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Abstract: The paper describes the medical data personalization problem by determining the indi-
vidual characteristics needed to predict the number of days a patient spends in a hospital. The
mathematical problem of patient information analysis is formalized, which will help identify critical
personal characteristics based on conditioned space analysis. The condition space is given in cube
form as a reflection of the functional relationship of the general parameters to the studied object.
The dataset consists of 51 instances, and ten parameters are processed using different clustering and
regression models. Days in hospital is the target variable. A condition space cube is formed based on
clustering analysis and features selection. In this manner, a hierarchical predictor based on clustering
and an ensemble of weak regressors is built. The quality of the developed hierarchical predictor for
Root Mean Squared Error metric is 1.47 times better than the best weak predictor (perceptron with
12 units in a single hidden layer).

Keywords: personalization; health care; medical insurance; prediction task; machine learning;
hierarchical predictor; data analysis

1. Introduction

In the era of active development of digital technologies, personalized medicine is
focused on the processing of heterogeneous medical data, and technology ensures this
process is manageable. Personalization is becoming increasingly important in the scientific
community for many reasons, including the new optimization methods and algorithms that
help reduce medical costs and provide quality and effective health care. This study focuses
on solving the problem of formalization of the studied object and the formalization of its
conditions during treatment or rehabilitation, which will optimize treatment processes,
analyze individual patient characteristics, and forecast possible personalized solutions for
medical care based on patient health assessment.

The problem of personalizing data requires a clear strategy to determine the main
stages of information processing, given in Figure 1.

Determining the individual characteristics needed to solve the personalization prob-
lem depends on the key factors of object identification. For the formalized representation
of the studied object in medicine, the main parameters of its general condition with certain
characteristics are considered.
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Figure 1. The main stages of patients’ information processing.

Patient-oriented data are data that the patient or his/her relatives report to the doctor.
The quality of patient-oriented data depends on the level of literacy regarding the patient’s
health, while the quality of patient data depends on the quality and sensitivity of devices
and technologies involved in the collection process [1]. Patient-oriented data have several
benefits, such as enabling medical data management and supporting double-checking
medical research to reduce the incidence of false-positive and false-negative outcomes.

Data from the study object, coming from various sources, are used for medical and
health purposes. However, data confirming the provision of special medical care are mainly
concentrated and can be collected as part of screening for disease or diagnostic processes.
The results of screening or diagnosis should be checked (principles of double-checking)
by medical examinations. As clarified in [1], a paradigm shift in screening for disease is
essential to, on the one hand, collect sufficient individualized and accurate data for patient-
related medical treatment, with the aim of pre-detection, prevention, and prediction of any
human health problems. On the other hand, a paradigm shift would help reduce medical
costs and reduce morbidity and mortality. In addition, a paradigm shift would pave the
way for personalized medicine.

Personalized medicine (PM) can be considered a continuation of traditional ap-
proaches to understanding and treating diseases with higher accuracy. The patient’s
gene variations profile can guide the choice of drugs or treatment protocols that minimize
harmful side effects or provide more successful results. PM can also indicate a person’s
susceptibility to certain diseases before they manifest, allowing doctors and patients to
develop a monitoring and prevention plan.

In the digital age, personalized medicine must be supported by small and big data
(and should become a data-driven process) and use artificial intelligence technology to
support risk prevention, prediction, and detection, and medical intervention. PM is
becoming increasingly important in the scientific community (medical, paramedic, and
bioengineering) for many reasons, particularly given the greater efficiency and effectiveness
of health care, the reduction in medical costs, and more.

PM requires genetic information, information about predisposition to medical diseases,
and accurate medical data for the patient, excluding meaningless data. PM in its real
form still faces challenges and problems, such as collecting relevant and precise medical
treatment data for better diagnosis and prognosis (disease screening, etc.). According to
Professor Nisar Malek, Medical Director of the Clinic of Gastroenterology, Hepatology and
Infectious Diseases at Tübingen University Hospital and Head of the Tübingen Center for
Personalized Medicine, today’s PM goals are multifaceted. He stated the following in an
interview [2] that he gave in 2018: “Our first goal—and this is also our main goal—is to
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further improve diagnosis and treatment for an individual patient and it is desirable to
integrate this into as many medical specialties as possible. Our second goal is to collect
diagnostic and treatment data and transfer them to databases, making them suitable for
medical and bioinformatics processes for conclusions about a particular patient. Here we
are touching on the realm of big data”.

It is a well-known fact that artificial intelligence gives us many opportunities to un-
derstand and solve many complex problems in the practical and scientific space. Artificial
intelligence can be used in systems designed to detect, track, and predict disease outbreaks.
The better we can track the spread of a virus, the more effectively and quickly we can fight
it [3].

Data mining, including in medicine, is used by several scientists. For example, Bidyuk
P. in [4], for the analysis of data gaps and their filling, proposed to use decision trees,
an EM algorithm, and a regression approach to forecast missing data using forecasting
functions. Similar results were obtained by Sokolova O. [5] and Sina Khanmohammadi [6]
for the associative classification of medical data and by Anthony Costa Constantinou
for a comprehensive survey [7] and analysis of data from intelligent Bayesian models to
support medical decisions. Bayesian networks are also used to reformulate the Quick
Medical Reference (QMR) model in decision theory. However, with the spread of big
data technology, Bayesian networks have been slow. Therefore, in the work of Y. Tang [8],
Bayesian networks’ parallelization was developed. Bayesian networks are also used to
diagnose dementia, Alzheimer’s disease, and mild cognitive impairment. The Bayesian
belief network also is used in [9] and [10] for ageing diseases analysis. However, even under
conditions of parallelism, for multi-parameters, large volume, and dynamic medical data,
Bayesian networks should be used in combination with other machine learning methods
only. An apparatus of artificial neural networks, including the use of fuzzy logic, is also
actively proposed to analyze various medical data. Thus, in the work of Bodyansky E. and
Perova I. [11], a system of rapid medical diagnosis based on auto-associative neuro-fuzzy
memory is proposed. This system is characterized by the simplicity of both the architectural
solution and its software implementation and provides for the diagnosis of patients with
multiple parameters.

The next problem of personalized medical data processing is the imbalance of input
data and small samples of collected data. These factors impose a number of limitations on
applying existing methods and means of computational intelligence to solve such problems.
In the paper [12], an approach for collecting medical data using the Internet of Things and a
proposed ensemble of neural networks to detect unusual human movements is developed.
However, in cases of solving highly specialized problems, which is typical for medicine, the
error of learning in the ensemble of neural networks is much higher than the error of one
network. In addition, the procedures for training the ensemble of neural networks are quite
time- and resource-intensive. Dyvak M. [13] uses interval estimators to assess the object’s
condition in time constraints. In Silva-Ramírez E. L. [14], to solve classification and fill data
gaps, a multilayer perceptron is trained according to different rules and an approach to
multiple counting, which is based on a combination of multilayer perceptron and k-nearest
neighbors. Refs [15,16] present mathematical methods for converting dynamic failure
trees into Markov models, Bayesian models, or simulation models based on the Monte
Carlo method, and they search for methods to reduce model complexity and increase
computational performance. However, it is necessary to develop new heuristic approaches
that reduce the dimensionality of the Markov model and the number of operations required
for their automated analysis and calculation.

The application of Markov models can be used to calculate the parameter of the failure
rate and the probability estimation of the first and second kinds of errors, and the analysis
of the causes of system failure remains a topical issue [17]. Thus, data mining techniques
are used to solve many problems in the processing and analyzing of medical information.
However, there are no comprehensive studies aimed at identifying the patient’s condition
without specifying history. Some issues have been solved towards this end. Still, the
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researchers only partially consider the phenomena of big data and the Internet of Things,
in-depth analysis, and visualization of accumulated data to support decision-making on
personalized treatment [18].

The mathematical apparatus of Petri net and its modifications have been used by
researchers to model processes of different natures. For example, to model real-time plan-
ning processes in a resource-limited environment, Italian scientists in [3] proposed to use
an apparatus of color Petri nets (TCPN) [19], which allowed for analysis of the interde-
pendence, conflicting priorities, and variability of available resources (for example, in
industrial projects). Spanish researchers [20] used the Petri color grid apparatus to improve
the process of modeling, analysis, and semantic validation of complex system events (for
example, processing technology and large data streams in the process of determining the
level of air quality).

This paper describes the problem of data personalization by determining the individ-
ual characteristics needed to solve the personalization problem in the first section. The
next section analyzes patient information to help identify general individual characteristics
and present the mathematical model of the condition space in cube form as a reflection
of the functional relationship of the general state to the studied object. The Results sec-
tion presents a hierarchical predictor for a patient’s number of days in hospital based on
individual parameters. The Discussion section describes the main point of researching
the problem of personalization and solving tasks of estimation correlation between the
individual characteristics, and it evaluates the effectiveness of the chosen prediction model.

The main contributions of this paper are the following:

• The mathematical formalization of the condition space for personalized medical data
is developed. It allows for predicting target variables in a sub-part of the space with
higher predictive accuracy.

• A dataset with information about personal parameters of 51 patients was collected,
which allowed generalization and deeper analysis (https://doi.org/10.6084/m9
.figshare.14865411.v1, accessed on 28 June 2021).

• The hierarchical predictor consists of splitting objects and prediction for each separated
cluster is developed. It produces 1.47 times greater predictive accuracy than the best
weak predictor (perceptron with 12 units in single hidden layer).

• The collected dataset is too small. That is why a specific method based on the hierar-
chical predictor is proposed for small dataset analysis. Five-fold cross-validation is
also used for results validation.

2. Materials and Methods

To objectively evaluate the object under study, it is necessary to build a formal model.
Personalized medical data are considered as a set, the elements of which are the parameters
of the object’s conditions, namely the elements of sets of time-independent characteristics
(Ain) and time-dependent parameters of the object (At).

Using the theory of functional analysis, time-dependent data can be formalized as a
set At, the elements of which are subsets of individual patient’s parameters A1, A2, . . . , An:

At = {A1, A2, . . . , An} (1)

where:
A1 = {a11, a12, . . . , a1m},

A2 = {a21, a22, . . . , a2m},

An = {an1, an2, . . . , anm},

namely:
At = {(a1, a2, . . . , an)|a1 ∈ A1, a2 ∈ A2 . . . , an ∈ An}

https://doi.org/10.6084/m9.figshare.14865411.v1
https://doi.org/10.6084/m9.figshare.14865411.v1
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The system for assessing the condition of the object to optimize the recovery process
is presented as:

Fe = Ain, At, K, ES, S, G, R, (2)

where Fe is a system for estimating the object’s conditions; Ain is a set of time-independent
parameters, characterizing the indicators, obtained from the dynamics changes of the
conditions, calculated based on the medical historical data; K is the set of coefficients,
indicating changes in the performance indicators Ain; S is the set of strategic decisions to
assess the state of the studied object; R represents the production rules for decision-making
for finding optimal conditions; ES is a set of estimated conditions of the studied object,
which depends on the evaluation coefficients; At is the set of characteristics of the studied
object, which change under the influence of time; and G is medical treatment protocol,
which depends on Ain.

At the stage of analysis of the results of researching the patient’s condition, we
can formulate the following property: time-dependent data at a certain point in time
take constant indicators, which determine treatment decisions under the influence of
personalized data.

A patient’s data are characterized by heterogeneity, which complicates the analyzing
process, as there is a need to formalize the patient’s physical condition (FS), taking into
account time-dependent (At) and time-independent data (Ain). To do this, we can represent
the formalization of the patient’s physical condition as a reflection of the physical condition
of the object:

FS(t) : Ain → At (3)

where At = At(t).
Based on the personalized patient data obtained during the process of caring for the

condition and beyond, we can simulate the condition space of the studied object in time as
a Euclidean space, where each pair of elements a1, a2 corresponds to a real number (a1, a2)
that satisfies the conditions (axioms of the scalar product):

(a1, a1) ≥ 0, where (a1, a1) = 0, when a1 = 0

(a1, a2) = (a2, a1)

(a11 + a12a2) = (a11, a2) + (a12, a2)

(λa1, a2) = λ(a1, a2)

Given that the condition space is represented as Euclidean space, it is possible to
develop a mathematical model of condition space as a multidimensional system in the
time domain.

The condition space is presented as a three-dimensional cube, where the x-axis reflects
the time Po(t), the y-axis is the parametric Po(a), and the z-axis is an indicator for individual
cases, i.e., the set of studied objects Ob (Figure 2).

As determined by simultaneous iteration, the functional relationship of the physical
state to the personalized medical data reveals a relationship between the time factor and
the parametric index:

FSo(t) : Po(t)→ Po(a) (4)

FSo(t) = FSo(Ain, At(t)). (5)
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Figure 2. Condition space model of the personalized medical data.

Under the condition of the analysis of a physical condition of the investigated object
at the following time iteration, dependence of time indicators of the investigated object on
previous values of its physical condition is observed.

At+1(t) = FSo(Ain, At(t)) (6)

FSo+1(t) = FSo+1(Ain, At+1(t))

At+n(t) = FSo(Ain, At+n−1(t))

We can represent the physical state of K at each time iteration as a relation in the
functional form of the record:

FSoi ⊆ (Aini, At(t)i1)⊗ (Aini, At(t)i2)⊗ (Aini, At(t)i3) . . .⊗ (Aini, At(t)in). (7)

Figure 3 represents the model of behavior of the physical state of the object.

Figure 3. Model of behavior of the physical state of the object.

FSoi is only an indicator of the physical condition of SO during the process of treatment
or rehabilitation. Due to this, the presented relationship can be analyzed to understand the
behavior of the object under study.
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An important factor is the analysis and application of protocols according to the
identified disease. Treatment protocols offer clear guidelines for practitioners and improve
the quality of clinical decisions, including among those professionals who are accustomed
to outdated medical practice. Another important advantage of clinical protocols is that
they promote coherence in patient care provision at all levels.

Therefore, the condition space of the object should take into account patient’s condi-
tions at the appropriate stage of treatment and the medical protocol:

PFSoi ⊆ FSoi1(t)⊗ FSoi2(t)⊗ . . .⊗ FSoin(t) (8)

PFSoi ⊆ FSoi1(Aini, At(t)i1)⊗ FSoi2(Aini, At(t)i2)⊗ . . .⊗ FSoin(Aini, At(t)in) (9)

PFSo(t) = PFSo(FSo(t))

PFSo+1(t) = PFSo+1(FSo+1(t))

It is a well-known fact that many patients are diagnosed with a number of additional
comorbidities that need to be addressed. Each concomitant disease requires treatment
according to current protocols. Thus, it is necessary to take this into account when modeling
the condition space of a particular object (Figure 4).

RPFSoi ⊆ PFSoi1(t)⊗ PFSoi2(t)⊗ . . .⊗ PFSoim(t) (10)

RPFSoi ⊆ PFSoi1(FSo1(t))⊗ PFSoi2(FSo2(t))⊗ . . .⊗ PFSoim(FSon(t)) (11)

RPFSo(t) = RPFSo(PFSo(t)) (12)

RPFSo+1(t) = RPFSo+1(PFSo+1(t)) (13)

Figure 4. Model of the condition space of the object, taking into account the medical protocol.

Therefore, the state of the studied object GSo is the result of the application of the
operation of intersection between all the state spaces of the studied object at points in time
RPFSo(t), PFSo(t), and FSo(t)(Figure 5):

GSoi = RPFSo(t) ∩ PFSo(t) ∩ FSo(t) (14)
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Figure 5. The condition space based on protocol and related diseases.

3. Results
3.1. The Experimental Setup

The experimental setup is organized as follows:

• Exploratory data analysis (feature normalization and encoding);
• The condition space development;
• Weak predictors selection;
• The hierarchical predictor development;
• Results evaluation.

All calculations were made using RStudio. Data were passed through Data Sampler
for balancing. As results, all instances are taken into account. This means that the collected
dataset is balanced.

3.2. Dataset Description

We processed patients’ personalized data from collected dataset (https://doi.org/
10.6084/m9.figshare.14865411.v1, accessed on 28 June 2021). This dataset was collected in
the surgical department at Lviv Public Hospital (Ukraine). Patients were treated clinically
for postoperative complications in the abdomen.

The dataset consists of the following characteristics:

• Age (time-dependent parameter, performance indicator Ain)—integer;
• Sex (time-independed parameter)—boolean;
• Weight (time-dependent parameter, performance indicator Ain)—categorical;
• Date admission—date;
• Diagnosis (time-independent parameter, used for choosing protocol PFSoi)—categorical;
• Related diagnosis (time-dependent parameter, RPFSoi)—categorical;
• Flora (time-dependent parameter, RPFSoi)—categorical;
• Medicament (time-dependent parameter, depends on PFSoi)—categorical;
• Active substance (time-dependent parameter, depends on PFSoi)—categorical;
• Time in hospital (time-dependent parameter, bed-days in hospital, target parameter)—

integer.

Each instance represents the object GSo.
The task is to predict patients’ number of days in the hospital (the duration of treat-

ment) based on drug treatment and patients’ personal parameters.

https://doi.org/10.6084/m9.figshare.14865411.v1
https://doi.org/10.6084/m9.figshare.14865411.v1
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Dataset consists of 51 instances and 10 parameters. Time in hospital is the target vari-
able. After the preprocessing stage and one-hot-encoding usage for categorical variables,
the dataset consists of 39 features. The missed values are found in the Flora feature and in
the Related diagnosis feature. The missing data imputation procedure is not used, missing
data are empty values.

3.3. Condition Space Development

For the condition space development, the following steps are performed:

• the most significant features selection;
• the splitting of instances into clusters with similar time-dependent and time-independent

parameters.

The initial feature selection is performed by correlation matrix, Boruta, and regression
tree. Hard voting is used for final feature selection.

The correlation between parameters is given in Figure 6.

Figure 6. Correlation matrix.

Significant correlation is absent.
Next, the Boruta algorithm [21] is used (Figure 7).
The Boruta algorithm is a wrapper built around the random forest classification

algorithm. Figure 7 shows “important” in green and “tentative” in yellow. Blue boxplots
correspond to minimal, average, and maximum Z score of a shadow attribute.
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Figure 7. Result of Boruta algorithm.

The important variables are given below.
meanImp decision

diagnos_furunkulois 18.631571 Confirmed
diagnos_gidroenit 9.901603 Confirmed
diagnos_flegmona 8.915723 Confirmed
sub_diabet 7.557117 Confirmed
Next, a regression tree is used for features selection.
The regression tree looks as follows:
1) root 51 1981.92200 10.372550
2) diagnos_furunkulois>=0.5 11 17.63636 4.818182 *

3) diagnos_furunkulois< 0.5 40 1531.60000 11.900000
6) sub_diabet< 0.5 33 1075.87900 11.060610

12) Ceftriaxon< 0.5 26 818.65380 10.115380
24) sex>=0.5 12 602.66670 8.666667 *
25) sex< 0.5 14 169.21430 11.357140 *

13) Ceftriaxon>=0.5 7 147.71430 14.571430 *
7) sub_diabet>=0.5 7 322.85710 15.857140 *

The given above structure of the regression tree allows us to find the significant at-
tributes and values of these attributes. The regression tree is built on the following features:

• diagnos_furunkulois;
• sub_diabet;
• Ceftriaxon;
• sex.

We can see that important variables for both methods are similar.
The hard voting result from the three feature selectors is given below:

• diagnos_furunkulois;
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• sub_diabet;
• diagnos_gidroenit;
• Ceftriaxon;
• diagnos_flegmona;
• sex.

The treatment using the drug Ceftriaxon affects the duration of stay in hospital.
Therefore, only time-dependent parameters are important for predicting days in hospital.

Next, clustering is used. Visual Assessment of (Cluster) Tendency (VAT) is used
for analysis of the possibility for objects splitting. VAT shows poor cluster tendency
(Figure 8). Small dissimilarities are represented by dark shades, and large dissimilarities
are represented by light shades [22].

Figure 8. Results of using VAT.

The Hopkins statistic [23] is equal to 0.71. This means that dataset is not significantly
clusterable. The fuzzy c-mean shows better results (Table 1). All strong instances in each
cluster are marked in bold.

The same result appears with k-means visualization (Figure 9). Clusters are found to
overlap, especially clusters one and three.
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Figure 9. Results of clustering using k-means.

Table 1. Results of fuzzy c-mean.

Memberships 1 2 3 Memberships 1 2 3

[1] 0.89150163 0.06212372 0.046374647 [26] 0.31107702 0.65580938 0.033113601
[2] 0.77796788 0.08358509 0.138447034 [27] 0.15995697 0.81908319 0.020959847
[3] 0.56614562 0.09556459 0.338289785 [28] 0.07447833 0.90846830 0.017053375
[4] 0.86018278 0.10377855 0.036038668 [29] 0.07030249 0.91359600 0.016101503
[5] 0.68808007 0.09069853 0.221221402 [30] 0.05056537 0.94033247 0.009102165
[6] 0.03321895 0.96077754 0.006003508 [31] 0.07316832 0.90999577 0.016835911
[7] 0.30215319 0.66503031 0.032816504 [32] 0.07499601 0.90979079 0.015213199
[8] 0.14472035 0.83639243 0.018887226 [33] 0.05565317 0.93171882 0.012628002
[9] 0.81184745 0.15376100 0.034391551 [34] 0.47632097 0.48284576 0.040833272
[10] 0.04098111 0.95165817 0.007360716 [35] 0.03983866 0.95303284 0.007128497
[11] 0.91012330 0.05144097 0.038435725 [36] 0.90736664 0.06052699 0.032106373
[12] 0.14787502 0.83223998 0.019885001 [37] 0.08044003 0.03597534 0.883584625
[13] 0.64440750 0.31189553 0.043696971 [38] 0.89430505 0.07879489 0.026900054
[14] 0.89189168 0.06118803 0.046920295 [39] 0.55963468 0.09392417 0.346441148
[15] 0.05546220 0.93451510 0.010022703 [40] 0.90959793 0.05132587 0.039076209
[16] 0.04969225 0.94011428 0.010193473 [41] 0.18072499 0.79517059 0.024104421
[17] 0.64818641 0.30658830 0.045225286 [42] 0.78670219 0.08077068 0.132527121
[18] 0.89320798 0.07949093 0.027301094 [43] 0.09733532 0.02808194 0.874582736
[19] 0.06356521 0.92325893 0.013175858 [44] 0.06184420 0.02651523 0.911640561
[20] 0.89348356 0.07989919 0.026617253 [45] 0.48991432 0.46830619 0.041779495
[21] 0.05293598 0.93743658 0.009627441 [46] 0.85462052 0.06862292 0.076756557
[22] 0.08066868 0.90078226 0.018549056 [47] 0.31122970 0.65498914 0.033781156
[23] 0.88746299 0.08389872 0.028638293 [48] 0.88266229 0.08734761 0.029990095
[24] 0.06510596 0.92012271 0.014771324 [49] 0.89659897 0.05858958 0.044811455
[25] 0.07236656 0.91123006 0.016403377 [50] 0.17377591 0.04574853 0.780475563

[51] 0.66297817 0.29258686 0.044434975

Therefore, the dataset is split into three clusters. Objects 7, 13 17, 20, 26, 34, 39, 42, 45,
47, 50, and 51 should be analyzed separately. The membership function value for these
objects is less than 0.65. That is why a strong difference between objects cannot be found.
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3.4. Weak Predictors Selection

At the next stage, we try to build several predictors. Two metrics are taken into
account: Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).
Results are given in Table 2.

Table 2. Results of predictors.

Model RMSE MAPE

Linear regression 6.109753 0.4946111
Regression tree> 4.970676 0.4763212
Random forest (500 trees, mtree-3) 3.560431 0.3753441
knn 3.360431 0.3753441
SVM with radial basis kernel 3.194611 0.2923931
SVM with polynomial kernel 2.262171 0.2670496
ANN with 12 units in single hidden layer 2.0972937 0.2025539

The analysis with selected variables is given below (Table 3).

Table 3. The predictive accuracy for selected features.

Model Based on Selected Variables RMSE MAPE

Linear regression 3.972548 0.3240777
Regression tree 4.970676 0.4763212
Random forest (500 trees, mtree-3) 3.546447 0.2730968
knn 3.346447 0.2730968
SVM with radial basis kernel 3.095239 0.2386008
SVM with polynomial kernel 2.226906 0.1766799
ANN with 12 units in single hidden layer 2.059849 0.1513523

3.5. The Hierarchical Predictor Development

At the next stage, weak predictors are used for each separated cluster. Instances
with unknown cluster are added to the fourth cluster. In total, four clusters are taken
into account.

The hierarchical predictor is built using the following steps:

1. Fuzzy c-means divide objects into four clusters (Table 1);
2. Linear regression random forest, SVM with radial basis kernel, and SVM with poly-

nomial kernel are used for each cluster separately;
3. Average voting on the obtained results is provided. Based on it, average value will

be selected.

The predictive accuracy of the hierarchical predictor is presented in Table 4. The
quality is worse than for the whole dataset.

Table 4. The predictive accuracy of proposed predictors.

Model Based on Whole Variables RMSE MAPE

Hierarchical predictor 1.401258 0.137792

Model Based on Selected Variables RMSE MAPE

Hierarchical predictor 1.401257 0.102961

Hierarchical predictor with repeated K-fold
cross-validation, 5-fold, repeated 3 times 1.401125 0.102753

Repeated K-fold cross-validation is a technique used for small dataset validation.
The advantage of this technique is the ability for parallelization. The result is presented
in Table 4.
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We can see that RMSE for a hierarchical predictor based on the whole dataset is
not much higher than for selected features. On the other hand, the predictive accuracy
for separated clusters is better than for the best weak predictor, artificial neural network
(ANN) with 12 units in single hidden layer. The accuracy of the hierarchical predictor with
repeated K-fold cross-validation is not much higher than the non-cross-validated method.

4. Discussion

The obtained results of researching the offered models for the collected data, in general,
confirm a hypothesis about differences in predictive accuracy for the whole dataset and
condition space built on clustering analysis and feature selection. However, the following
two remarks must be made at once:

• The number of instances in the collected dataset is too small. A given hypothesis
should be proved by a large dataset. We are working on extending the dataset. How-
ever, a similar approach was used in our previous research with other datasets [24,25]
with the same approximate results;

• The authors suggest that the accuracy of the prediction will strongly depend on the
number of empty values.

The hierarchical predictor is 1.01 times better than the best weak predictor (perceptron)
for selected features (Tables 2 and 3). The quality of the developed hierarchical predictor
for RMSE metric is 1.47 times better than the best weak predictor. The regression tree
shows the same result for the whole dataset and selected variables. Linear regression
shows 1.53 times better RMSE metrics for the selected features in comparison with whole
dataset. The rest of the weak predictors show better results on selected features.

Feature selection is not only important for increasing accuracy. The hierarchical
predictor training time for selected features is 1.2 times faster than for the whole dataset.

The proposed method is used for small datasets, and it is similar to [26]. Here, authors
propose to improve RBF-based input-doubling method by introducing additional elements
into the formula for calculating the output signal of the method. We increase the accuracy
by 4% based on both MAE and RMSE compared to the basic method.

5. Conclusions

This paper presents feature selection and prediction of bed-days in hospital using
condition space and developed hierarchical predictors. The dataset of personalized medical
parameters was collected in a public hospital. This dataset is used to predict the number
of days in the hospital. Patients were treated clinically for postoperative complications in
the abdomen. Our study shows a low pairwise correlation between a huge subset of the
parameters listed in the dataset. However, proper feature selection is needed to increase
the quality of a prediction model.

Data preprocessing allows us to increase the quality of analysis. Boruta, regression
tree, and correlation are used for feature selection. The results of the selection are formed
based on hard voting using all feature selectors. Several clustering algorithms are used
for splitting the object into separated clusters. This splitting allows for developing the
condition space based on time-dependent and time-independent data and medical protocol.

A hierarchical predictor based on the combination of clustering results and four weak
predictors for each cluster separately was developed in this paper. Therefore, the proposed
algorithm shows a higher predictive accuracy compared to the best predictor perceptron.

Further research will include developing a hierarchical classifier built on other weak
predictors and ensemble development.
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