
big data and
cognitive computing

Article

An Intelligent Automatic Human Detection and
Tracking System Based on Weighted Resampling
Particle Filtering

Liang Cheng Chang 1, Shreya Pare 2 , Mahendra Singh Meena 2 , Deepak Jain 3, Dong Lin Li 4,
Amit Saxena 5, Mukesh Prasad 2,* and Chin Teng Lin 2

1 Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan;
windhchs@hotmail.com

2 School of Computer Science, FEIT, University of Technology Sydney, Sydney 2007, Australia;
shreya.pare@uts.edu.au (S.P.); mahendra.s.meena@student.uts.edu.au (M.S.M.);
chin-teng.lin@uts.edu.au (C.T.L.)

3 Institute of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
deepak@cqupt.edu.cn

4 Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan;
ericli@email.ntou.edu.tw

5 Department of Computer Science and Information Technology, Guru Ghasidas University, Bilaspur,
Chhattisgarh 495009, India; amitsaxena65@rediffmail.com

* Correspondence: mukesh.prasad@uts.edu.au

Received: 13 July 2020; Accepted: 23 September 2020; Published: 9 October 2020
����������
�������

Abstract: At present, traditional visual-based surveillance systems are becoming impractical,
inefficient, and time-consuming. Automation-based surveillance systems appeared to overcome these
limitations. However, the automatic systems have some challenges such as occlusion and retaining
images smoothly and continuously. This research proposes a weighted resampling particle filter
approach for human tracking to handle these challenges. The primary functions of the proposed
system are human detection, human monitoring, and camera control. We used the codebook matching
algorithm to define the human region as a target and track it, and we used the practical filter algorithm
to follow and extract the target information. Consequently, the obtained information was used to
configure the camera control. The experiments were tested in various environments to prove the
stability and performance of the proposed system based on the active camera.

Keywords: color distribution; particle filter; human tracking; codebook matching; PID controller;
GMM; active camera

1. Introduction

Recently, security surveillance has applied visual-based tracking and detection techniques for
improving convenience and safety for humans. Human tracking and detection are essential topics
in a surveillance system. Human recognition and moving object extraction are the two parts of any
typical human detection system. Human recognition identifies an object as nonhuman or human,
and objects are extracted from the background by means of moving object extraction, which determines
the related size and position of the object in an image. The tracking system is essentially able to predict
the location during and after occlusion, as the tracked object or human is possibly occluded by other
objects while tracked.

Surveillance systems typically use two kinds of the cameras: fixed camera and active camera.
The fixed camera has the benefit of being low cost but comes with limited field of view (FOV), whereas

Big Data Cogn. Comput. 2020, 4, 27; doi:10.3390/bdcc4040027 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
https://orcid.org/0000-0002-2468-0667
https://orcid.org/0000-0002-3805-1087
https://orcid.org/0000-0002-7745-9667
http://dx.doi.org/10.3390/bdcc4040027
http://www.mdpi.com/journal/bdcc
https://www.mdpi.com/2504-2289/4/4/27?type=check_update&version=3

Big Data Cogn. Comput. 2020, 4, 27 2 of 23

an active camera takes proper FOV as it can do pan–tilt to retain the target object within the camera
scene. In addition, the latter has a better resolution since it can perform zoom in/out.

Generally, a tracking system on an active camera considers the temporal difference for extracting
moving object. In this procedure, it is necessary to wait for the camera to be stable enough to process the
image. In other words, the moving camera takes blurred images and extracts background pixels along
with the moving object. Subsequently, the active camera operates non-smoothly and discontinuously.
Hence, a particle filter tracking algorithm is applied to resolve such problem. The codebook technique
is employed initially to spot the human as the target model, and after that the particle filter tracks the
human by computing the Bhattacharyya distance amid the color histogram of target model with the
next color histogram frame of the sampled particle position. There are various advantages of using
a color histogram such as efficient computation, tracking of nonrigid objects, robustness to partial
occlusion, scale invariant, and rotation.

In this paper, a real-time human tracking system is constructed with an active camera and has the
following characteristics:

• Rapidly detects a human
• Tracks an object by not considering background information
• Handles occlusion conditions
• Operates an active camera continuously and smoothly
• Appropriately zoom in/out

2. Related Work

There are four key parts in our entire system: image source, human detection, human tracking,
and camera control, as described in Figure 1. As a quick review of our procedure, we set the initial
FOV as the scene we wanted to capture. Then, we detect and extract an object recognized as a human.
We track the human object and use its moving information to pan–tilt–zoom (PTZ) the camera via a
proportional-integral-derivative (PID) controller so that the target stays in the center of the FOV.

A human detection system finds the position and size of the human in an image. Optical flow [1,2]
is considered in order to estimate a moving object independently at the cost of complex computations.
Zhao and Thorpe [3] proposed a stereo-based segmentation technique for extracting objects from
the background and then recognize the objects using neural network. While techniques based on
stereo vision are more robust, it needs a minimum of two cameras, and it fails to perform well in
long-distance detection. Viola et al. [4] proposed a cascade architecture detector, where adaptive
boosting (AdaBoost) iteratively builds a robust classifier guided by performance criteria that are
specified by user. The cascade method swiftly rejects non-pedestrian samples in the early cascade
layer; thus, processing speed of this approach is high. The templates in a template-based approach [5]
have short sequences of 2D silhouettes gained from motion capture data. This method detects human
silhouettes having a particular walking pose. To rapidly spot humans, a shape-based human model is
chosen, and codebook matching is used to classify a human. This reduces the time taken in detecting
humans from the other objects. Montabone and Soto [6] proposed a novel computer vision technique
that can operate moving cameras and spot a human in various poses in the case of a complete or partial
appearance of the human. Pang et al. [7] presented an efficient histogram of a gradient-based human
detection technique. A human tracking system follows a human target through the sequence of images
regarding changes in scale and position. Between the several tracking methods, we analyzed three to
synthesize our research.

First, feature-based tracking, a very common method, tracks features by motion, edge, or color
using edge detecting methods such as the Sobel approach, Laplacian approach, and Marr–Hildreth
approach [8,9]. These techniques use masks to perform convolution over an image for edge detection.
Li et al. [10] proposed a 3D human motion tracking system with a coordinated mixture of factor
analyzers. Lopes et al. [11] designed a hierarchical fuzzy logic-based approach for object tracking.

Big Data Cogn. Comput. 2020, 4, 27 3 of 23

It uses a complicated and large set of rules, has a long computation time, and the pixels at the edges
are not always continuously detected. The abovementioned approach uses gray scale images for edge
detection, and we chose not to use this for color images because of information loss on the color space
vector. Moreover, edge detection in a gray scale image cannot be robust and sufficient.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 3 of 24

Figure 1. Overview of the system.

A human detection system finds the position and size of the human in an image. Optical flow
[1,2] is considered in order to estimate a moving object independently at the cost of complex
computations. Zhao and Thorpe [3] proposed a stereo-based segmentation technique for extracting
objects from the background and then recognize the objects using neural network. While techniques
based on stereo vision are more robust, it needs a minimum of two cameras, and it fails to perform
well in long-distance detection. Viola et al. [4] proposed a cascade architecture detector, where
adaptive boosting (AdaBoost) iteratively builds a robust classifier guided by performance criteria
that are specified by user. The cascade method swiftly rejects non-pedestrian samples in the early
cascade layer; thus, processing speed of this approach is high. The templates in a template-based
approach [5] have short sequences of 2D silhouettes gained from motion capture data. This method
detects human silhouettes having a particular walking pose. To rapidly spot humans, a shape-based
human model is chosen, and codebook matching is used to classify a human. This reduces the time
taken in detecting humans from the other objects. Montabone and Soto [6] proposed a novel
computer vision technique that can operate moving cameras and spot a human in various poses in
the case of a complete or partial appearance of the human. Pang et al. [7] presented an efficient
histogram of a gradient-based human detection technique. A human tracking system follows a
human target through the sequence of images regarding changes in scale and position. Between the
several tracking methods, we analyzed three to synthesize our research.

First, feature-based tracking, a very common method, tracks features by motion, edge, or color
using edge detecting methods such as the Sobel approach, Laplacian approach, and Marr–Hildreth
approach [8,9]. These techniques use masks to perform convolution over an image for edge detection.
Li et al. [10] proposed a 3D human motion tracking system with a coordinated mixture of factor
analyzers. Lopes et al. [11] designed a hierarchical fuzzy logic-based approach for object tracking. It
uses a complicated and large set of rules, has a long computation time, and the pixels at the edges are
not always continuously detected. The abovementioned approach uses gray scale images for edge

Figure 1. Overview of the system.

Secondly, pattern recognition methods learn the objects at the target and find it in sequential
images. Williams et al. [12] extended the method to a relevance vector machine (RVM) that learns a
nonlinear translation predictor. Collins et al. [13] proposed a mechanism for an online feature selection
mechanism that can be used for multiple features evaluation. The presented approach tracks and
adjusts the features set for improving tracking performance. The feature evaluation mechanism is
embedded in a mean-shift tracking system. It can adaptively select tracking features. Zhang et al. [14]
proposed a robust 3D human pose tracking approach from silhouettes using a likelihood function.
Zhao et al. [15] used a principal component analysis to extract features from color and use them in a
random walker segmentation algorithm to assist human tracking.

Thirdly, there are gradient recognition methods with a focus on pattern recognition, such as the
mean-shift algorithm. Fukunaga and Hostetler [16] initially proposed the mean-shift algorithm
for clustering data. Comaniciu et al. [17] proposed a kernel-based object tracking method,
where object region tracking is denoted using a spatially weighted intensity histogram, and its
similarity rate is computed using Bhattacharyya distance following an iterative mean-shift technique.
Many applications [18–21] later proposed various mean-shift algorithm variants. Even though the
mean-shift object tracking technique is well-performed over sequences with comparatively slight
object displacement, its performance cannot be guaranteed in the case where objects suffers full or
partial occlusions. Kalman filter [22,23] and particle filter [24,25] algorithms are considered along
mean-shift algorithms for improving the tracking performance under partial occlusion. The approach
by Bhat et al. [24] uses a fusion of color and KAZE features [26] in the particle filter framework to

Big Data Cogn. Comput. 2020, 4, 27 4 of 23

give an effective result in different environments for tracking the target. Still, this approach requires a
strategy for fast failure occlusion recovery for the post-occlusion target recovery. To track multiple
targets by deploying the same color description with cancelation functionality and internal initialization,
Nummiaro et al. [25] proposed a color particle filer embedded along a detection algorithm. Our major
contribution in this work is a novel multitarget tracking algorithm that incorporates particle filters
with a Gaussian mixture model to improve tracking accuracy and computational efficiency. In order to
detect humans fast, we chose the shape-based human model to classify humans by codebook matching,
which decreases the time of human detection compared to the other objects.

Many tracking systems work only on PTZ because to keep the object in FOV, an active camera can
be pan–tilt and can utilize zoom in/out for adjusting resolution, thus keeping the tracked object with
a well-proportioned resolution regarded to the FOV. Morphological filtering of motion images were
used by Murray et al. [27] to perform background compensation. Using an active camera mounted
on a pan/tilt platform, Murray’s technique can successfully track a moving object from dynamic
images. A kernel-based tracking method was used in the proposed system to overcome the apparent
background motion on a moving camera. Karamiani and Farajzadeh [28] considered feature points’
information of direction and magnitude to detect camera motion accurately. The method is used for
detecting multiple moving object accurately in active and fixed camera models. Lisanti et al. [29]
proposed a method that enables real-time target tracking in world coordinates, and the method offers
continuous adaptive calibration of a PTZ camera. Mathivanan and Palaniswamy [30] used optimal
feature points and fuzzy feature matching to accomplish human tracking. In the context of the tracking
applications of humans using deep learning, Fan et al. [31] proposed human tracking and detection
using a convolutional neural network for partial occlusion and view, scale, and illumination changes.
Tyan and Kim [32] proposed a compact convolutional neural network (CNN) based visual tracker
in conjunction with a particle filter architecture. A face tracking framework based on convolutional
neural networks and Kalman filter was proposed for the real-time detecting and tracking of the human
face [33,34]. Luo et al. [35] proposed a matching Siamese network and CNN-based method to track
pedestrian. The method used a faster-R-CNN to distinguish pedestrians from surveillance videos.
However, the method still requires target occlusion to be resolved in order for it to be a more robust
real-time pedestrian tracking tool. Xia et al. [36] proposed method tracks single and multi-objects in
long-term tracking in real time, which determine and identify the target bounding box in a traffic scene,
CNN is firstly trained. Then, a particle filter (PF) is used as the tracker to implement the preliminary
multi-object tracking. A particle filter and neural network learning evaluated in person re-identification
scenario was proposed in [37], while a hybrid Kalman particle filter (KPF) for human tracking was
proposed in [38]. KPF is more time-consuming, especially in the case of non-occlusion. Real-time
performance of the proposed filter is not good in terms of speed.

The deep learning models are time inefficient and costly in terms of memory as they tend to
expand large number of nodes, which results in large computation. Such models mostly fail in real-time
applications, and their implementation requires high-end processors. Therefore, complexities of the
network need to be reduced to decrease the computation time and limit the number of computations [37].
The advantage of the proposed method is its simplicity and ease of implementation. The proposed
models can be executed on a simple CPU for the real-time videos. Thus, it is an efficient approach
as well.

In this research, we used a wide-angle camera to find the target, and then camera calibration
methods gave the active camera pan–tilt commands to keep the target in the center of the FOV and for
specific object position tracking. In the case where the size of the target was larger or smaller than a
maximum or minimum predefined size, then the zoom in/out command was used accordingly.

3. Proposed System

This section describes each algorithm and method used in this paper. Figure 2 shows the
three categories of the tracking system. To detect a human, we first extracted moving objects from

Big Data Cogn. Comput. 2020, 4, 27 5 of 23

the image source and then used codebook matching for each one of them to be categorized as human
and non-human.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 5 of 24

and multi-objects in long-term tracking in real time, which determine and identify the target
bounding box in a traffic scene, CNN is firstly trained. Then, a particle filter (PF) is used as the tracker
to implement the preliminary multi-object tracking. A particle filter and neural network learning
evaluated in person re-identification scenario was proposed in [37], while a hybrid Kalman particle
filter (KPF) for human tracking was proposed in [38]. KPF is more time-consuming, especially in the
case of non-occlusion. Real-time performance of the proposed filter is not good in terms of speed.

The deep learning models are time inefficient and costly in terms of memory as they tend to
expand large number of nodes, which results in large computation. Such models mostly fail in real-
time applications, and their implementation requires high-end processors. Therefore, complexities of
the network need to be reduced to decrease the computation time and limit the number of
computations [37]. The advantage of the proposed method is its simplicity and ease of
implementation. The proposed models can be executed on a simple CPU for the real-time videos.
Thus, it is an efficient approach as well.

In this research, we used a wide-angle camera to find the target, and then camera calibration
methods gave the active camera pan–tilt commands to keep the target in the center of the FOV and
for specific object position tracking. In the case where the size of the target was larger or smaller than
a maximum or minimum predefined size, then the zoom in/out command was used accordingly.

3. Proposed System

This section describes each algorithm and method used in this paper. Figure 2 shows the three
categories of the tracking system. To detect a human, we first extracted moving objects from the
image source and then used codebook matching for each one of them to be categorized as human
and non-human.

Figure 2. Three categories of tracking systems.

3.1. Human Detection

In the majority of the surveillance systems, the position of the camera is fixed, whether it is a
static camera or active camera. The fixed position of the camera allows for extraction of a moving
object by using background subtraction. To make the method computationally efficient, background
subtraction uses only gray level images. This will also make our system more efficient when using it
in real time situations. The first image frame can be adjusted over time using Equation (1), which is
used to construct the background, where 𝐼஻௡ିଵand 𝐼஻௡ represent previous and current background
images, respectively. 𝐼஻௡(𝑥, 𝑦) = ൜𝛼 ∗ 𝐼஻௡ିଵ(𝑥, 𝑦) + (1 − 𝛼) ∗ 𝐼௖(𝑥, 𝑦), 𝐼ெ(𝑥, 𝑦) = 0𝐼஻௡ିଵ(𝑥, 𝑦), 𝐼ெ(𝑥, 𝑦) = 1 (1)

Scaling factor 𝛼(0,1) was used to update the background image. Active pixels between frames
n and n−1 are represented by 𝐼ெ(𝑥, 𝑦).

To determine the moving object, the current image 𝐼௖ is subtracted from the background image 𝐼஻ as described in Equation (2). To obtain the binary moving object 𝑀௢௕௝, threshold 𝑡ℎ𝑠 is applied to
results of Equation (2) using Equation (3).

Figure 2. Three categories of tracking systems.

3.1. Human Detection

In the majority of the surveillance systems, the position of the camera is fixed, whether it is a
static camera or active camera. The fixed position of the camera allows for extraction of a moving
object by using background subtraction. To make the method computationally efficient, background
subtraction uses only gray level images. This will also make our system more efficient when using
it in real time situations. The first image frame can be adjusted over time using Equation (1), which
is used to construct the background, where In−1

B and In
B represent previous and current background

images, respectively.

In
B(x, y) =

{
α ∗ In−1

B (x, y) + (1− α) ∗ Ic(x, y), IM(x, y) = 0
In−1
B (x, y), IM(x, y) = 1

(1)

Scaling factor α(0, 1) was used to update the background image. Active pixels between frames n
and n−1 are represented by IM(x, y).

To determine the moving object, the current image Ic is subtracted from the background image
IB as described in Equation (2). To obtain the binary moving object Mobj, threshold ths is applied to
results of Equation (2) using Equation (3).

IBS(x, y) =
∣∣∣Ic(x, y) − IB(x, y)

∣∣∣ (2)

Mobj(x, y) =
{

1, IBS ≥ ths
0, IBS < ths

(3)

The details of the moving object and codebook matching are indicated in Figure 3. The binary
threshold image Mobj undergoes a dilation process to fill holes of moving objects and to enlarge the
boundaries. The step by step process is shown in Figure 4.

Human-shape information was used to build our codebook matching algorithm. The extracted
moving object was normalized into a 20 × 40 pixels image. The position of the shape pixels in the
image was extracted by the shape feature extraction. These features are pointed by red dots in Figure 5;
10 Y-axis coordinates are chosen from the object’s rightmost and leftmost boundary, and 20 coordinates
of the corresponding X-axis are arranged as a feature vector. The vectors are shown by blue blocks
in Figure 5. As shown in Figure 5, there are a total of 10 bins in the histogram, represented by green
blocks. As a result, there are 30 features vectors representing a human object.

We can conclude by observation that the top and bottom shape pixels of the Y-axis cannot be
chosen as feature points as these pixels are changeable. The method used to select Y-axis coordinates is
to firstly calculate the standard deviation of the reach value of Y-axis in the training sample, and then
select the 10 lowest standard deviation values from each side.

Big Data Cogn. Comput. 2020, 4, 27 6 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 6 of 24

𝐼஻ௌ(𝑥, 𝑦) = |𝐼௖(𝑥, 𝑦) − 𝐼஻(𝑥, 𝑦)| (2) 𝑀௢௕௝(𝑥, 𝑦) = ൜1, 𝐼஻ௌ ≥ 𝑡ℎ𝑠0, 𝐼஻ௌ < 𝑡ℎ𝑠 (3)

The details of the moving object and codebook matching are indicated in Figure 3. The binary
threshold image Mobj undergoes a dilation process to fill holes of moving objects and to enlarge the
boundaries. The step by step process is shown in Figure 4.

Figure 3. Human detection system.

(a) (b) (c)

(d) (e)

Figure 4. Step by step process of moving object extraction. (a) Background image 𝐼஻; (b) current image 𝐼௖; (c) binary moving object 𝑀௢௕௝; (d) dilated image I஽; (e) region of interest 𝐼ோைூ.

Human-shape information was used to build our codebook matching algorithm. The extracted
moving object was normalized into a 20 × 40 pixels image. The position of the shape pixels in the
image was extracted by the shape feature extraction. These features are pointed by red dots in Figure
5; 10 Y-axis coordinates are chosen from the object’s rightmost and leftmost boundary, and 20
coordinates of the corresponding X-axis are arranged as a feature vector. The vectors are shown by
blue blocks in Figure 5. As shown in Figure 5, there are a total of 10 bins in the histogram, represented
by green blocks. As a result, there are 30 features vectors representing a human object.

Figure 3. Human detection system.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 6 of 24

𝐼஻ௌ(𝑥, 𝑦) = |𝐼௖(𝑥, 𝑦) − 𝐼஻(𝑥, 𝑦)| (2) 𝑀௢௕௝(𝑥, 𝑦) = ൜1, 𝐼஻ௌ ≥ 𝑡ℎ𝑠0, 𝐼஻ௌ < 𝑡ℎ𝑠 (3)

The details of the moving object and codebook matching are indicated in Figure 3. The binary
threshold image Mobj undergoes a dilation process to fill holes of moving objects and to enlarge the
boundaries. The step by step process is shown in Figure 4.

Figure 3. Human detection system.

(a) (b) (c)

(d) (e)

Figure 4. Step by step process of moving object extraction. (a) Background image 𝐼஻; (b) current image 𝐼௖; (c) binary moving object 𝑀௢௕௝; (d) dilated image I஽; (e) region of interest 𝐼ோைூ.

Human-shape information was used to build our codebook matching algorithm. The extracted
moving object was normalized into a 20 × 40 pixels image. The position of the shape pixels in the
image was extracted by the shape feature extraction. These features are pointed by red dots in Figure
5; 10 Y-axis coordinates are chosen from the object’s rightmost and leftmost boundary, and 20
coordinates of the corresponding X-axis are arranged as a feature vector. The vectors are shown by
blue blocks in Figure 5. As shown in Figure 5, there are a total of 10 bins in the histogram, represented
by green blocks. As a result, there are 30 features vectors representing a human object.

Figure 4. Step by step process of moving object extraction. (a) Background image IB; (b) current image
Ic; (c) binary moving object Mobj; (d) dilated image ID; (e) region of interest IROI.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 7 of 24

Figure 5. Example of a feature vector 𝑋.

We can conclude by observation that the top and bottom shape pixels of the Y-axis cannot be
chosen as feature points as these pixels are changeable. The method used to select Y-axis coordinates
is to firstly calculate the standard deviation of the reach value of Y-axis in the training sample, and
then select the 10 lowest standard deviation values from each side.

A list of feature vectors was represented by the codebook. Matching of the feature vector and
codebook vectors was done to find the minimum distortion code vector in comparison to the object
feature vector. We can say that X denotes a series of feature vectors including M-dimensional data,
designated by 𝑋଴ … 𝑋௜ … 𝑋(ெିଵ). Code words V are defined as 𝑉଴ … 𝑉௝ … 𝑉(ேିଵ) and have N sets each
in codebook C. Similar to the feature vector, each code word has M-dimensional data defined as 𝑉௝଴ … 𝑉௝௜ … 𝑉௝(ெିଵ). Distortion between code words and feature vectors was defined by Equation (4).

𝐷𝑖𝑠௝ = ฮ𝑋 − 𝑉௝ฮ = ෍ ห𝑋௜ − 𝑉௝௜หெିଵ
௜ୀ଴ (4)

𝐷𝑖𝑠௠௜௡ = 𝑚𝑖𝑛൫𝐷𝑖𝑠௝൯ 𝑗 = 0 … 𝑁 − 1 (5)

If the value of Dismin in Equation (5) is less than the threshold, it is assumed that feature vector X
and the moving object it represented was of a human, and if the value of Dismin is greater than the
threshold we then assume that it is a nonhuman object. The demonstration of comparing X with Vj is
shown in Figure 6.

Figure 6. The procedure of the comparison with the codebook.

3.2. Human Tracking

A particle filter algorithm was proposed in the study, which is based on a weighted resampling
particles method. In this algorithm, high weighted samples were selected for the human tracking
system. The basic idea of our particle filter is to approximate the probability distribution by weighted
sample sets. One hypothetical state of the object with corresponding discrete sampling probability is
represented by each sample [25].

Colored information is more accurate compared to grayscale information if we use color as the
feature for the purpose of object tracking. For our experimentation we chose HSV (Hue, Saturation,
and Value) color space for better performance of tracking compared to RGB (Red, Green, Blue) color
space because of its ability to reduce lightness and illumination sensitivity. Every color channel was
represented by 8 bits, which in turn produces 256 × 256 × 256 bins of the color histogram. Color data
are quantized into 6 × 6 × 6 without generality loss, thus making the entire bin of color histogram as

Figure 5. Example of a feature vector X.

A list of feature vectors was represented by the codebook. Matching of the feature vector and
codebook vectors was done to find the minimum distortion code vector in comparison to the object
feature vector. We can say that X denotes a series of feature vectors including M-dimensional data,
designated by X0 . . .Xi . . .X(M−1). Code words V are defined as V0 . . .V j . . .V(N−1) and have N sets

Big Data Cogn. Comput. 2020, 4, 27 7 of 23

each in codebook C. Similar to the feature vector, each code word has M-dimensional data defined as
V0

j . . .V
i
j . . .V

(M−1)
j . Distortion between code words and feature vectors was defined by Equation (4).

Dis j = ‖X −V j‖ =
M−1∑
i=0

∣∣∣∣Xi
−Vi

j

∣∣∣∣ (4)

Dismin = min
(
Dis j

)
j = 0 . . .N − 1 (5)

If the value of Dismin in Equation (5) is less than the threshold, it is assumed that feature vector X
and the moving object it represented was of a human, and if the value of Dismin is greater than the
threshold we then assume that it is a nonhuman object. The demonstration of comparing X with Vj is
shown in Figure 6.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 7 of 24

Figure 5. Example of a feature vector 𝑋.

We can conclude by observation that the top and bottom shape pixels of the Y-axis cannot be
chosen as feature points as these pixels are changeable. The method used to select Y-axis coordinates
is to firstly calculate the standard deviation of the reach value of Y-axis in the training sample, and
then select the 10 lowest standard deviation values from each side.

A list of feature vectors was represented by the codebook. Matching of the feature vector and
codebook vectors was done to find the minimum distortion code vector in comparison to the object
feature vector. We can say that X denotes a series of feature vectors including M-dimensional data,
designated by 𝑋଴ … 𝑋௜ … 𝑋(ெିଵ). Code words V are defined as 𝑉଴ … 𝑉௝ … 𝑉(ேିଵ) and have N sets each
in codebook C. Similar to the feature vector, each code word has M-dimensional data defined as 𝑉௝଴ … 𝑉௝௜ … 𝑉௝(ெିଵ). Distortion between code words and feature vectors was defined by Equation (4).

𝐷𝑖𝑠௝ = ฮ𝑋 − 𝑉௝ฮ = ෍ ห𝑋௜ − 𝑉௝௜หெିଵ
௜ୀ଴ (4)

𝐷𝑖𝑠௠௜௡ = 𝑚𝑖𝑛൫𝐷𝑖𝑠௝൯ 𝑗 = 0 … 𝑁 − 1 (5)

If the value of Dismin in Equation (5) is less than the threshold, it is assumed that feature vector X
and the moving object it represented was of a human, and if the value of Dismin is greater than the
threshold we then assume that it is a nonhuman object. The demonstration of comparing X with Vj is
shown in Figure 6.

Figure 6. The procedure of the comparison with the codebook.

3.2. Human Tracking

A particle filter algorithm was proposed in the study, which is based on a weighted resampling
particles method. In this algorithm, high weighted samples were selected for the human tracking
system. The basic idea of our particle filter is to approximate the probability distribution by weighted
sample sets. One hypothetical state of the object with corresponding discrete sampling probability is
represented by each sample [25].

Colored information is more accurate compared to grayscale information if we use color as the
feature for the purpose of object tracking. For our experimentation we chose HSV (Hue, Saturation,
and Value) color space for better performance of tracking compared to RGB (Red, Green, Blue) color
space because of its ability to reduce lightness and illumination sensitivity. Every color channel was
represented by 8 bits, which in turn produces 256 × 256 × 256 bins of the color histogram. Color data
are quantized into 6 × 6 × 6 without generality loss, thus making the entire bin of color histogram as

Figure 6. The procedure of the comparison with the codebook.

3.2. Human Tracking

A particle filter algorithm was proposed in the study, which is based on a weighted resampling
particles method. In this algorithm, high weighted samples were selected for the human tracking
system. The basic idea of our particle filter is to approximate the probability distribution by weighted
sample sets. One hypothetical state of the object with corresponding discrete sampling probability is
represented by each sample [25].

Colored information is more accurate compared to grayscale information if we use color as the
feature for the purpose of object tracking. For our experimentation we chose HSV (Hue, Saturation,
and Value) color space for better performance of tracking compared to RGB (Red, Green, Blue) color
space because of its ability to reduce lightness and illumination sensitivity. Every color channel was
represented by 8 bits, which in turn produces 256 × 256 × 256 bins of the color histogram. Color data
are quantized into 6 × 6 × 6 without generality loss, thus making the entire bin of color histogram as
216 bins. To represent the target object, kernel function was used. The Epanechnikov kernel function
was selected to represent the target object to introduce a spatially-smooth function to reduce the
search on small neighborhood region. The convex and monotonically decreasing Epanechnikov kernel
was selected to mask the target’s density estimate spatially. The rationale of using the kernel as a
weighted mask is to assign smaller weights to the pixels farther away from the center of the target,
since those pixels are often affected by occlusion or interference from the background. Figure 7b shows
the Epanechnikov kernel. This kernel function has the highest value at the center of distribution. If we
look at the Region of Interest (ROI) of the target model in Figure 7a, the pixels that are closer to the
center of the ROI contain more important information, and the background pixels are mostly near
the ROI’s boundary. The Epanechnikov kernel function was selected to represent the target object
as it is computationally simple and can disregard the boundary information. This kernel performs
well in terms of improved stability, accuracy, and robustness on camera motion and partial occlusions.
Epanechnikov kernel is defined by Equation (6), where x represents normalized pixels in the region

Big Data Cogn. Comput. 2020, 4, 27 8 of 23

defined as the target model. When the proposed kernel function is applied to the target model,
more critical information is contained by pixels closer to the ROI center, as shown in Figure 7.

k(x) =
{ 3

4 (1− x2) i f ‖x‖ ≤ 1
0 otherwise

(6)

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 8 of 24

216 bins. To represent the target object, kernel function was used. The Epanechnikov kernel function
was selected to represent the target object to introduce a spatially-smooth function to reduce the
search on small neighborhood region. The convex and monotonically decreasing Epanechnikov
kernel was selected to mask the target’s density estimate spatially. The rationale of using the kernel
as a weighted mask is to assign smaller weights to the pixels farther away from the center of the
target, since those pixels are often affected by occlusion or interference from the background. Figure
7(b) shows the Epanechnikov kernel. This kernel function has the highest value at the center of
distribution. If we look at the Region of Interest (ROI) of the target model in Figure 7(a), the pixels
that are closer to the center of the ROI contain more important information, and the background
pixels are mostly near the ROI’s boundary. The Epanechnikov kernel function was selected to
represent the target object as it is computationally simple and can disregard the boundary
information. This kernel performs well in terms of improved stability, accuracy, and robustness on
camera motion and partial occlusions. Epanechnikov kernel is defined by Equation (6), where x
represents normalized pixels in the region defined as the target model. When the proposed kernel
function is applied to the target model, more critical information is contained by pixels closer to the
ROI center, as shown in Figure 7.

23 (1) || || 1
() 4

0

x if x
k x

otherwise

 − ≤= 


 (6)

(a) (b) (c) (d)

Figure 7. (a) Target object. (b) Epanechnikov kernel function. (c) Kernel function. (d) Target object
and kernel function.

A robust tracking framework is provided by the particle filter algorithm, as it represents
uncertainty. The algorithm is capable of keeping its options open and at same time it is also capable
of considering multiple state hypotheses. Temporary occlusions can be dealt with by the particle filter
as less likely object states will be part of the tracking process temporarily [25]. Occlusion handler
steps and weighted resampling are the two basic differences between the original tracking method
and our tracking method. Our proposed tracking method is shown in Figure 8. The differences
between the original particle filter and ours are weighted resampling and occlusion handler.

Figure 7. (a) Target object. (b) Epanechnikov kernel function. (c) Kernel function. (d) Target object and
kernel function.

A robust tracking framework is provided by the particle filter algorithm, as it represents uncertainty.
The algorithm is capable of keeping its options open and at same time it is also capable of considering
multiple state hypotheses. Temporary occlusions can be dealt with by the particle filter as less likely
object states will be part of the tracking process temporarily [25]. Occlusion handler steps and weighted
resampling are the two basic differences between the original tracking method and our tracking method.
Our proposed tracking method is shown in Figure 8. The differences between the original particle
filter and ours are weighted resampling and occlusion handler.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 9 of 24

Figure 8. Step-by-step process of the weighted resampling particle filter.

The first step in the process of weighted resampling particle filter is to define the target model.
It can be defined in Equation (7) at location y as m-bin histogram 𝑞௬ = {𝑞௬(௨)}௨ୀଵ…௠. The normalization
factor f can be represented by Equation (8); δ is the Kronecker delta function, while 𝐼 is the number
of pixels in the ROI region, and 𝑎 = √𝑤ଶ + ℎଶ is used as the normalization factor for the size of the
object region. 𝑞௬(௨) = 𝑓 ∑ 𝑘 ቀ‖௬ି௫೔‖௔ ቁ 𝛿[ℎ(𝑥௜) − 𝑢]ூ௜ୀଵ (7) 𝑓 = 1∑ 𝑘(‖𝑦 − 𝑥௜‖𝑎)ூ௜ୀଵ (8)

The sample model 𝑝௬ = {𝑝௬(௨)}௨ୀଵ…௠ is represented in the same way as the target model.
Bhattacharyya distance 𝑑 is used to measure the distance between the sample and target model; it is
termed as similarity value 𝜌. If the value is large, the two models are considered similar, whereas if
the value of 𝜌 is equal to 1, it implies that the histogram of the sample and the target model is
identical. 𝑝௬(௨) = 𝑓 ∑ 𝑘 ቀ‖௬ି௫೔‖௔ ቁ 𝛿[ℎ(𝑥௜) − 𝑢]ூ௜ୀଵ (9)

𝜌[𝑝, 𝑞] = ෍ ට𝑝(௨)𝑞(௨)௠
௨ୀଵ (10)

𝑑 = ඥ1 − 𝜌[𝑝, 𝑞] (11)

In the particle filter algorithm, the target model can also be represented by state vector 𝑠_𝑡𝑎𝑟𝑔𝑒𝑡.
It is defined in Equation (12) where 𝑤 and ℎ represent the width and height of ROI, respectively; (𝑥, 𝑦) represents the center of ROI, and (𝑣௫, 𝑣௬) represents the motion of the object. Equation (13) is
used to compute the initial sample set 𝑆௜௡௜௧௜௔௟ = {𝑠(௡)}௡ୀଵ…ே where 𝐼 is an identity matrix, 𝑟. 𝑣. is a
multivariate Gaussian random variable, and 𝑁 represents the number of samples. A dynamic model
is represented by Equation (14), which propagates the sample; the deterministic component of the
model is represented by 𝐴. The target human size and position can be determined from the estimated
vector using the weight of every sample and its state vector, as shown in Equation (15). To update
the weight of each sample, Bhattacharyya distance is used and is shown in Equation (16). 𝑠௧௔௥௚௘௧ = {x, 𝑣௫, y, 𝑣௬, w, h} (12) 𝑠(௡) = 𝐼𝑠௧௔௥௚௘௧ + 𝑟. 𝑣. (13) 𝑠௧ = 𝐴𝑠௧ିଵ + 𝑟. 𝑣.௧ିଵ (14) 𝐸[𝑆௧] = ෍ 𝜔௧(௡)ே௡ୀଵ 𝑠௧(௡) (15)

𝜔(௡) = 1√2𝜋𝜎 𝑒ି ௗమଶఙమ = 1√2𝜋𝜎 𝑒ି(ଵିఘ[௣ೞ(೙),௤])ଶఙమ (16)

Figure 8. Step-by-step process of the weighted resampling particle filter.

The first step in the process of weighted resampling particle filter is to define the target model.

It can be defined in Equation (7) at location y as m-bin histogram qy =
{
q(u)y

}
u=1...m

. The normalization

factor f can be represented by Equation (8); δ is the Kronecker delta function, while I is the number
of pixels in the ROI region, and a =

√
w2 + h2 is used as the normalization factor for the size of the

object region.

q(u)y = f
∑I

i=1
k
(
‖y− xi‖

a

)
δ[h(xi) − u] (7)

Big Data Cogn. Comput. 2020, 4, 27 9 of 23

f =
1∑I

i=1 k
(
‖y−xi‖

a

) (8)

The sample model py =
{
p(u)y

}
u=1...m

is represented in the same way as the target model.

Bhattacharyya distance d is used to measure the distance between the sample and target model; it is
termed as similarity value ρ. If the value is large, the two models are considered similar, whereas if the
value of ρ is equal to 1, it implies that the histogram of the sample and the target model is identical.

p(u)y = f
∑I

i=1
k
(
‖y− xi‖

a

)
δ[h(xi) − u] (9)

ρ[p, q] =
m∑

u=1

√
p(u)q(u) (10)

d =
√

1− ρ[p, q] (11)

In the particle filter algorithm, the target model can also be represented by state vector s_target.
It is defined in Equation (12) where w and h represent the width and height of ROI, respectively;
(x, y) represents the center of ROI, and

(
vx, vy

)
represents the motion of the object. Equation (13)

is used to compute the initial sample set Sinitial =
{
s(n)

}
n=1...N

where I is an identity matrix, r.v. is a
multivariate Gaussian random variable, and N represents the number of samples. A dynamic model is
represented by Equation (14), which propagates the sample; the deterministic component of the model
is represented by A. The target human size and position can be determined from the estimated vector
using the weight of every sample and its state vector, as shown in Equation (15). To update the weight
of each sample, Bhattacharyya distance is used and is shown in Equation (16).

starget =
{
x, vx, y, vy, w, h

}
(12)

s(n) = Istarget + r.v. (13)

st = Ast−1 + r.v.t−1 (14)

E[St] =
∑N

n=1
ω
(n)
t s(n)t (15)

ω(n) =
1
√

2πσ
e−

d2

2σ2 =
1
√

2πσ
e−

(1−ρ[p
s(n)

,q])

2σ2 (16)

The resampling step in the process of the weighted resampling particle filter is used to avoid the
degeneracy of the algorithm, which means, it prevents the situation where most of the sample weights
are close to zero. To determine the need and time of resampling step, Equations (17) to (19) can be
used; in rate ∈ (0, 1), Nths and Ne f f represent the given threshold sample and the effective number of
samples, respectively.

Ne f f < Nths (17)

Ne f f =
1∑N

n=1

(
ω
(n)
t

)2 (18)

Nths = rate ∗N (19)

In the process of resampling, sample selection depends on weights; high weight samples may be
selected a number of times, which will lead to a number of copies of those samples, and relatively low
weight samples may not get selected at all. Given a sample set St−1 and the target model q, for the first

Big Data Cogn. Comput. 2020, 4, 27 10 of 23

iteration, St−1 is set to Sinitial. The details of the particle filter algorithm for each iteration is described
as follows:

1. Propagate each sample from the set St−1 by a linear stochastic differential equation:

s(n)t = As(n)t−1 + r.v.(n)t−1

2. Observe the color distributions:

(a) Calculate the color distribution: p(u)
s(n)t

= f
∑I

i=1 k
(
‖s(n)t −xi‖

a

)
δ[h(xi) − u] for each sample in

the set St

(b) Calculate the Bhattacharyya coefficient for each sample of the set

St: ρ
[
p

s(n)t
, q

]
=

∑m
u=1

√
p(u)

s(n)t

q(u)

(c) Weight each sample of the set St:

ω
(n)
t =

1
√

2πσ
e−

(1−ρ[pst (n),q])

2σ2

3. Estimate the mean state of the set St: E[St] =
∑N

n=1 ω
(n)
t s(n)t

4. Resample the sample set St, if Ne f f < Nths: Select N samples from the set St with probability ω(n)
t :

(a) Calculate the normalized cumulative probabilities c′t : c(0)t = 0; c(n)t = c(n−1)
t + ω

(n)
t ;

c′(n)t =
c(n)t

c(N)
t

(b) Generate a uniformly distributed random number r ∈ [0, 1].

(c) Use binary search to find the smallest j for which c′(j)
t ≥ r.

(d) Set s′(n)t = s(j)
t .

Finally, resample by St = S′t .

In the initial resample step of the particle filter, samples were selected randomly, so it is possible
that the selected sample has a relatively low weight, and the process ended up tracking different
objects and considering them as target object, which decreased tracking accuracy, as shown in Figure 9.
Figure 9 shows the sample points with high weights are in the ROI (green block), and samples with
relatively low weights are in the red block. Although two blocks have nearly the same similarity
value, the actual target object is in the green block. Consequently, it may track a different object as the
target object. In other words, it will decrease the accuracy of tracking. Thus, we proposed a weighted
resampling algorithm to cover this problem. The proposed algorithm of weighted resampling prevents
this problem. First, the top sample is selected and set to Stop

t with Ntop weights from set St, as shown in
Equations (20) to (21). The parameter top represents the top rate and for our experiment it is set to 0.2.
The Stop

t only selects samples with the top 20% weights from set St.

Ntop = top ∗N (20)

Stop
t =

{
stop(n)

}
n=1...Ntop

(21)

N samples were reproduced in St according to the weight of stop(n). This step will produce stop(n),
which has a relatively larger number of times in St, and others with relatively low weight will be
produced at least once. Figure 10 shows the samples points with high weights are in the ROI (green

Big Data Cogn. Comput. 2020, 4, 27 11 of 23

block), and samples with relatively low weights are in the red block. Figure 11 shows the weighted
resampling result. Most of sample points lie in the green block or in the target object region. A Gaussian
mixture model (GMM) was applied to update the target model over time. For approximation of
any continuous probability distribution K, Gaussian distributions have been used. The GMM [39]
is a robust method for dynamic backgrounds. It is mostly used due to its robustness to various
background variations like multi-modal, quasi periodic and gradual illumination changes. GMM
is a semiparametric multimodal density model consisting of a number of components to compactly
represent pixels of image block in color space with illumination changes. Therefore, a Gaussian mixture
model (GMM) was applied to update the target model over time. The image can be represented as a
set of homogeneous regions modeled by a mixture of Gaussian distributions in color feature space.
In comparison, non-Gaussian mixture models [40] present an image without taking spatial factor
into computation. Gaussian distribution N(x

∣∣∣µk, σk) with mean µk and standard deviation σk was
considered here. The weight of Gaussian distribution is represented by πk, and sum of all weights is
equal to 1. Equation (22) describes the process of Gaussian mixture model (GMM).

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 11 of 24

resampling prevents this problem. First, the top sample is selected and set to 𝑆௧௧௢௣ with 𝑁௧௢௣ weights
from set 𝑆௧, as shown in Equations (20) to (21). The parameter top represents the top rate and for our
experiment it is set to 0.2. The 𝑆𝑡𝑡𝑜𝑝 only selects samples with the top 20% weights from set 𝑆𝑡.

Figure 9. Flow diagram for codebook matching.

𝑁௧௢௣ = 𝑡𝑜𝑝 ∗ 𝑁 (20) 𝑆௧௧௢௣ = {𝑠௧௢௣(௡)}௡ୀଵ…ே೟೚೛ (21) 𝑁 samples were reproduced in 𝑆௧ according to the weight of 𝑠௧௢௣(௡). This step will produce 𝑠௧௢௣(௡), which has a relatively larger number of times in 𝑆௧, and others with relatively low weight will
be produced at least once. Figure 10 shows the samples points with high weights are in the ROI (green
block), and samples with relatively low weights are in the red block. Figure 11 shows the weighted
resampling result. Most of sample points lie in the green block or in the target object region. A
Gaussian mixture model (GMM) was applied to update the target model over time. For
approximation of any continuous probability distribution 𝐾, Gaussian distributions have been used.
The GMM [39] is a robust method for dynamic backgrounds. It is mostly used due to its robustness
to various background variations like multi-modal, quasi periodic and gradual illumination changes.
GMM is a semiparametric multimodal density model consisting of a number of components to
compactly represent pixels of image block in color space with illumination changes. Therefore, a
Gaussian mixture model (GMM) was applied to update the target model over time. The image can
be represented as a set of homogeneous regions modeled by a mixture of Gaussian distributions in
color feature space. In comparison, non-Gaussian mixture models [40] present an image without
taking spatial factor into computation. Gaussian distribution 𝑁(𝑥|𝜇௞, 𝜎௞) with mean 𝜇௞ and
standard deviation 𝜎௞ was considered here. The weight of Gaussian distribution is represented by 𝜋௞, and sum of all weights is equal to 1. Equation (22) describes the process of Gaussian mixture
model (GMM).

𝑝(𝑥) = ෍ 𝑝(𝑘)𝑝(𝑥|𝑘) = ෍ 𝜋௞𝑁(𝑥|𝜇௞, 𝜎௞)௄
௞ୀଵ

௄
௞ୀଵ (22)

Figure 10. Original resampling algorithm result. Samples for the actual target are in the green area,
i.e., our ROI, while the red area has samples with relatively low weights.

Figure 9. Flow diagram for codebook matching.

p(x) =
K∑

k=1

p(k)p(x|k) =
K∑

k=1

πkN(x|µk, σk) (22)

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 11 of 24

resampling prevents this problem. First, the top sample is selected and set to 𝑆௧௧௢௣ with 𝑁௧௢௣ weights
from set 𝑆௧, as shown in Equations (20) to (21). The parameter top represents the top rate and for our
experiment it is set to 0.2. The 𝑆𝑡𝑡𝑜𝑝 only selects samples with the top 20% weights from set 𝑆𝑡.

Figure 9. Flow diagram for codebook matching.

𝑁௧௢௣ = 𝑡𝑜𝑝 ∗ 𝑁 (20) 𝑆௧௧௢௣ = {𝑠௧௢௣(௡)}௡ୀଵ…ே೟೚೛ (21) 𝑁 samples were reproduced in 𝑆௧ according to the weight of 𝑠௧௢௣(௡). This step will produce 𝑠௧௢௣(௡), which has a relatively larger number of times in 𝑆௧, and others with relatively low weight will
be produced at least once. Figure 10 shows the samples points with high weights are in the ROI (green
block), and samples with relatively low weights are in the red block. Figure 11 shows the weighted
resampling result. Most of sample points lie in the green block or in the target object region. A
Gaussian mixture model (GMM) was applied to update the target model over time. For
approximation of any continuous probability distribution 𝐾, Gaussian distributions have been used.
The GMM [39] is a robust method for dynamic backgrounds. It is mostly used due to its robustness
to various background variations like multi-modal, quasi periodic and gradual illumination changes.
GMM is a semiparametric multimodal density model consisting of a number of components to
compactly represent pixels of image block in color space with illumination changes. Therefore, a
Gaussian mixture model (GMM) was applied to update the target model over time. The image can
be represented as a set of homogeneous regions modeled by a mixture of Gaussian distributions in
color feature space. In comparison, non-Gaussian mixture models [40] present an image without
taking spatial factor into computation. Gaussian distribution 𝑁(𝑥|𝜇௞, 𝜎௞) with mean 𝜇௞ and
standard deviation 𝜎௞ was considered here. The weight of Gaussian distribution is represented by 𝜋௞, and sum of all weights is equal to 1. Equation (22) describes the process of Gaussian mixture
model (GMM).

𝑝(𝑥) = ෍ 𝑝(𝑘)𝑝(𝑥|𝑘) = ෍ 𝜋௞𝑁(𝑥|𝜇௞, 𝜎௞)௄
௞ୀଵ

௄
௞ୀଵ (22)

Figure 10. Original resampling algorithm result. Samples for the actual target are in the green area,
i.e., our ROI, while the red area has samples with relatively low weights.
Figure 10. Original resampling algorithm result. Samples for the actual target are in the green area,
i.e., our ROI, while the red area has samples with relatively low weights.

Big Data Cogn. Comput. 2020, 4, 27 12 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 12 of 24

Figure 11. Weighted resample, with most of the sample points lying in the green area, our real ROI.

The GMM update algorithm is applied to update the color histogram of the target model; 𝐾 = 3
Gaussian distributions is used to model each bin 𝑞(௨). The mean 𝜇௞ , standard deviation 𝜎௞ , and
weight 𝜋௞ were initialized respectively as 𝜇௞ = 𝑞(௨), 𝜎௞ = 1, and 𝜋௞ = ଵ௄, where 𝑘 = 1~𝐾.

1. We sorted {𝜋௞}௞ୀଵ~௄ in descending order and obtained the order {𝜋௔, 𝜋௕, 𝜋௖}, 𝜋௔ ≥ 𝜋௕ ≥ 𝜋௖.
2. We updated the bin’s value using Equation (23) where 𝐴 = 0.6, 𝐵 = 0.25, 𝐶 = 0.15, and 𝑎, 𝑏, 𝑐 was the descending order. 𝑞ᇱ(௨) = 𝐴𝜇௔ + 𝐵𝜇௕ + 𝐶𝜇௖ (23)

3. If the difference between the previous and current frames’ 𝑞(௨) was smaller than the threshold,
we used Equation (24) to find the first Gaussian distribution where k follows the descending
order { 𝑎, 𝑏, 𝑐 }. ห𝑞(௨) − 𝜇௞ห < 𝜎௞ ∗ 3 (24)

If we successfully find the Gaussian distribution by Equation (24), it would update 𝜇௞, 𝜎௞, 𝜋௞
by Equations (25) to (27), where 𝛼 = 0.05 and 𝛽 = 0.01, and the other weights would be updated by 𝜋௝ = (1 − 𝛽) ∗ 𝜋௝ where 𝑗 = 1~𝐾 and 𝑗 ≠ 𝑘. 𝜇௞ = (1 − α) ∗ 𝜇௞ + 𝛼 ∗ 𝑞(௨) (25) 𝜎௞ = ට(1 − α) ∗ 𝜎௞ ∗ 𝜎௞ + 𝛼 ∗ (𝑞(௨) − 𝜇௞)ଶ (26) 𝜋௞ = (1 − 𝛽) ∗ 𝜋௞ + 𝛽 (27)

These steps produced the updated target model 𝑞ᇱ = ቄ𝑞ᇱ(௨)ቅ௨ୀଵ…௠ . The proposed occlusion

handler was color-based. The algorithm equated similarities between the target model and candidate
model. Figure 12 shows the flowchart of the occlusion handler. The following is the step-by-step
process of the proposed occlusion handler:

1. Candidate model 𝑐 = ൛𝑐(௨)ൟ௨ୀଵ…௠ ROI was created in the current frame.

2. The similarity value between target model 𝑞ᇱ = ቄ𝑞ᇱ(௨)ቅ௨ୀଵ…௠ and candidate model 𝑐 =൛𝑐(௨)ൟ௨ୀଵ…௠ was computed.
3. If similarity was less than 𝑡ℎ𝑠௦௜௠, resampling was not performed, and it was assumed that the

candidate model was occluded by another object.
4. The count was increased using 𝐶𝑜𝑢𝑛𝑡 = 𝐶𝑜𝑢𝑛𝑡 + 1.
5. Step 1–4 were repeated during the tracking process to see whether the similarity value becomes

larger than 𝑡ℎ𝑠௦௜௠, the tracked human appeared or 𝐶𝑜𝑢𝑛𝑡 ≥ 10. Termination condition avoids
the spreading of the samples out of the image. Figure 13 shows the images for frame T, T+4, T+9,
T+14 using proposed occlusion handler.

Figure 11. Weighted resample, with most of the sample points lying in the green area, our real ROI.

The GMM update algorithm is applied to update the color histogram of the target model; K = 3
Gaussian distributions is used to model each bin q(u). The mean µk, standard deviation σk, and weight
πk were initialized respectively as µk = q(u), σk = 1, and πk =

1
K , where k = 1 ∼ K.

1. We sorted {πk}k=1∼K in descending order and obtained the order {πa,πb,πc}, πa ≥ πb ≥ πc.
2. We updated the bin’s value using Equation (23) where A = 0.6, B = 0.25, C = 0.15, and a, b, c was

the descending order.
q′(u) = Aµa + Bµb + Cµc (23)

3. If the difference between the previous and current frames’ q(u) was smaller than the threshold,
we used Equation (24) to find the first Gaussian distribution where k follows the descending
order { a, b, c }. ∣∣∣q(u) − µk

∣∣∣ < σk ∗ 3 (24)

If we successfully find the Gaussian distribution by Equation (24), it would update µk, σk, πk
by Equations (25) to (27), where α = 0.05 and β = 0.01, and the other weights would be updated by
π j = (1− β) ∗π j where j = 1 ∼ K and j , k.

µk = (1−α) ∗ µk + α ∗ q(u) (25)

σk =

√
(1−α) ∗ σk ∗ σk + α ∗

(
q(u) − µk

)2
(26)

πk = (1− β) ∗πk + β (27)

These steps produced the updated target model q′ =
{
q′(u)

}
u=1...m

. The proposed occlusion
handler was color-based. The algorithm equated similarities between the target model and candidate
model. Figure 12 shows the flowchart of the occlusion handler. The following is the step-by-step
process of the proposed occlusion handler:

1. Candidate model c =
{
c(u)

}
u=1...m

ROI was created in the current frame.

2. The similarity value between target model q′ =
{
q′(u)

}
u=1...m

and candidate model c =
{
c(u)

}
u=1...m

was computed.
3. If similarity was less than thssim, resampling was not performed, and it was assumed that the

candidate model was occluded by another object.
4. The count was increased using Count = Count + 1.
5. Step 1–4 were repeated during the tracking process to see whether the similarity value becomes

larger than thssim, the tracked human appeared or Count ≥ 10. Termination condition avoids the
spreading of the samples out of the image. Figure 13 shows the images for frame T, T+4, T+9,
T+14 using proposed occlusion handler.

Big Data Cogn. Comput. 2020, 4, 27 13 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 13 of 24

Figure 12. Occlusion handler flow chart.

Figure 13. Proposed occlusion handler: (a) Frame T; (b) Frame T+4; (c) Frame T+9; (d) Frame T+14.

3.3. Camera Control

Pelco P-protocol [31] was used to control the active camera through an RS-232 to RS-485
converter. The protocol allows us to have control over pan, zoom step, and tilt angle to achieve
effective tracking. The active camera is controlled by pelco P-protocol [34] through the RS-232 to RS
485 converter. It needs to control pan (horizontal direction), tilt (vertical direction) angle, and the
zoom’s step to achieve tracking purpose. The pelco P-protocol has 8 bytes data with message format
as shown in Figure 14a. Byte 1 and Byte 7 are the start and stop bytes, respectively, and they are
always set to 0xA0 for Byte 1 and 0xAF for Byte 7. Byte 2 is the receiver or camera address. In this
thesis, we only used one camera, so Byte 2 is always set to 0 × 00. Byte 3, Byte 4, Byte 5, and Byte 6
are used to control the pan–tilt–zoom (PTZ) as shown in Table 1. The last byte is an XOR check sum
byte.

(a)

(a)

(b)

(c)

(d)

Figure 12. Occlusion handler flow chart.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 13 of 24

Figure 12. Occlusion handler flow chart.

Figure 13. Proposed occlusion handler: (a) Frame T; (b) Frame T+4; (c) Frame T+9; (d) Frame T+14.

3.3. Camera Control

Pelco P-protocol [31] was used to control the active camera through an RS-232 to RS-485
converter. The protocol allows us to have control over pan, zoom step, and tilt angle to achieve
effective tracking. The active camera is controlled by pelco P-protocol [34] through the RS-232 to RS
485 converter. It needs to control pan (horizontal direction), tilt (vertical direction) angle, and the
zoom’s step to achieve tracking purpose. The pelco P-protocol has 8 bytes data with message format
as shown in Figure 14a. Byte 1 and Byte 7 are the start and stop bytes, respectively, and they are
always set to 0xA0 for Byte 1 and 0xAF for Byte 7. Byte 2 is the receiver or camera address. In this
thesis, we only used one camera, so Byte 2 is always set to 0 × 00. Byte 3, Byte 4, Byte 5, and Byte 6
are used to control the pan–tilt–zoom (PTZ) as shown in Table 1. The last byte is an XOR check sum
byte.

(a)

(a)

(b)

(c)

(d)

Figure 13. Proposed occlusion handler: (a) Frame T; (b) Frame T+4; (c) Frame T+9; (d) Frame T+14.

3.3. Camera Control

Pelco P-protocol [31] was used to control the active camera through an RS-232 to RS-485 converter.
The protocol allows us to have control over pan, zoom step, and tilt angle to achieve effective tracking.
The active camera is controlled by pelco P-protocol [34] through the RS-232 to RS-485 converter. It needs
to control pan (horizontal direction), tilt (vertical direction) angle, and the zoom’s step to achieve
tracking purpose. The pelco P-protocol has 8 bytes data with message format as shown in Figure 14a.
Byte 1 and Byte 7 are the start and stop bytes, respectively, and they are always set to 0xA0 for Byte 1
and 0xAF for Byte 7. Byte 2 is the receiver or camera address. In this thesis, we only used one camera,
so Byte 2 is always set to 0 × 00. Byte 3, Byte 4, Byte 5, and Byte 6 are used to control the pan–tilt–zoom
(PTZ) as shown in Table 1. The last byte is an XOR check sum byte.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 13 of 24

Figure 12. Occlusion handler flow chart.

Figure 13. Proposed occlusion handler: (a) Frame T; (b) Frame T+4; (c) Frame T+9; (d) Frame T+14.

3.3. Camera Control

Pelco P-protocol [31] was used to control the active camera through an RS-232 to RS-485

converter. The protocol allows us to have control over pan, zoom step, and tilt angle to achieve

effective tracking. The active camera is controlled by pelco P-protocol [34] through the RS-232 to RS

485 converter. It needs to control pan (horizontal direction), tilt (vertical direction) angle, and the

zoom’s step to achieve tracking purpose. The pelco P-protocol has 8 bytes data with message format

as shown in Figure 14a. Byte 1 and Byte 7 are the start and stop bytes, respectively, and they are

always set to 0xA0 for Byte 1 and 0xAF for Byte 7. Byte 2 is the receiver or camera address. In this

thesis, we only used one camera, so Byte 2 is always set to 0 × 00. Byte 3, Byte 4, Byte 5, and Byte 6

are used to control the pan–tilt–zoom (PTZ) as shown in Table 1. The last byte is an XOR check sum

byte.

Byte1 Byte2 Byte3 Byte7

Start transmition

value : A0

Address

value: 00 ~ 1F

Data byte 1

Byte8

End transmission

value: AF
Check sum

Byte4 Byte5 Byte6

Data byte 2 Data byte 3 Data byte 4

(a)

(a)

(b)

(c)

(d)

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 14 of 24

(b)

Figure 14. (a) Message format. (b) Field of view (FOV) divided into 9 regions associated with control
directions.

Table 1. Data byte 1 to 4 format.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Data byte

1
Fixed to

0
Camera

On
Auto Scan

On
Camera
On/Off

Iris
Close

Iris
Open

Focus
Near Focus Far

Data byte
2

Fixed to
0

Zoom
Wide Zoom Tele Tilt Down Tilt Up

Pan
Left Pan Right

0 (for
pan/tilt)

Data byte
3 Pan speed 00 (stop) to 3F (high speed) and 40 for Turbo

Data byte
4 Tilt speed 00 (stop) to 3F (high speed)

Figure 14b demonstrates the scheme used to keep the tracking object in the center of the FOV.
Our FOV was divided into 9 regions corresponding to the directions of the pan–tilt. To make the
target object size larger or smaller, zoom-out and zoom-in were also used. Every region has a specific
direction as shown in Figure 14b. If the target is located on the stop-region, then the camera is set to
stop. Meanwhile, the camera speed on other regions is determined by the PID controller. The zoom-
in and zoom-out will be activated if the target’s size becomes smaller or larger than the user’s defined
size. The details of the camera control are shown in Figure 15.

Figure 14. (a) Message format. (b) Field of view (FOV) divided into 9 regions associated with
control directions.

Big Data Cogn. Comput. 2020, 4, 27 14 of 23

Table 1. Data byte 1 to 4 format.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data byte 1 Fixed to 0 Camera On Auto Scan On Camera On/Off Iris Close Iris Open Focus Near Focus Far

Data byte 2 Fixed to 0 Zoom Wide Zoom Tele Tilt Down Tilt Up Pan Left Pan Right 0 (for pan/tilt)

Data byte 3 Pan speed 00 (stop) to 3F (high speed) and 40 for Turbo

Data byte 4 Tilt speed 00 (stop) to 3F (high speed)

Figure 14b demonstrates the scheme used to keep the tracking object in the center of the FOV.
Our FOV was divided into 9 regions corresponding to the directions of the pan–tilt. To make the
target object size larger or smaller, zoom-out and zoom-in were also used. Every region has a specific
direction as shown in Figure 14b. If the target is located on the stop-region, then the camera is set to
stop. Meanwhile, the camera speed on other regions is determined by the PID controller. The zoom-in
and zoom-out will be activated if the target’s size becomes smaller or larger than the user’s defined
size. The details of the camera control are shown in Figure 15.
Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 15 of 24

Figure 15. Camera control flow chart.

Our PID controller defines its variables as follows:

• Setting value 𝑢(𝑡): Central image position.
• Error signal 𝑒(𝑡): Difference between the target position and central position.
• Measured value 𝑦(𝑡): Tracking system’s estimate of target position.
• Output signal 𝐶௢௨௧: Output value used to control pan/tilt direction and speed.

To control the vertical and horizontal position difference, two independent PID controllers were
used. Equations (28) and (29) used 𝐶௢௨௧ to estimate the pan/tilt speed, where we defined 𝑜𝑓𝑓𝑠𝑒𝑡௣௔௡
and 𝑜𝑓𝑓𝑠𝑒𝑡௧௜௟௧ values. 𝑆𝑝𝑒𝑒𝑑௣௔௡ = 𝐶௢௨௧ ∗ 0.1 + 𝑜𝑓𝑓𝑠𝑒𝑡௣௔௡ (28) 𝑆𝑝𝑒𝑒𝑑௧௜௟௧ = 𝐶௢௨௧ ∗ 0.1 + 𝑜𝑓𝑓𝑠𝑒𝑡௧௜௟௧ (29) 𝑜𝑓𝑓𝑠𝑒𝑡௣௔௡ = ൜ 𝑜𝑓𝑓𝑠𝑒𝑡௣௔௡, 𝐶௢௨௧ ≥ 0−𝑜𝑓𝑓𝑠𝑒𝑡௣௔௡, 𝐶௢௨௧ < 0 (30)

𝑜𝑓𝑓𝑠𝑒𝑡௧௜௟௧ = ൜ 𝑜𝑓𝑓𝑠𝑒𝑡௧௜௟௧, 𝐶௢௨௧ ≥ 0−𝑜𝑓𝑓𝑠𝑒𝑡௧௜௟௧, 𝐶௢௨௧ < 0 (31)

The pan and tilt speed of the camera are provided by the manufacturer of the camera (0 to 64).
Equations (28) and (29) of PID controller will give the speed in limited range. If the speed is too low,
the target object could go out of the frame of the camera by the time the camera moves. On the other
hand, if the speed is too high, the camera could lose track of the target object and drive over it.

Depending on the size of the ROI, we decided on whether to zoom in or out. We applied
Equations (32) and (33), where we set 𝑟𝑎𝑡𝑒௕௜௚ = 1.1 and 𝑟𝑎𝑡𝑒௦௠௔௟௟ = 0.9, and 𝑤௜௡௜௧௜௔௟ and ℎ௜௡௜௧௜௔௟
were, respectively, the width and height of our human target object. ൜𝑢𝑝𝑝𝑒𝑟௪ = 𝑤௜௡௜௧௜௔௟ ∗ 𝑟𝑎𝑡𝑒௕௜௚𝑢𝑝𝑝𝑒𝑟௛ = ℎ௜௡௜௧௜௔௟ ∗ 𝑟𝑎𝑡𝑒௕௜௚ (32)

Figure 15. Camera control flow chart.

Our PID controller defines its variables as follows:

• Setting value u(t): Central image position.
• Error signal e(t): Difference between the target position and central position.
• Measured value y(t): Tracking system’s estimate of target position.
• Output signal Cout: Output value used to control pan/tilt direction and speed.

To control the vertical and horizontal position difference, two independent PID controllers were
used. Equations (28) and (29) used Cout to estimate the pan/tilt speed, where we defined o f f setpan and
o f f settilt values.

Speedpan = Cout ∗ 0.1 + o f f setpan (28)

Big Data Cogn. Comput. 2020, 4, 27 15 of 23

Speedtilt = Cout ∗ 0.1 + o f f settilt (29)

o f f setpan =

{
o f f setpan, Cout ≥ 0
−o f f setpan, Cout < 0

(30)

o f f settilt =

{
o f f settilt, Cout ≥ 0
−o f f settilt, Cout < 0

(31)

The pan and tilt speed of the camera are provided by the manufacturer of the camera (0 to 64).
Equations (28) and (29) of PID controller will give the speed in limited range. If the speed is too low,
the target object could go out of the frame of the camera by the time the camera moves. On the other
hand, if the speed is too high, the camera could lose track of the target object and drive over it.

Depending on the size of the ROI, we decided on whether to zoom in or out. We applied
Equations (32) and (33), where we set ratebig = 1.1 and ratesmall = 0.9, and winitial and hinitial were,
respectively, the width and height of our human target object.{

upperw = winitial ∗ ratebig
upperh = hinitial ∗ ratebig

(32)

{
lowerw = winitial ∗ ratesmall
lowerh = hinitial ∗ ratesmall

(33)

Upon zoom-in/out, we updated the size of the target model by an aspect of ratiow/h, which
Equation (34) defines.

ratiow/h =
winitial
hinitial

(34)

We updated the target model size with Equations (35) and (36) in the case of a zoom-in operation
or Equations (37) and (38) in the case of a zoom-out operation. Later, we used these renewed states to
update the variables from Equations (32) and (33).

wnew =

{
lowerw ∗ ratebig , i f w < lowerw

lowerh ∗ ratebig ∗ ratiow/h , i f h < lowerh
(35)

hnew =

 lowerw ∗ ratebig ∗
1

ratiow/h
, i f w < lowerw

lowerh ∗ ratebig , i f h < lowerh
(36)

wnew =

{
upperw ∗ ratesmall , i f w > upperw

upperh ∗ ratesmall ∗ ratiow/h , i f h > upperh
(37)

hnew =

 upperw ∗ ratesmall ∗
1

ratiow/h
, i f w > upperw

upperh ∗ ratesmall , i f h > upperh
(38)

4. Experimental Results

The proposed method was implemented on a PC platform with Intel® Core™ i5 CPU 650
at 3.20GHz, 4GB RAM, and developed in Borland C++ Builder 6.0 on Windows 7. To verify the
performance and stability of the system, it was tested under several environments. We tested both
image sequences and video files (AVI uncompressed format) from the active camera, with a resolution
of 720 × 480 pixels.

4.1. Results of Tracking on Video File

To verify the tracking algorithm with the proposed particle filter, we used three video files,
with parameters as follows:

Big Data Cogn. Comput. 2020, 4, 27 16 of 23

• Number of bins in histogram m = 6 ∗ 6 ∗ 6 = 216
• Number of samples N = 30

• State covariance
(
σx, σvx , σy, σvy , σw, σh

)
= (2, 0.5, 2, 0.5, 0.4, 0.8)

Video 1 shows our system’s occlusion handler in operation. Figure 16 shows the tracking system
without the occlusion handler while Figure 17 shows the same track with our occlusion handler
solution. We used the second video to verify the tracking feature. The full occlusion condition happens
in frame 3 of Figures 16 and 17. If the particle filter resamples during the full occlusion condition,
it may resample on incorrect positions as shown in frame 4, and tracking will be lost, as in frames
5 and 6. Meanwhile, when the full occlusion happens in the particle filter with occlusion handle,
the resample step will not be done immediately. Thus, the sample set can keep the widespread range
to track the target after full occlusion. 2. Video 2 is used to verify the tracking feature. Figure 18 shows
a human wearing a black jacket while walking near a black chair, which is used as an object with
similar color features as the human. In this case, the target human has a similar color feature with the
black chair, but the proposed system can still track the target human. Video 3 is used to verify the
tracking performance in a complex situation. Figure 19 shows the target human is partially occluded
with a chair. The target human performs sitting-down and standing-up activities, and later, another
human object partially occludes our original target, which continues to be the target, hence showing
the system not losing track of the target.
Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 17 of 24

Figure 16. Tracking without occlusion handler.

Figure 17. Tracking with occlusion handler.

Figure 18. Object has similar color features as the target.

Figure 16. Tracking without occlusion handler.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 17 of 24

Figure 16. Tracking without occlusion handler.

Figure 17. Tracking with occlusion handler.

Figure 18. Object has similar color features as the target.

Figure 17. Tracking with occlusion handler.

Big Data Cogn. Comput. 2020, 4, 27 17 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 17 of 24

Figure 16. Tracking without occlusion handler.

Figure 17. Tracking with occlusion handler.

Figure 18. Object has similar color features as the target. Figure 18. Object has similar color features as the target.Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 18 of 24

Figure 19. Tracking system performing in a complex situation.

4.2. Results of Tracking On Active Camera Output

We used an active camera set up in our lab, with an environment complex enough to verify the
system operation. We set the particle filter and PTZ parameters as follows:

• Number of bins in histogram m = 6 × 6 × 6 = 216
• Number of samples N = 30
• State covarianceቀ𝜎௫, 𝜎௩ೣ, 𝜎௬, 𝜎௩೤, 𝜎௪, 𝜎௛ቁ = (10,1,10,1,1,2)
• Offsetpan = 12
• Offsettilt = 6
• Proportional constant Kp = 0.9
• Integral constant Kt =0.1
• Derivative constant KD = 0.15
• ratebig = 1.1
• ratesmall = 0.9

Figure 20 shows the tracking system controlling the pan/tilt of the camera. The targeted human
was mostly located in the camera’s FOV. Figure 21 shows the results of the zoom in/out while
tracking. Figure 22 shows the tracking system controlling the pan/tilt/zoom of the camera, with the
targeted human freely walking in the environment. Figures 23 and 24 show our system tracking a
target human with more than one person walking in the same environment. While in the test from
Figure 23 we see the target only walking around, in the test from Figure 24 we see the human target
also performing some more actions, such as crouching and intentionally occluding himself.

(a) (b) (c)

Figure 19. Tracking system performing in a complex situation.

4.2. Results of Tracking on Active Camera Output

We used an active camera set up in our lab, with an environment complex enough to verify the
system operation. We set the particle filter and PTZ parameters as follows:

• Number of bins in histogram m = 6 × 6 × 6 = 216
• Number of samples N = 30

• State covariance
(
σx, σvx , σy, σvy , σw, σh

)
= (10, 1, 10, 1, 1, 2)

• Offsetpan = 12
• Offsettilt = 6
• Proportional constant Kp = 0.9

Big Data Cogn. Comput. 2020, 4, 27 18 of 23

• Integral constant Kt =0.1
• Derivative constant KD = 0.15
• ratebig = 1.1
• ratesmall = 0.9

Figure 20 shows the tracking system controlling the pan/tilt of the camera. The targeted human
was mostly located in the camera’s FOV. Figure 21 shows the results of the zoom in/out while tracking.
Figure 22 shows the tracking system controlling the pan/tilt/zoom of the camera, with the targeted
human freely walking in the environment. Figures 23 and 24 show our system tracking a target human
with more than one person walking in the same environment. While in the test from Figure 23 we see
the target only walking around, in the test from Figure 24 we see the human target also performing
some more actions, such as crouching and intentionally occluding himself.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 18 of 24

Figure 19. Tracking system performing in a complex situation.

4.2. Results of Tracking On Active Camera Output

We used an active camera set up in our lab, with an environment complex enough to verify the
system operation. We set the particle filter and PTZ parameters as follows:

• Number of bins in histogram m = 6 × 6 × 6 = 216
• Number of samples N = 30
• State covarianceቀ𝜎௫, 𝜎௩ೣ, 𝜎௬, 𝜎௩೤, 𝜎௪, 𝜎௛ቁ = (10,1,10,1,1,2)
• Offsetpan = 12
• Offsettilt = 6
• Proportional constant Kp = 0.9
• Integral constant Kt =0.1
• Derivative constant KD = 0.15
• ratebig = 1.1
• ratesmall = 0.9

Figure 20 shows the tracking system controlling the pan/tilt of the camera. The targeted human
was mostly located in the camera’s FOV. Figure 21 shows the results of the zoom in/out while
tracking. Figure 22 shows the tracking system controlling the pan/tilt/zoom of the camera, with the
targeted human freely walking in the environment. Figures 23 and 24 show our system tracking a
target human with more than one person walking in the same environment. While in the test from
Figure 23 we see the target only walking around, in the test from Figure 24 we see the human target
also performing some more actions, such as crouching and intentionally occluding himself.

(a) (b) (c) Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 19 of 24

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 20. Tracking system controlling the pan/tilt of the camera. (a) zoomlayer: 0; (b) zoomlayer: 0; (c)
zoomlayer: 1; (d) zoomlayer: 1; (e) zoomlayer: 1; (f) zoomlayer: 0; (g) zoomlayer: 0; (h) zoomlayer: 1; (i) zoomlayer: 2; (j)
zoomlayer: 1; (k) zoomlayer: 0; (l) zoomlayer: 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 21. Tracking system performing zoom in/out. (a) zoomlayer: 0; (b) zoomlayer: 0; (c) zoomlayer: 1; (d)
zoomlayer: 2; (e) zoomlayer: 1; (f) zoomlayer: 2; (g) zoomlayer: 3; (h) zoomlayer: 2; (i) zoomlayer: 1.

Figure 21 (a) shows the target human has been detected and the ܼ݉݋݋௟௔௬௘௥ is initialized to 0.
The targeted human was walking away or approaching the camera. If there is a zoom-in happening,

Figure 20. Tracking system controlling the pan/tilt of the camera. (a) zoomlayer: 0; (b) zoomlayer: 0;
(c) zoomlayer: 1; (d) zoomlayer: 1; (e) zoomlayer: 1; (f) zoomlayer: 0; (g) zoomlayer: 0; (h) zoomlayer: 1; (i) zoomlayer:
2; (j) zoomlayer: 1; (k) zoomlayer: 0; (l) zoomlayer: 0.

Big Data Cogn. Comput. 2020, 4, 27 19 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 19 of 24

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 20. Tracking system controlling the pan/tilt of the camera. (a) zoomlayer: 0; (b) zoomlayer: 0; (c)
zoomlayer: 1; (d) zoomlayer: 1; (e) zoomlayer: 1; (f) zoomlayer: 0; (g) zoomlayer: 0; (h) zoomlayer: 1; (i) zoomlayer: 2; (j)
zoomlayer: 1; (k) zoomlayer: 0; (l) zoomlayer: 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 21. Tracking system performing zoom in/out. (a) zoomlayer: 0; (b) zoomlayer: 0; (c) zoomlayer: 1; (d)
zoomlayer: 2; (e) zoomlayer: 1; (f) zoomlayer: 2; (g) zoomlayer: 3; (h) zoomlayer: 2; (i) zoomlayer: 1.

Figure 21 (a) shows the target human has been detected and the 𝑍𝑜𝑜𝑚௟௔௬௘௥ is initialized to 0.
The targeted human was walking away or approaching the camera. If there is a zoom-in happening,

Figure 21. Tracking system performing zoom in/out. (a) zoomlayer: 0; (b) zoomlayer: 0; (c) zoomlayer: 1;
(d) zoomlayer: 2; (e) zoomlayer: 1; (f) zoomlayer: 2; (g) zoomlayer: 3; (h) zoomlayer: 2; (i) zoomlayer: 1.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 20 of 24

zoomlayer is added by 1. On the other hand, zoomlayer is subtracted by 1 when zoom-out happens. The
details of zoomlayer is showed in Tables 2 and 3 for Figures 20a–l and 21a–i respectively.

Table 2 Zoom layer varies in Figure 20.

 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 𝒁𝒐𝒐𝒎𝒍𝒂𝒚𝒆𝒓 0 0 1 1 1 0 0 1 2 1 0 0

Table 3. Zoom layer varies in Figure 21.

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 𝑍𝑜𝑜𝑚௟௔௬௘௥ 0 0 1 2 1 2 3 2 1

Figure 22. Tracking system performing PTZ.

Figure 22. Tracking system performing PTZ.

Big Data Cogn. Comput. 2020, 4, 27 20 of 23

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 20 of 24

zoomlayer is added by 1. On the other hand, zoomlayer is subtracted by 1 when zoom-out happens. The
details of zoomlayer is showed in Tables 2 and 3 for Figures 20a–l and 21a–i respectively.

Table 2 Zoom layer varies in Figure 20.

 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 𝒁𝒐𝒐𝒎𝒍𝒂𝒚𝒆𝒓 0 0 1 1 1 0 0 1 2 1 0 0

Table 3. Zoom layer varies in Figure 21.

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 𝑍𝑜𝑜𝑚௟௔௬௘௥ 0 0 1 2 1 2 3 2 1

Figure 22. Tracking system performing PTZ.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 21 of 24

Figure 23. Human tracking with multiple objects.

Figure 24. Human tracking with multiple objects.

The experiment results show that the proposed system can track a moving human target by
particle filter algorithm on an active camera. In addition, the tracking system is able to track the target
human when more than one person is walking in the same environment. Moreover, the zoom-in/out
adjusts the resolution image while tracking the human. There are several contributions in this
research:

Figure 23. Human tracking with multiple objects.

Big Data Cogn. Comput. 2020, 4, x FOR PEER REVIEW 21 of 24

Figure 23. Human tracking with multiple objects.

Figure 24. Human tracking with multiple objects.

The experiment results show that the proposed system can track a moving human target by
particle filter algorithm on an active camera. In addition, the tracking system is able to track the target
human when more than one person is walking in the same environment. Moreover, the zoom-in/out
adjusts the resolution image while tracking the human. There are several contributions in this
research:

Figure 24. Human tracking with multiple objects.

Big Data Cogn. Comput. 2020, 4, 27 21 of 23

Figure 21a shows the target human has been detected and the Zoomlayer is initialized to 0.
The targeted human was walking away or approaching the camera. If there is a zoom-in happening,
zoomlayer is added by 1. On the other hand, zoomlayer is subtracted by 1 when zoom-out happens.
The details of zoomlayer is showed in Tables 2 and 3 for Figures 20a–l and 21a–i respectively.

Table 2. Zoom layer varies in Figure 20.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Zoomlayer 0 0 1 1 1 0 0 1 2 1 0 0

Table 3. Zoom layer varies in Figure 21.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Zoomlayer 0 0 1 2 1 2 3 2 1

The experiment results show that the proposed system can track a moving human target by
particle filter algorithm on an active camera. In addition, the tracking system is able to track the target
human when more than one person is walking in the same environment. Moreover, the zoom-in/out
adjusts the resolution image while tracking the human. There are several contributions in this research:

1. Our system can accurately distinguish human and nonhuman.
2. The weighted resampling can help the particle filter to preserve the samples with high weights.
3. The occlusion handler can solve the temporal full occlusion condition.
4. It can track the human target smoothly by using the PID controller to determine the motion

of camera.

5. Conclusions

In this paper, we proposed a new system that smoothly tracks the human target by camera motion
by means of PID controller. The experimental results demonstrated that the proposed system was
capable of tracking a moving human target using a particle filter on an active camera. It was also able
to precisely differentiate nonhuman and human. In the case when multiple people are walking in
the same environment, the tracking system accurately tracked the human targeted. The resolution
image of the tracked human can be adjusted using zoom in/out. The weighted resampling used in this
paper helps the particle filter to preserve high weight samples. In addition, the temporal full occlusion
condition was solved using occlusion handler.

Author Contributions: Conceptualization, L.C.C., D.L.L. and M.P.; methodology, L.C.C., S.P. and M.P.; software,
D.J. and M.S.M.; validation, M.S.M., A.S., D.J. and C.T.L.; formal analysis, L.C.C., S.P., D.L.L., A.S. and M.P.;
investigation, M.S.M., A.S., D.L.L. and C.T.L.; resources, L.C.C., S.P., M.S.M., D.J. and M.P.; data curation, L.C.C.,
D.J. and A.S.; writing—original draft preparation, L.C.C. and S.P.; writing—review and editing, L.C.C., S.P.,
M.S.M., D.J., D.L.L., A.S., M.P., and C.T.L.; visualization, S.P., M.S.M., D.J. and A.S.; supervision, D.L.L. and C.T.L.;
project administration, D.L.L. and M.P.; funding acquisition, D.L.L., M.P. and C.T.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the Australian Research Council (ARC) under Grant DP180100670
and Grant DP180100656, in part by the U.S. Army Research Laboratory under Agreement W911NF-10-2-0022,
and in part by the Taiwan Ministry of Science and Technology under Grant MOST 106-2218-E-009-027-MY3 and
MOST 108-2221-E-009-120-MY2.

Conflicts of Interest: The authors declare no conflict of interest.

Big Data Cogn. Comput. 2020, 4, 27 22 of 23

References

1. Gillner, W.J. Motion based vehicle detection on motorways. In Proceedings of the Intelligent Vehicles ’95
Symposium (IEEE), Detroit, MI, USA, 25–26 September 1995.

2. Batavia, P.H.; Pomerleau, D.A.; Thorpe, C.E. Overtaking vehicle detection using implicit optical flow.
Comput. Stand. Interfaces 1999, 20, 466. [CrossRef]

3. Zhao, L.; Thorpe, C.E. Stereo-and neural network-based pedestrian detection. IEEE Trans. Intell. Transp. Syst.
2000, 1, 148–154. [CrossRef]

4. Viola, P.; Jones, M.; Snow, D. Detecting Pedestrians Using Patterns of Motion and Appearance. Int. J.
Comput. Vis. 2005, 63, 153–161. [CrossRef]

5. Dimitrijevic, M.; Lepetit, V.; Fua, P. Human body pose detection using Bayesian spatio-temporal templates.
Comput. Vis. Image Underst. 2006, 104, 127–139. [CrossRef]

6. Montabone, S.; Soto, Á. Human detection using a mobile platform and novel features derived from a visual
saliency mechanism. Image Vis. Comput. 2010, 28, 391–402. [CrossRef]

7. Pang, Y.; Yuan, Y.; Li, X.; Pan, J. Efficient HOG human detection. Signal Process. 2011, 91, 773–781. [CrossRef]
8. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Addison-Wesley: New York, NY, USA, 1992.
9. Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London. Ser. B Boil. Sci. 1980, 207, 187–217.

[CrossRef]
10. Li, R.; Tian, T.-P.; Sclaroff, S.; Yang, M.-H. 3D Human Motion Tracking with a Coordinated Mixture of Factor

Analyzers. Int. J. Comput. Vis. 2009, 87, 170–190. [CrossRef]
11. Lopes, N.V.; Couto, P.A.; Jurio, A.; Melo-Pinto, P. Hierarchical fuzzy logic based approach for object tracking.

Knowl. -Based Syst. 2013, 54, 255–268. [CrossRef]
12. Williams, O.; Blake, A.; Cipolla, R. Sparse Bayesian learning for efficient visual tracking. IEEE Trans. Pattern

Anal. Mach. Intell. 2005, 27, 1292–1304. [CrossRef]
13. Collins, R.T.; Liu, Y.; Leordeanu, M. Online selection of discriminative tracking features. IEEE Trans. Pattern

Anal. Mach. Intell. 2005, 27, 1631–1643. [CrossRef] [PubMed]
14. Zhang, W.; Shang, L.; Chan, A.B. A Robust Likelihood Function for 3D Human Pose Tracking. IEEE Trans.

Image Process. 2014, 23, 5374–5389. [CrossRef] [PubMed]
15. Zhao, H.; Xiang, K.; Cao, S.; Wang, X.-Y. Random walks colour histogram modification for human tracking.

IET Comput. Vis. 2016, 10, 842–851. [CrossRef]
16. Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern

recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [CrossRef]
17. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell.

2003, 25, 564–577. [CrossRef]
18. Wang, L.; Yan, H.; Wu, H.-Y.; Pan, C. Forward–Backward Mean-Shift for Visual Tracking With

Local-Background-Weighted Histogram. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1480–1489. [CrossRef]
19. Vojir, T.; Noskova, J.; Matas, J. Robust scale-adaptive mean-shift for tracking. Pattern Recognit. Lett. 2014, 49,

250–258. [CrossRef]
20. Vella, F.; Infantino, I.; Scardino, G. Person identification through entropy oriented mean shift clustering of

human gaze patterns. Multimedia Tools Appl. 2016, 76, 2289–2313. [CrossRef]
21. Liu, J.; Zhong, X. An object tracking method based on Mean Shift algorithm with HSV color space and

texture features. Clust. Comput. 2018, 22, 6079–6090. [CrossRef]
22. Ali, A.; Jalil, A.; Ahmed, J.; Iftikhar, M.A.; Hussain, M. Correlation, Kalman filter and adaptive fast mean shift

based heuristic approach for robust visual tracking. Signal Image Video Process. 2014, 9, 1567–1585. [CrossRef]
23. Jeong, J.; Yoon, T.S.; Park, J.B. Mean shift tracker combined with online learning-based detector and Kalman

filtering for real-time tracking. Expert Syst. Appl. 2017, 79, 194–206. [CrossRef]
24. Bhat, P.G.; Subudhi, B.N.; Veerakumar, T.; Laxmi, V.; Gaur, M.S. Multi-Feature Fusion in Particle Filter

Framework for Visual Tracking. IEEE Sens. J. 2020, 20, 2405–2415. [CrossRef]
25. Nummiaro, K.; Koller-Meier, E.; Van Gool, L. An adaptive color-based particle filter. Image Vis. Comput. 2003,

21, 99–110. [CrossRef]
26. Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE features. In European Conference on Computer Vision; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 214–227.

http://dx.doi.org/10.1016/S0920-5489(99)91018-8
http://dx.doi.org/10.1109/6979.892151
http://dx.doi.org/10.1007/s11263-005-6644-8
http://dx.doi.org/10.1016/j.cviu.2006.07.007
http://dx.doi.org/10.1016/j.imavis.2009.06.006
http://dx.doi.org/10.1016/j.sigpro.2010.08.010
http://dx.doi.org/10.1098/rspb.1980.0020
http://dx.doi.org/10.1007/s11263-009-0283-4
http://dx.doi.org/10.1016/j.knosys.2013.09.014
http://dx.doi.org/10.1109/TPAMI.2005.167
http://dx.doi.org/10.1109/TPAMI.2005.205
http://www.ncbi.nlm.nih.gov/pubmed/16237997
http://dx.doi.org/10.1109/TIP.2014.2364113
http://www.ncbi.nlm.nih.gov/pubmed/25347879
http://dx.doi.org/10.1049/iet-cvi.2015.0371
http://dx.doi.org/10.1109/TIT.1975.1055330
http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org/10.1109/TITS.2013.2263281
http://dx.doi.org/10.1016/j.patrec.2014.03.025
http://dx.doi.org/10.1007/s11042-015-3153-9
http://dx.doi.org/10.1007/s10586-018-1818-7
http://dx.doi.org/10.1007/s11760-014-0612-0
http://dx.doi.org/10.1016/j.eswa.2017.02.043
http://dx.doi.org/10.1109/jsen.2019.2954331
http://dx.doi.org/10.1016/S0262-8856(02)00129-4

Big Data Cogn. Comput. 2020, 4, 27 23 of 23

27. Murray, D.; Basu, A. Motion tracking with an active camera. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16,
449–459. [CrossRef]

28. Karamiani, A.; Farajzadeh, N. Optimal feature points for tracking multiple moving objects in active camera
model. Multimedia Tools Appl. 2015, 75, 10999–11017. [CrossRef]

29. Lisanti, G.; Masi, I.; Pernici, F.; Del Bimbo, A. Continuous localization and mapping of a pan–tilt–zoom
camera for wide area tracking. Mach. Vis. Appl. 2016, 27, 1071–1085. [CrossRef]

30. Mathivanan, A.; Palaniswamy, S. Efficient fuzzy feature matching and optimal feature points for multiple
objects tracking in fixed and active camera models. Multimed. Tools Appl. 2019, 78, 27245–27270. [CrossRef]

31. Fan, J.; Xu, W.; Wu, Y.; Gong, Y. Human tracking using convolutional neural networks. IEEE Trans.
Neural Netw. 2010, 21, 1610–1623. [PubMed]

32. Tyan, V.; Kim, D. Convolutional Neural Network with Particle Filter Approach for Visual Tracking. KSII Trans.
Internet Inf. Syst. 2018, 12, 693–709. [CrossRef]

33. Ren, Z.; Yang, S.; Zou, F.; Yang, F.; Luan, C.; Li, K. A face tracking framework based on convolutional
neural networks and Kalman filter. In Proceedings of the 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017.

34. Angelico, J.; Wardani, K.R.R. Convolutional neural network using kalman filter for human detection and
tracking on RGB-D video CommIT. Commun. Inform. Technol. J. 2018, 12, 105–110.

35. Luo, Y.; Yin, D.; Wang, A.; Wu, W. Pedestrian tracking in surveillance video based on modified CNN.
Multimed. Tools Appl. 2018, 77, 24041–24058. [CrossRef]

36. Xia, Y.; Qu, S.; Goudos, S.; Bai, Y.; Wan, S. Multi-object tracking by mutual supervision of CNN and particle
filter. Pers. Ubiquitous Comput. 2019, 1–10. [CrossRef]

37. Choe, G.; Choe, C.; Wang, T.; So, H.; Nam, C.; Yuan, C. Deep learning with particle filter for person
re-identification. Multimed. Tools Appl. 2018, 78, 6607–6636. [CrossRef]

38. Aslan, M.F.; Durdu, A.; Sabanci, K.; Mutluer, M.A. CNN and HOG based comparison study for complete
occlusion handling in human tracking. Measurment 2020, 158, 107704. [CrossRef]

39. Stauffer, C.; Grimson, W. Adaptive background mixture models for real-time tracking. In Proceedings of the
1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO,
USA, 23–25 June 1999.

40. Salazar, A.; Igual, J.; Safont, G.; Vergara, L.; Vidal, A. Image Applications of Agglomerative Clustering
Using Mixtures of Non-Gaussian Distributions. In Proceedings of the 2015 International Conference on
Computational Science and Computational Intelligence (CSCI), Washington, DC, USA, 7–9 December 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.291452
http://dx.doi.org/10.1007/s11042-015-2823-y
http://dx.doi.org/10.1007/s00138-016-0799-x
http://dx.doi.org/10.1007/s11042-019-07825-5
http://www.ncbi.nlm.nih.gov/pubmed/20805052
http://dx.doi.org/10.3837/tiis.2018.02.009
http://dx.doi.org/10.1007/s11042-018-5728-8
http://dx.doi.org/10.1007/s00779-019-01278-1
http://dx.doi.org/10.1007/s11042-018-6415-5
http://dx.doi.org/10.1016/j.measurement.2020.107704
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed System
	Human Detection
	Human Tracking
	Camera Control

	Experimental Results
	Results of Tracking on Video File
	Results of Tracking on Active Camera Output

	Conclusions
	References

