to operate in two phases: (1) find the optimal optimization parameters; and (2) train the SVM using
those parameters.
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If the data are linearly separable, the decision surface has the following form [5]:

tk

(
wTxk + b

)
≥ +1, k = 1, 2, 3, . . . , N (1)

where x is the input vector, w is the weight vector, b is bias and wTx + b = 0 is the decision boundary.
When data are nonlinearly separable, which is more probable due to uncertainty, representation

inaccuracy and latency, there is a classification error and the purpose of SVM is to minimize this error.
A new dataset of positive numbers is inputted whose name is slack variables, and which calculate the
data diversion from correct classification. In this case, the decision surface is calculated:

tk

(
wTxk + b

)
≥ 1− ξk, k = 1, 2, 3, . . . , N (2)

where ξk ≥ 0 are the slack variables. Hence, we have the formulation of the SVM optimization problem
which find the optimal surface (w∗, b∗) with slack variables that reduce the cost of J(w) = 1

2 wTw:

min
w, b

{
J(w, ξ) =

1
2

wTw + c
N

∑
k=1

ξk

}
(3)

thus
tk

(
wTxk + b

)
≥ 1− ξk and ξk ≥ 0, k = 1, 2, 3, . . . , N (4)

where c is the capacity constant [5].
In the network traffic classification problem, the authors used the Gauss kernel SVM method to

calculate the maximum-margin hyperplanes:

k
(
x, x′

)
= exp

(
−||x− x′||2

2σ2

)
(5)

5.2. Artificial Neural Network (ANN)

ANNs are algorithms that simulate the human brain [6]. They are widely used for nonlinear
modeling and often are characterized by computational soft computing techniques. The most common
training method for ANNs algorithm is the Back-Propagation (BP) method that can be considered as a
method to calculate the weights to be used in the network to minimize the error output.

The Mean Squared Error (MSE) or Root Mean Square Error (RMSE) is the performance metrics
throughout the training, validation, and testing procedures of ANNs with BP training method [53,54].

MSE =
1
N

N

∑
i=1

(ei)
2 =

1
N

N

∑
i=1

(ti − ai)
2 (6)

RMSE =

√√√√ 1
n

n

∑
j=1

(
P(ij) − Tj

)2
(7)

The following is a heuristic function to estimate the neurons on the hidden layer:(
2
3
∗ Inputs

)
+ Outputs (8)

The Levenberg–Marquardt is the training algorithm of the MLFF ANN:

xk+1 = xk −
[

JT J + µI
]−1

JTe (9)
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where proper steps are followed to:

1. Calculate the inputs:

sj =
n

∑
i=1

(
WijXi

)
− θj(9), j = 1, 2, . . . , h (10)

2. Calculate the output for each hidden node:

Sj = sigmoid(sj)
=

1(
1 + exp

(
−sj
)) , j = 1, 2, . . . , h (11)

3. Calculate the overall outputs:

ok =
h

∑
j=1

(
WjkSj

)
− θ′k(11), k = 1, 2, . . . , m (12)

Ok = sigmoid(ok)
=

1
(1 + exp(−ok))

(12), k = 1, 2, . . . , m (13)

5.3. Random Forest (RF)

The Random Forests (RF) is a forecasting method that operates by creating a plethora of decision
trees. The training method for RF applies a general bootstrap aggregating method, or a bagging
technique, or a tree-learning process. Generally, the RF algorithm can be described as follows [7]:

(1) Draw n tree bootstrap samples from the source dataset.
(2) At each node of the bootstrap samples, grow an unpruned predictor tree and choose the best split

between variables.
(3) Predict new data by aggregating the predictions of the n trees and estimate the error at each

iteration using the “out-of-bag” method.

5.4. k-Nearest Neighbors (k-NN)

The K-Nearest Neighbors (k-NN) algorithm (also known as instance-based learning) is a simple
classification method developed to meet the need for discriminant analysis when dependable
parametric estimations of likelihood concentrations are unidentified or difficult to regulate [8].
To forecast a new data point, the nearby k neighbors are determined in the training set and then
they follow a voting process to produce the final prediction. k is a parameter defined by the user and
an unlabeled data-vector is classified with the most frequent label between the k training samples
nearest to that request point. To determine the “nearest neighbors” the Euclidean distance function
between the testing and training samples is employed. The Euclidean distance is defined as [53,54]:

distEuklidean
(
x0, xj

)
=

√
n

∑
i=1

(
xi

0 − xi
j

)2
(14)

The k-NN algorithm can be summarized as follows:

1. A positive integer k is definite, along with a new sample.
2. The closest k entries are selected.
3. The most usual classification of these entries is determined and given to the new sample.

The error probability of the model is calculated by the following equation:

PB ≤ Pk−NN ≤ PB +
1√
ke

(15)
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where PB is the optimal Bayesian error (minimum when k→ ∞ ).

6. Datasets

6.1. Features Extraction

The feature extraction process from the network flow was based on the theoretical background of
the way in which the TCP protocol work and moreover on the dependable submission between the
network and the application layers of the TCP header structure, the three-way handshake method and
the communications security over the SSL protocol [55]. Our research team carried out an extensive
investigation to find the most effective independent variables that describe with maximum correlation
and precision the problem of network traffic analysis under the strict condition of low utilization of
computing power and resources. This determination resulted in the construction of effective datasets,
able to produce an accurate framework that can adapt properly to new data.

The features management and the extraction process of the set of 46 features, including all of the
network flows, is analytically described in [56]. It should be emphasized that this feature extraction
process is also enriched by some novel representation techniques for simple structures and data
modification programmed in the Python programming language.

6.2. Data

The following five datasets have been developed to produce highly multifaceted scenarios that
can be perceived in a network traffic flow and which are appropriate for the training of the proposed
NF3 model.

Firstly, the Network Traffic Analysis (NTA) binary dataset contains 30 independent variables and
two classes (normal or abnormal). This dataset contains 208,629 instances (119,287 normal samples
chosen from the Pcaps which are packet captures obtained from an application programming interface
for capturing network traffic) from National Cyber Watch Mid-Atlantic Collegiate Cyber Defense
Competition and 39,342 abnormal samples chosen from the Contagio Malware Dump [57].

Secondly, the Demystification of Malware Traffic (DMT) multiclass dataset comprises
30 independent variables and five malware classes (Botnet, Crimeware, APT, Attack and CoinMiner).
This dataset contains 168,501 instances chosen from [57] including Pcaps files that captured malware
traffic from honeypots, sandboxes and real-world intrusions.

Thirdly, Encrypted Traffic Analysis (ETI) binary dataset comprises 30 independent variables and
two classes (encrypted or non-encrypted). This dataset contains 166,874 instances (93,024 encrypted
and 73,850 unencrypted) from the “Inter-Service Academy Cyber Defense Competition” served by
Information Technology Operations Center (ITOC), United States Military Academy (West Point, NY,
USA) [58].

Fourthly, Encrypted Traffic Identification (EnTI) multiclass dataset comprises 30 independent
variables and six classes that represent encrypted protocols (Tor, SSH, SSLweb, SSLP2P, SCP, and Skype).
This dataset contains 214,155 instances from [59] including a list of Pcaps file repositories, which are
freely available on the Internet.

Finally, Unencrypted Traffic Identification (UTI) multiclass dataset comprises 30 independent
variables and four classes of unencrypted network protocols (FTP, HTTP, DNS, and SMTP). This dataset
contains 214,155 instances from [59].

The full list of the 30 data features is detailed in [60].

7. Results

In the case of multi-class or binary classification, the estimation of the actual error requires
the probability density of all categories [53,54]. The classification accuracy is estimated by the
employment of a Confusion Matrix (CM) or error matrix that is a detailed matrix that allows
visualization of the performance of a model. A Receiver Operating Characteristic (ROC) curve is a
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graph showing the performance of a classification model at all classification thresholds. The number of
misclassifications is related to the False Positive (FP) and False Negative (FN) indices appearing in
the confusion Matrix. FP is the case where a positive result is wrongly received, and FN is exactly the
opposite. In addition, a True Positive (TP) is a correctly received positive result. A True Negative (TN)
is correctly indicating the condition being tested is not present. The ROC curve plots two parameters:
True Positive Rate (TPR), also known as Sensitivity (Equation (15)), and True Negative Rate (TNR),
also known as Specificity (Equation (16)) [53,54]. The Total Accuracy (TAC) is defined using Equation
(17) [53,54]:

TPR =
TP

TP + FN
(16)

TNR =
TN

TN + FP
(17)

TAC =
TP + TN

N
(18)

The Precision (PRE), Recall (REC) and F-Score indices are defined in Equations (18)–(20) [53,54]:

PRE =
TP

TP + FP
(19)

REC =
TP

TP + FN
(20)

F− Score = 2× PRE× REC
PRE + REC

(21)

The following tables presents an extensive comparison between algorithms.

Table 1. Comparison between algorithms.

Network Traffic Analysis (Binary) (208.629 Instances)

Classifier
Classification Accuracy & Performance Metrics

TAC RMSE PRE REC F-Score ROC_Area

SVM 98.01% 0.1309 0.980 0.980 0.980 0.980
MLFF ANN 98.13% 0.1295 0.981 0.981 0.981 0.994

k-NN 96.86% 0.1412 0.970 0.970 0.970 0.970
RF 97.12% 0.1389 0.972 0.971 0.971 0.971

Ensemble 97.53% 0.1351 0.976 0.975 0.975 0.979

Table 2. Comparison between algorithms.

Demystification of Malware Traffic (Multiclass) (168.501 Instances)

Classifier
Classification Accuracy & Performance Metrics

TAC RMSE PRE REC F-Score ROC_Area

SVM 96.63% 0.1509 0.967 0.967 0.968 0.970
MLFF ANN 96.50% 0.1528 0.981 0.981 0.981 0.965

k-NN 94.95% 0.1602 0.970 0.970 0.970 0.950
RF 95.91% 0.1591 0.972 0.971 0.971 0.960

Ensemble 95.99% 0.1557 0.972 0.972 0.973 0.961
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Table 3. Comparison between algorithms.

Encrypted Traffic Analysis (Binary) (166.874 Instances)

Classifier
Classification Accuracy & Performance Metrics

TAC RMSE PRE REC F-Score ROC_Area

SVM 98.99% 0.1109 0.989 0.990 0.990 0.990
MLFF ANN 99.12% 0.1086 0.998 0.998 0.998 0.998

k-NN 97.84% 0.1372 0.975 0.975 0.978 0.980
RF 98.96% 0.1107 0.989 0.989 0.989 0.990

Ensemble 98.72% 0.1168 0.987 0.987 0.988 0.989

Table 4. Comparison between algorithms.

Encrypted Traffic Identification (Multiclass) (214.155 Instances)

Classifier
Classification Accuracy & Performance Metrics

TAC RMSE PRE REC F-Score ROC_Area

SVM 90.31% 0.1906 0.905 0.905 0.906 0.950
MLFF ANN 92.67% 0.1811 0.930 0.930 0.928 0.960

k-NN 85.19% 0.2032 0.890 0.890 0.890 0.935
RF 91.56% 0.1800 0.920 0.916 0.916 0.930

Ensemble 89.93% 0.1887 0.911 0.910 0.910 0.943

Table 5. Comparison between algorithms.

Unencrypted Traffic Identification (Multiclass) (186.541 Instances)

Classifier
Classification Accuracy & Performance Metrics

TAC RMSE PRE REC F-Score ROC_Area

SVM 99.92% 0.1003 0.999 0.999 0.999 0.999
MLFF ANN 99.91% 0.1008 0.999 0.999 0.999 0.999

k-NN 98.98% 0.1020 0.989 0.989 0.990 0.995
RF 99.93% 0.1001 0.999 0.999 0.999 0.999

Ensemble 99.68% 0.1008 0.996 0.996 0.997 0.998

8. Conclusions

8.1. Discussion

As shown in the above tables, the ensemble method appears to have the same or a slightly lesser
performance across all datasets, compared to the winner (more accurate) algorithm. This fact does not
detract in any case from the value of the proposed method considering that the proposed ensemble
processing approach builds a robust predictive model that reduces the overfit. As stated by this
reasonable analysis, it seems that this method is an appropriate method for complex multifactorial
problems such as the one under consideration.

High precision shows the rate of positive predictions is precise, whereas high recall specifies
the rate of positive events is correctly predicted. Precision is also a measure of correctness or quality,
whereas recall is a degree of completeness or quantity. In all cases, the proposed model had high
average precision and very high recall, meaning the ensemble method is a robust and stable method
that returns substantial results. Correspondingly, the F-Score works greatest if false positives and false
negatives have a comparable cost. In other words, the F-Score is the harmonic average of the precision
and recall, and, in all scenarios, the proposed ensemble method score reaches its best value near 1
(perfect precision and recall). Finally, the high ROC area values of the method provide details on class
distribution and it is related to a cost or benefit analysis of an indicative decision making.
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Tables 1–5 clearly show that the ensemble model is a quite promising method considering
that it offers comparable prediction and supplementary stable models, as the overall behavior of a
multiple model is less noisy than a corresponding single one. It is important to say that analyzing
and identifying some parameters that can determine a type of threat such as cyber-attacks is a partly
subjective, nonlinear and dynamic process. The proposed NF3 for the NGC2SOC may use novel
representation techniques such as 3D-models or immersive visualization through the use of Virtual
Reality (VR) glasses [12] since these techniques allow operators a profound analysis when confronted
with information-overwhelmed situations. Additionally, these techniques incorporate interfaces with
available data sources, e.g., Malware Information Sharing Platform (MISP).

8.2. Innovation

The most significant innovation of NF3 is the proposed creation of a next generation cognitive
computing SOC which will use machine learning technologies to adapt to different contexts with
minimal human supervision. This new approach has the potential to help organizations combat
cybercriminals in real-time. Moreover, traying an all-inclusive analysis of the NF3 model, authors
obviously comprehend that, in the proposed approach, the identification of malicious software or
attacks is done in unproductive time, before troubling or disrupting the operation of the entire
infrastructure. This is a major innovation that generates new standpoints in the implementation of the
IDS/IPS, which adopt intelligent protection against innovative zero-day vulnerabilities. The proposed
framework adds a higher integrity to the security infrastructures improving its cyber resilience
with high identification speed, ease of implementation, minimal human intervention, and minimal
computational resources for network traffic analysis, demystification of malware traffic and encrypted
traffic identification. In addition, the feature extraction and selection procedure is very interesting
and innovative. This feature has occurred after comprehensive research about the network protocols
work in the lower and upper layers of the OSI model. It is important also to highlight that the datasets
occurred after evaluations concerning the boundaries and the determination of normal or abnormal
behavior of the network procedures.

Finally, an impressive innovation of the proposed framework is the ability to identify DoS/DDoS
attacks with high precision. A DoS/DDoS [61–63] attack is orchestrated by creation of high
rate malicious traffic using sources and services of compromised machines establishing multiple
simultaneous connections. One of the most important characteristics of this traffic is the modification
in the number of packets flows in a time-window. For example, the statistical analysis of the packet
count can be used to detect DoS/DDoS attacks. As detailed in [60], the dataset includes features such
as the total number of packets traveling in the flow in a time-window; the minimum, maximum and
average packet length; the minimum, maximum and average interarrival time between two packets;
and the time elapsed from the first packet to the last packet. All these features are useful to identify
anomalies in the network flow related to DoS/DDoS attacks.

8.3. Synopsis

This research paper proposes NF3, an innovative, reliable and highly effective network forensics
tool, employing computational intelligence principles. It is a highly suitable method in cases where
the traditional signature-based applications are computationally infeasible. It is an ensemble machine
learning framework that is based on the optimal combination of four highly efficient and fast learning
algorithms that create a comprehensive intelligent cyber security system proposed for the next
generation cognitive computing SOC. This sophisticated application, combined with the promising
results that have emerged, constitutes a credible innovative proposal for the standardization and
design of improved cyber security infrastructures. Moreover, this implementation is done by using
datasets that respond to specialized, realistic scenarios. In addition, this framework implements
a data analytics approach that attempts to balance latency, throughput, and fault tolerance using
integrated and accurate views of new entrant data flows. It is important to mention that this paper
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proposes a novel intelligence driven network flow forensics framework which uses low computing
utilization resources to network traffic analysis, demystification of malware traffic and encrypted
traffic identification. Given the data dimensionality, it seems suitable for most existing deep learning
solutions, but deep learning methods are extremely computationally expensive in the training process
and are very time-consuming. For example, on a deep convolutional network, the training procedure
can take several days. The most sophisticated models need to spend much time to train using equipped
with expensive GPUs. In contrast, the proposed NF3 model can take few minutes to train completely
from scratch. In addition, the determination of the hyperparameters, topology, training methods, etc.
is a black box and is difficult to comprehend. The classifiers used in the NF3 framework make it much
easier to handle data as well as to understand the architecture which uses few system resources to
train or retrain the models.

8.4. Future Works

Future research could involve a further analysis of the ensemble framework under a
hybrid structure, which will handle many data using batch and stream processing methods
(lambda architecture). In addition, semi-supervised methods algorithms and online learning algorithms
methods could be used to extract and manipulees hidden knowledge between the inhomogeneous
data that arise in network flow analysis. In addition, NF3 could be enhanced by further optimizing the
parameters of the ensemble framework, so that an even more effective, precise, and faster classification
process could be reached. Customized visualization incorporated into the proposed NF3 would assist
SOC operators in understanding the cyber situation. Multi-format representations may support a
reporting system as part of an overall decision mechanism. In addition, it would be important to study
the expansion of this system by implementing the same architecture in a parallel and distributed big
data analysis system such as Hadoop. Finally, a supplementary element that could be considered
in the way of future expansion concerns the operation of NF3 with self-adaptive improvement and
meta-agnostic-learning methods to fully automate the defense against sophisticated cyber-attacks.
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