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Abstract: In the age of information overload, customers are overwhelmed with the number of
products available for sale. Search engines try to overcome this issue by filtering relevant items to the
users’ queries. Traditional search engines rely on the exact match of terms in the query and product
meta-data. Recently, deep learning-based approaches grabbed more attention by outperforming
traditional methods in many circumstances. In this work, we involve the power of embeddings
to solve the challenging task of optimizing product search engines in e-commerce. This work
proposes an e-commerce product search engine based on a similarity metric that works on top of
query and product embeddings. Two pre-trained word embedding models were tested, the first
representing a category of models that generate fixed embeddings and a second representing a newer
category of models that generate context-aware embeddings. Furthermore, a re-ranking step was
performed by incorporating a list of quality indicators that reflects the utility of the product to the
customer as inputs to well-known ranking methods. To prove the reliability of the approach, the
Amazon reviews dataset was used for experimentation. The results demonstrated the effectiveness
of context-aware embeddings in retrieving relevant products and the quality indicators in ranking
high-quality products.

Keywords: deep learning; sentiment analysis; information retrieval; Learning to Rank; e-commerce;
search engines

1. Introduction

In the past decade, e-commerce has changed the way people buy and sell goods.
As one of the most important innovations in trading, e-commerce provides “any-time,
anywhere, any-device” commerce [1]. Several studies revealed that 95% of shoppers
conduct research online before making any purchase [2]. Selling online has become an
essential process for small, medium, and large companies. With the development of this
industry, information overload makes the task of finding relevant items more difficult.
Companies such as AliExpress, eBay, Amazon are among the top e-shopping platforms
today; these companies compete in developing innovative solutions to both improve their
sales and profits and fulfill their clients’ needs. Product search engines are among the
most necessary decision support tools that help customers overcome the huge number
of products on such platforms. E-commerce search is considered a particular area of
information retrieval (IR), and the particularity of e-commerce search functionality comes
from the fact that users are not just searching for products that match their queries, but
are also seeking to find good products. Recent studies showed that the utility of a product
to the customer is a multidimensional modality that is affected by many attributes; for
example, the popularity, price, and durability were shown to reflect the end decision of
customers in online stores [3,4]. Another interesting particularity of the e-shopping search
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is that users’ queries are usually short, not very clear, and can be specified in multiple
languages and from different cultural contexts [5], posing limitations to conventional hard
text-matching approaches.

Later approaches were aware of these issues and tried to overcome them by projecting
products and queries into latent embedding spaces, either by learning them from scratch
using appropriate datasets or by using pre-trained ones. These methods work quite
well, compared to previous word-matching approaches. However, they still have the
limitation of learning embeddings of words without taking into account the context in
which they appear.

To overcome this issue, a new approach is proposed. This matching model benefits
from word embeddings learned from huge corpora and thus is able to efficiently capture
word semantics. To compare the performance of the approach using word embeddings from
the BERT large [6] model that takes into account the context of words, we tested the same
approach using word embeddings learned with FastText [7], which is another embedding
model that was successfully applied for many natural language processing (NLP) tasks,
for instance, semantic similarity and Word Translation [8,9]. Word embeddings are used as
feature representations of products and queries, and a custom similarity measure is used
to extract the most relevant products for a given query.

Consumer-generated data, i.e., reviews, can provide interesting features of the listed
products based on the experience of customers that have already bought the item [10].
Therefore, reviews are among the most critical factors that determine the purchase behavior
of customers. To refine the search result, a recurrent neural network (RNN) model is
proposed. The later model extracts sentiment scores from product reviews. These scores
are then used along with a set of quality indicators as input features to rank the retrieved
products in descending order of utility to the user.

The rest of this paper is structured as follows. Section 2 contains related works. In
Section 3, the proposed solution is described. Experimental results and discussions are
presented in Section 4. Finally, some concluding remarks and future work are given in
Section 5.

2. Related Works

Three lines of research are directly related to this work: product search, distributed
representation of words commonly known as embeddings, and Learning to Rank.

2.1. Product Search

Product search is a fundamental function in many online platforms. In e-commerce,
in particular, product search has been studied in different ways. Conventional query-item
matching methods, such as the classical probabilistic retrieval model BM25 [11] and the
language modeling approach query likelihood model (QL) [12], ignore the order of word
sequences and are based on exact “hard” matches of tokens rather than semantic “soft”
matches. Despite their simplicity, the later methods cannot satisfy users’ e-shopping search
behavior effectively since there is a large vocabulary gap between the product description
and user queries [13].

To alleviate the vocabulary mismatch problem in product search between user queries
and product attributes, newer approaches based on semantic latent space models were
suggested. For example, the paper [13] proposed a product search model that consists
of a latent vector space model that maps queries and products into a hidden semantic
space, then retrieves products based on their similarity with the query in the latent space.
The paper [14] introduced a hierarchical embedding model, which is a state-of-the-art
retrieval model for personalized product search. The latent space retrieval model projects
queries, users, and items into a semantic space and conducts product retrieval according
to the semantic similarity between items and the composition of query and user models.
Later [15] proposed an attentive embedding model that personalizes product search based
on the query characteristics and user purchase histories. The paper [16] proposed a
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TranSearch model that incorporates the visual preference of users as well as their textual
preference for personalized product search. Ref. [17] extracts users’ positive and negative
feedback about product aspects from review data and builds embedding networks that
encode both items and their extracted aspects to improve conversational product search
results. Ref. [18] presented QUARTS, an end-to-end neural model to enhance the ranking
performance in product search by addressing the problem of search engine results that do
not match search query intent.

In most of the presented works, embeddings of words are learned without taking into
consideration the context that they come in. In contrast, we use the BERT [6] model that
was trained on a substantial corpus of data to extract context-aware word embeddings.

2.2. Word Embeddings

Dealing with text is a challenging problem. The one-hot representation of words has
been widely used as the basis of NLP and IR. The critical issue with this representation
is that it does not take into account any semantic relation between words and faces the
data-sparsity problem.

Recently, the word embeddings approach, represented by deep learning, has attracted
extensive attention and was widely used to tackle many challenging natural language
processing tasks, such as text classification, question-answering, and so on. Word em-
beddings are dense vector representations with dimensions usually ranging from 300 to
900, depending on the size of the vocabulary that was trained on. These distributed word
representations are meant to capture lexical semantics in numerical form to handle the
abstract semantic concept of words.

Among the most widely-used methods to learn word embeddings, Word2Vec [19] is
an efficient neural network architecture that can train distributed word representations
from a large corpus. Word2Vec implements two models: CBOW and Skip-gram. The first
one’s training objective is to find word representations that are useful to predict the target
word by its context words, and the later model’s objective is to find representations that
are useful to predict the context words by the target word. Another popular approach
for word representation is Glove [20], which also considers the co-occurrence of words as
additional global information to Word2Vec information captured from the local context
window. FastText [7] is a different word embedding model that comes with the purpose
of handling out-of-vocabulary (OOV) words. FastText represents each word as a bag of
character n-grams; a vector representation is associated with each character n-gram, and
the words are represented as the sum of these representations.

Some words can have different meanings depending on the context they come in. One
of the recent works that can generate different word embeddings based on the context
of words is BERT [6], as opposed to the majority of the previous methods that are based
on language models that are unidirectional, which means that every token is represented
based on its left or right context. BERT was designed with the objective of pretraining deep
bidirectional representations from an unlabeled text by jointly conditioning on both left
and right contexts of all layers. It uses a masked language model (MLM) as a pretraining
objective. The MLM objective enables the representation to fuse the left and the right
context, which allows pretraining a deep bidirectional transformer. The BERT model
achieves state-of-the-art performance on a broad suite of sentence-level tasks such as natural
language inference, and paraphrasing, as well as on token-level tasks, including named
entity recognition and question answering [6]. It is worth mentioning that the success story
of BERT in particular, and transformer-based models, in general, supported the creation
of new variants, for instance, RoBERTa, Albert, DistilBERT, and Q-BERT [21–24], which
aim to overcome some efficiency and performance challenges of BERT [25]. Moreover,
more task specific models also emerged; for instance, Sentence-BERT [26] uses a Siamese
network architecture to fine-tune pre-trained BERT to derive semantically meaningful
sentence embeddings.
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2.3. Learning to Rank for e-Commerce Search

Learning to Rank (LTR) refers to machine learning algorithms that involve learning
effective ranking functions from training data. In LTR, the model is trained in a supervised
manner, using a training dataset. The dataset consists of a set of query-product pairs
represented by a vector of numerical features and their corresponding score labels, which
show the degree of relevance of the product to its corresponding query. In the testing phase,
the learned model assigns a score for each product, then products are ranked in descending
order according to their scores. Liu [27] categorized the different LTR approaches based on
their training objectives into pointwise, pairwise, and listwise. In pointwise, the learned model
predicts a score for each query–product pair without taking into account the preference
of order to the other products. In pairwise, the model learns to preference between each
pair of products concerning individual queries; the ranking problem is thus transformed
into binary classification. Then, the listwise approaches tries to directly optimize a ranking-
metric, which is difficult because such metrics are often non-differentiable with respect to
the model parameters.

The LTR problem has been widely studied in the context of web search, and several
models have been proposed in the machine learning community, including neural networks,
support vector machines, and boosted decision trees based methods. RankNet [28] is one
popular example of a neural LTR model that was an industry choice for many years.
Later listwise models, such as LambdaRank [29] and LambdaMART [30], have gained
more attention, as they attempt to optimize loss functions that are directly related to IR
evaluation measures, such as NDCG. Popular input features for training LTR models
can be categorized into three categories [31]: query-independent (e.g., length of the title),
query-dependent (e.g., TF, BM25 scores), and query-level features (e.g., number of words
in query). Most of the hand-crafted features used for ranking web pages are statistical
text features, while such features can have a remarkable effect in web pages ranking for
product ranking; other signals that reflect the utility of the product for the user rather than
just the text relevance with the query can be more important.

As compared to web ranking, there are not many works about e-commerce product
ranking in the literature. Ref. [32] used an ensemble tree model to predict user clicks by
hand-crafting a variety of ranking features for each item from text data and user behavior
logs. In [33] the authors conducted a synthetic study of applying LTR methods to e-
commerce search, revealing some of its unique challenges, such as the difficulty in defining
the relevance judgment labels. Additionally, Ref. [34] proposed a LETORIF model with a
ranking loss function that optimizes product search engines by maximizing the revenue.
They used two types of features: text relevance features extracted from item attributes, and
revenue features with the price as the main component. Recently, Ref. [35] proposed a
hierarchical deep neural network for ranking products based on online reviews.

In most of the previous works, authors used features similar to those used for ranking
web pages. In our work, we exclude the text-match features from the LTR features, as
our matching model based on semantic embeddings could handle the text match problem
between the query and the product fairly efficiently. Instead, in the LTR step, we use
product quality indicators based on product attributes and user feedback.

3. Methodology

This section gives a detailed explanation of the proposed model for product search,
then presents a set of quality indicators that serve as input to the ranking models.

3.1. Preprocessing Step

As a preprocessing step, the text is tokenized, and stop-words are removed as well
as special characters. For FastText [7], the word tokenizer from the NLTK [36] library
was used, and WordPiece tokenization [37] was used for BERT [6], as it was the same
tokenization method used in the original BERT [6] paper.
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3.2. Product Search Using Similarity Measure

In the proposed product search strategy, products are filtered based on their textual
and semantic similarity to the query.

The title of the product is a rich element that characterizes a product; merchants tend
to put most information, such as brand name, color, and size, in the title. The title of the
product is also one of the strongest signals that determine the relevance of an item listing
to an e-commerce query [38]. The approach of [15,39] is followed in using product titles to
represent products.

First, each product is represented as a vector of the title token embeddings. The
same applies for queries, as each query is represented as a vector of its token embeddings.
Embeddings for both queries and product titles were extracted using BERT for the first
experiment and using FastText for the second experiment. For BERT, following the au-
thors’ recommendation, word embeddings were extracted as the average of the last four
layers of the BERT large model already trained on a large corpus of English Wikipedia
(2500 M words).

Previous studies proposed several approaches to combine word embeddings to form a
sentence embedding as mentioned by [14]. The simplest one is averaging, and an extension
of this is the non-linear projection layer over the average of word embeddings. Another
more complex method is to use an (RNN) with word embeddings as input and take the
final network state as a latent representation of the whole sentence. The first method, i.e.,
taking the mean of word embeddings, does not work well as the sentence (the title of
the product, or query, in our case) becomes longer, while the latter two methods require
finding parameters by training on a separate set. In our work, and due to the specific
nature of e-commerce search in which some words may be more important than others, for
instance, the brand or the color of the product, we propose another approach that does not
combine word embeddings but compares them in the following manner. Given a query,
and a product title vector representations Q = [~eq1 , . . . ,~eqn ], P = [~ep1 , . . . ,~epm ], where ~eq
and~ep are the embedding vectors of size 768 for BERT and 300 for FastText, n and m are
number of tokens in the query and title, respectively. The relevance score for a product P
to a query Q is computed using a similarity function presented in the following formulas:

S(Q, P) =
1
n

n

∑
j=1

m

∑
i=1

max
j

(s(~eqi ,~epj)) (1)

where,

s(~eq,~ep) =
1 + cos

(
~eq,~ep

)
2

; cos
(
~eq,~ep

)
=

~eT
q .~ep

‖~eq‖2‖~ep‖2
(2)

For each query token embedding ~eqj , a similarity measure is computed to all title
embeddings tokens, using the s function, which is a simple modification to the cos similarity
metric by adding 1 and dividing by 2, so that the similarity between the two vectors resides
in the interval [0, 1]. Then, the max operator is applied to capture the most similar tokens.
The summation of all the query tokens is then divided by n to give the final relevance score.

3.3. Product Ranking Using Quality Indicators

In this step, we present a set of indicators that serve as the basis for ranking the
candidate products selected previously, using the semantic relevance score to each query.
The following indicators are inspired by the remarks of [40] that insist on the importance
of product metadata and reviews in the users’ decision.

3.3.1. Reviews Sentiment

In product search, simply returning something relevant to the user’s submitted query
may not lead to the purchasing behavior [41]. For example, a returned relevant product that
has a bad reputation is far from being purchased by the user. Therefore, a sentiment analysis
model is proposed in Figure 1. The model takes as input the embedding representations
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of all review tokens and passes them through a bi-direction LSTM layer [42]. The latter is
composed of two LSTM layers: the first processes the input sequence as is, and the second
processes a time-reversed copy of the same input sequence. This provides additional
context to the network and increases its accuracy. The output of the previous layer is
then averaged in a global average pooling layer before the last dense layer that has a
single neuron with a sigmoid activation function 1/(1 + exp(−x)) to output a sentiment
probability score for the input review. The sentiment score is estimated by the ratings given
by users after rescaling, as it is observed that positive reviews tend to have higher user
ratings and negative reviews tend to have a lower rating.

Figure 1. RNN model architecture for sentiment analysis.

3.3.2. Popularity

Popularity is usually calculated based on the number of sales of an item, compared to
other items; this measure is used for Amazon.com, for example, to determine the best-seller
items in each category. Because products widely purchased have greater probability of
being purchased again, we calculate the number of sales of an item as the number of
reviews a product has since reviews are written only by customers after purchasing an item.
We obtain the popularity indicator by dividing the number of sales of a product by the
maximum number of sales for the products in the corresponding query group, generated
previously using the semantic match model.

3.3.3. Availability of Information

The presence of product attributes (title, description, image, price, brand, etc.) can be
considered a good indicator of the quality of a product. For regular users, a product without
a description or image, for example, will obtain very little attention and the customer will
have a bad impression of both the item and the seller. We denote by I a one-hot vector,
indicating the presence of an attribute by 1, and otherwise by 0. In addition to I, we define
Ip, information for a product I as follows:

Ip =
∑x∈I(1− δx,0)

|I| (3)

where Ip will obtain a value near 1 for products with complete list of attributes, and near
0 for products with an incomplete list. Some attributes may have a higher value for the
customer. Therefore, each component of I is associated a weight value βi.
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3.3.4. Product Price

The price of the product can strongly affect the purchase decision of customers. Given
Cq, the set of products selected by the semantic search model for a query q, we associate

for each product p ∈ Cq a normalized version of its price, taking pi = price(p)
AP(q) where

AP(q) =
∑p∈Cq price(p)

|Cq | as the average price of candidate products associated with query q.

3.3.5. LTR Model

The previous list of features is complemented with complementary information about
the product, namely, the overall rating, brand, number of reviews.

We consider 100 products for each query retrieved, using the product search method
described in Section 3.2. For each query–product pair (q, p), we assign relevance ratings.
We consider the (implicit feedback) product sales rank as the ground truth, as was the case
in the work of [35]. As products with higher sales have lower ranks, a transformation of
the sales ranks of products is used as the ground truth relevance ratings as follows:

r(q, p) =

[
4α.

∣∣∣∣∣ σ(q, p)
maxp∈Pq σ(q, p)

∣∣∣∣∣
]

(4)

where r(q, p) is a discrete value in the scale (0− 4), σ(q, p) is the sales rank of product
p ∈ Pq associated with query q. α is a parameter that controls the ratio of irrelevant labels.
For each query, products with the highest page rank received a label of 4, while products
with a small page rank received 0.

We train and compare three state-of-the-art LTR methods to test the ranking perfor-
mance of the list of features; an overview of each method is described in Section 3.3.6.

3.3.6. Baseline Methods for Product Ranking

We conduct a comparison study with the following baseline methods:

• LambdaRank [29] uses a neural network to minimize the pairwise loss function, which
is similar to RankNet [28]. LambdaRank simply takes the RankNet gradients of the
pairwise loss function and scales them by the change in NDCG performance measure
found by swapping each pair of documents.

• AdaRank [43] is a representative pairwise model. It focuses more on the difficult
queries and aims to directly optimize the performance measure NDCG based on a
boosting approach.

• LambdaMart [30] is a tree boosting algorithm that extends multiple additive regression
trees (MART) by introducing a weighting term for each pair of data, as to how
LambdaRank extends RankNet with the listwise measure.

4. Experiments

This section tackles the experimental settings by presenting the dataset, the query
formulation method that we adopt to test our model, and the baseline methods for product
ranking. Last, we present the evaluation metrics and discuss our experimental results.

4.1. Dataset

Traditionally, the datasets used for search problems are based on search log files, and
the relevancy annotation is obtained via crowdsourcing.

With the lack of publicly available datasets of this kind for e-commerce search, we
adopt Amazon Review Data [44] for experiments. This famous dataset has widely been used
in previous studies [45–48].

The dataset includes millions of products with rich meta-data as well as user reviews.
Products are divided into 29 categories, and each category contains a hierarchy of sub-
categories. The original dataset is too large. For our experiment, we used the five-core
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version, where each user or item has at least five interactions. More specifically, we used
four categories, which are electronics, office products, toys and games, and appliances.

4.1.1. Query Extraction

As reported in [49], a typical scenario of a user searching a product is to use a
producer’s name, a brand, or a set of terms that describe the category of the product
as the query in retrieval. Based on this observation and following the paradigm of
references [13,14,41], we extracted the search queries for each item with three steps. First,
we extract category information for each item from product meta-data. Then, we con-
catenate the terms from a single hierarchy of categories to form a topic string. At last,
stop words and duplicate words are removed from the topic string, and we use it as a
query for the corresponding item. In this way, only the items that belong to the query are
considered relevant to that query. Table 1 showcases some examples of queries extracted
using this approach.

Table 1. Example queries extracted from Amazon product data.

Electronics:
- electronics home audio speakers

- electronics camera photo accessories
Office Products:

- products office school supplies paper
- products office school supplies education crafts

Toys and ames:
- toys games hand puppets

- toys game room mini table games
Appliances:

- appliances dryer parts accessories
- laundry appliances dryers washers

4.1.2. Evaluation Metrics

To evaluate the performance of the product retrieval model, we used the following
retrieval metrics:

• Precision (PR): the fraction of the products retrieved that are relevant to the query.

PR =
|Relp ∩ Retp|
|Retp|

(5)

• Recall (RE): the fraction of the products relevant to the query that are successfully re-
trieved.

RE =
|Relp ∩ Retp|
|Relp|

(6)

• F-score (FS): the weighted harmonic mean of the precision and recall.

FS =
2× PR× RE

PR + RE
(7)

where Retp is the set of retrieved products and Relp is the set of relevant products.
For the ranking model, we report standard information retrieval ranking metrics:

• Normalized discounted cumulative gain (NDCG@k): assesses the overall order of
the ranked elements at truncation level k with a much higher emphasis on the top-
ranked elements. NDCG for a query q is defined as follows:

NDCG@kq =
DCG@kq

max DCG@kq
, and DCG@kq =

k

∑
i=1

2li − 1
log(1 + i)

(8)

where max DCG@kq is the ideal value of DCG@kq, and li is the label of the i-th
listed product.
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• Expected reciprocal rank (ERR@k) [50]: a cascade-based metric that is commonly
used for graded relevance.

ERR@k =
n

∑
r=1

1
r

r−1

∏
i=1

(1− Ri)Rr (9)

where n is the number of items in the ranked list; r is the position of the document;
and R is a mapping from relevance degree to relevance probability.

4.2. Results and Discussions

The performance of the product search model is reported in Table 2 in terms of
precision, recall, and the F1-score at a cut-off K = 100 results. The model was tested on
four datasets, using two types of word embedding representations: FastText and BERT.

Table 2. Comparison of product search model using FastText and BERT embeddings on the Amazon
product search datasets. The best performance is highlighted in bold.

Dataset Embeddings Precision@K Recall@K F1-Score@K

Appliances Bert 0.27 0.25 0.26
FastText 0.22 0.12 0.16

Electronics Bert 0.13 0.22 0.15
FastText 0.12 0.12 0.12

Office Products Bert 0.12 0.22 0.16
FastText 0.13 0.09 0.11

Toys and Games Bert 0.18 0.17 0.17
FastText 0.16 0.09 0.12

It can be seen from Table 2 that the retrieval performance of our product search model
differs from a dataset to another. The performance is best in terms of Precision@K for
the appliances dataset with 0.27, and worst for office products with 0.13, using the model
with BERT embeddings. In terms of Recall@K and F1-Score@K, the appliances dataset
obtained the best results using both the model with BERT and with FastText embeddings.
On the other hand, toys and games achieved the worst Recall@K, and office products the
worst F1-Score@K.

Comparing the results of the model using the different kinds of embeddings, the
version with BERT embeddings generates results higher than FastText ones for all the
datasets, which can be explained by the difference in dataset size on which the two
models were pre-trained on, and most importantly, the capability of BERT in capturing and
generating context-dependent word embeddings.

To analyze the performance of the sentiment analysis model in detecting the sentiment
in reviews, we divided the reviews into two sets 80% for training the model and 20% for
validation. The model was trained for 80 epochs, with a batch size of 512 and the Adam
optimizer with a learning rate of 0.01, and the optimized AUC (Area Under the Curve)
metric, which is commonly used to measure the quality of classification models. These
parameter settings were obtained based on a grid-search approach for different values
of the parameters. Following, we present plots of the loss and ROC (Receiver Operating
Characteristic) curve for both the training and validation sets in Figures 2 and 3.
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Figure 2. Sentiment analysis model performance—training and validation loss plot.

Figure 3. Sentiment Analysis Model Performance—Training and Validation AUC Plot.

In Figures 2 and 3, the loss and AUC metrics are depicted for both training and
validation sets during the training phase of the sentiment analysis model. The loss decreases
significantly during the first 20 epochs, while the accuracy increases remarkably during the
first 10 epochs. The best model performance is achieved and saved at around 50 epochs,
using a callback function. Later, the trained model is used to predict the sentiment polarity
scores for each customer review. Then, averaging the sentiment scores for the reviews, we
obtain the sentiment score of each product.

Table 3 presents a summary of results for applying different state-of-the-art LTR
algorithms on four Amazon datasets. Comparing the models, LambdaMART achieves the
best validation performance in terms of both NDCG@10 and ERR@10 for all the datasets,
followed by AdaRank and RankNet. This observation is consistent with benchmark studies
of [33]. From the datasets side, the electronics dataset achieves the highest validation
NDCG@10 for LambdaRank and AdaRank algorithms, while office products obtains the
highest ERR@10 for LambdaMART. On the other hand, toys and games obtains the lower
performance for AdaRank and LambdaMART, while the worst ERR@10 and NDCG@10 for
LambdaRank are recorded for the textitoffice products dataset.
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Table 3. Performance comparisons of three LTR methods on each Amazon dataset.

Methods
Categories

LambdaRank AdaRank LambdaMART

ERR@10 NDCG@10 ERR@10 NDCG@10 ERR@10 NDCG@10

Appliances 0.476 0.480 0.565 0.560 0.612 0.600
Electronics 0.487 0.490 0.571 0.570 0.627 0.650

Office Products 0.407 0.410 0.479 0.482 0.631 0.644
Toys and Games 0.477 0.489 0.508 0.492 0.603 0.554

5. Conclusions and Future Work

This paper attempted to solve the problem of product search. The process was broken
down into two parts: (1) selecting candidate products for each user query, using a similarity
measure function on top of the product and query embeddings; and (2) ranking candidate
products, using different state-of-the-art LTR models, with quality indicators as input. A
deep neural network model was used to extract sentiment scores from reviews, while the
other quality indicators were calculated using custom formulas. The experiments show that
the similarity function was able to retrieve a good subset of relevant items to the queries
despite the significant similarity between products of the same dataset and the generality
of the extracted queries. Furthermore, the quality features show good performance in
predicting the sales rank of the product, and LambdaMART was the best performing LTR
model. An important issue that could affect the performance of our approach is fake
reviews of product. Therefore, a promising path for feature work will be to incorporate
other user-related features that could reveal the credibility of user interactions, which
should enhance the ranking phase and potentially increase user satisfaction.
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