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Abstract: In recent years, face detection has achieved considerable attention in the field of computer
vision using traditional machine learning techniques and deep learning techniques. Deep learning is
used to build the most recent and powerful face detection algorithms. However, partial face detection
still remains to achieve remarkable performance. Partial faces are occluded due to hair, hat, glasses,
hands, mobile phones, and side-angle-captured images. Fewer facial features can be identified from
such images. In this paper, we present a deep convolutional neural network face detection method
using the anchor boxes section strategy. We limited the number of anchor boxes and scales and
chose only relevant to the face shape. The proposed model was trained and tested on a popular and
challenging face detection benchmark dataset, i.e., Face Detection Dataset and Benchmark (FDDB),
and can also detect partially covered faces with better accuracy and precision. Extensive experiments
were performed, with evaluation metrics including accuracy, precision, recall, F1 score, inference time,
and FPS. The results show that the proposed model is able to detect the face in the image, including
occluded features, more precisely than other state-of-the-art approaches, achieving 94.8% accuracy
and 98.7% precision on the FDDB dataset at 21 frames per second (FPS).

Keywords: face detection; partial face detection; occluded face detection; deep learning; convolution
neural network; FDDB dataset

1. Introduction

In computer vision, face detection has been a major focus for many years. The main
aim of face detection systems is to locate the face in the image, with its bounding box.
Face detection has been included in the prior work of some important applications such
as face recognition, face analysis, face mask detection, face tracking, and face alignment.
Viola-Jones performed the pioneering face detection work by proposing the haar-cascading,
feature extraction method [1]. Big data and high-performance computing systems have
helped deep learning to achieve remarkable results in many applications, including natural
language processing, manufacturing, computer vision, healthcare, and speech recognition.
Deep convolutional neural network (DCNN)-based methods have proven to be more
effective than conventional methods for object detection. As a result, researchers have
started applying DCNN methods for face detection.
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Face detection approaches based on deep learning can be divided into two groups:
two-stage object detectors and single-stage object detectors. The two-stage object detectors
include Faster R-CNN [2], and single-stage object detectors mainly include YOLO [3] and
SSD [4]. In two-stage object identification systems, region proposals are generated in the
first stage, and then, they are used to recognize the object and to find the coordinates
of the bounding box. Though these models are slower than single-stage models, they
have proven to show better accuracy rates. On the other hand, single-stage anchor-based
techniques [5–7] use regular and dense anchors over a wide range of scales and aspect ratios
to identify faces. In these approaches, face detection with a bounding box is performed in
the single pipeline of the network.

Single-stage face detection models become more difficult to enhance performance,
especially in cases of partial or occluded faces. Detecting faces in real-world images has
many difficulties due to the partial features in occluded faces. Partial features of faces in
images result from some parts of the face being hidden, e.g., with glasses, masks, hair,
scarves, some part of the body, cap, and side angles. Real-life examples of partial faces are
presented in Figure 1.

Figure 1. Examples of partial faces.

Recent DCNN models for face detection uses image pyramid concepts to extract fine-
grained features of faces [8–10]. First, an image pyramid is developed, and then, it passes
to the next layers of the network. The computation cost of this network is high due to the
complex training. Thus, detection speed from the video is reduced. These models were
successful in achieving better results whenever the face was entirely visible. On the other
hand, if the face was partially covered, these models did not show better accuracy, as the
features could not be accurately captured and utilized fully in the network.

To overcome this problem, in this study, we utilized a single-stage deep convolution
neural network for a face detection pipeline with anchor boxes. The initial stages of the
face detection pipeline are convolutional layers with max pooling, to extract features of
faces. Then, these features are passed to the anchor box layer. We used eight anchor boxes
and two scales instead of three for face detection, to reduce the unnecessary anchor boxes,
compared with regular object detection methods. In order to lessen the computational
complexity, and to detect partial faces from images or videos, we employed a special anchor
box selection strategy.

The main contributions of this paper are summarized as follows:

i. We proposed a deep convolutional neural network for partial face detection using the
anchor box selection strategy on the FDDB dataset;

ii. We utilized the class existence probability of anchor proposals to classify the partial
features of faces;



Big Data Cogn. Comput. 2022, 6, 9 3 of 13

iii. We considered eight anchor boxes and two scales to avoid extra computations. Anchor
boxes sizes and scales were chosen from facial subparts and shapes;

iv. The proposed method shows the balance performance between precision and detec-
tion speed;

v. The proposed method examined the FDDB dataset with partial face examples, and
the results were compared with the other state-of-the-art face detection methods.

The paper is organized as follows: Section 2 provides an overview of the related
methods. Section 3 explains the methodology. Extensive experimental analysis is presented
in Section 4. Finally, Section 5 concludes the paper and shows future directions.

2. Related Work

Partial face detection is one of the problems in object detection, as it requires the
location of each part of the face in the image. The face is a biometric human trait that
contains vital information about an individual’s identification. As a result, precise face
detection is the first stage in various applications such as face recognition, face picture
retrieval, facial tracking, and video surveillance. The detected face can be seen with the help
of a bounding box. The face detection must be robust. Faces must be able to be detected
even though they might be using different conditions including different angles, lighting
conditions, makeup, age, having glasses on, hats, etc. Face detection is accomplished using
two approaches: handmade-based face detectors and deep learning-based face detectors.

2.1. Handcrafted Face Detection Methods

Handcrafted face detection techniques were utilized in a wide range of computer
vision applications. Pioneering work in the face detection field is by Viola-Jones. Classical
face detection approaches are effective in real-time performance; however, detections are
not robust in all conditions. Histograms of oriented gradients (HOGs) [11] and local binary
patterns (LBPs) [12] are used as feature extraction methods for face detection and have
shown promising outcomes [13,14].

A taxonomy of face identification methods is presented in [15], in which it was divided
into two primary classes—namely, feature-based and image-based approaches. Feature-
based approaches are applicable when motion and color are present in images or videos and
can provide visual cues to focus attention in situations when the multi-resolution window
cannot be scanned. By contrast, image-based approaches are the most suitable for images
with greyscale. All of these techniques are computationally costly since they depend on
the scanning of multi-resolution windows to locate faces of all sizes. The deformable part
model (DPM) is also a promising face detection method [16]. This approach utilizes the
relationship of deformable facial parts to detect faces. However, face detectors that use
classical machine learning have not shown efficient performance in complex situations.

2.2. Deep-Learning-Based Face Detectors

CNN-based face detectors have attained the highest performance in the field of face
detection using deep learning techniques. It is possible to attain high accuracy and ef-
ficiency concurrently by training a sequence of CNN models using the cascade CNN
approach [17,18]. Yu et al. proposed an intersection-over-union (IoU) loss to decrease
the gap between the IoUs and annotations, improving location accuracy [19]. Hao et al.
focused on the detection of normalized faces by applying a scale proposal stage within
a network to zoom in and out of the input image [20]. Yang et al. scored the facial parts
according to their spatial structure, in order to detect faces in obstructive and uncontrolled
conditions [21]. The decision tree classification approach is used to detect faces in the
LDCF+ system [22]. Hu et al. sought to detect small faces with various scales [23]. Shi et al.
applied a cascade-style structure to detect rotated faces [24]. Spatial attention modules with
specific scales were employed by Song et al. to estimate face locations in images [25]. Many
state-of-the-art face detectors are implemented from generic object detection methods. Face
R-CNN [26], Face R-FCN [27], and FDNet [28] apply two-stage object detection methods
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such as Faster R-CNN and R-FCN [29], with some specific strategies to perform face detec-
tion. Tian et al. proposed an improved feature fusion pyramid with segmentation to detect
hard faces [30]. Wang et al. addressed the RetinaNet [31] using the attention mechanism in
anchor boxes [32]. Zhang et al. combined the features of higher level and lower level to
detect faces in various conditions [33]. However, performance suffered due to aggregation.
Zhang et al. utilized the SRN detector [34], with attention technique and DensNet-121
as the backbone of the proposed model [35]. Small faces were detected by extending the
FPN module with a receptive module in DEFace [36]. Feature hierarchy encoder–decoder
network (FHEDN) is a single-stage detection network and applies context prior features of
faces [37]. Li et al. employed a pure convolutional neural network without anchors boxes
for face detection [38].

3. Methodology

In this section, the proposed methodology is explained. The main aim of the proposed
work was to detect partially covered faces of varying sizes. The proposed network was
developed with a single-stage, end-to-end network. A batch of randomly occluded and
occlusion-free face images from the FDDB dataset was taken as input, and features were
generated, after which were utilized to decode the features of the faces.

3.1. Proposed Work

In our proposed work, we utilized 22 convolution layers and 5 max-pooling layers.
The proposed work is presented in Figure 2. The proposed work pipeline was divided into
two parts—namely, feature extraction layers and object detection. In the feature extraction
pipeline, the features of the input image were extracted using the first 16 convolution layers.
An input image resolution was kept at 608 × 608 pixels for training. In each convolution
layer, 3 × 3 and 1 × 1 kernel sizes were used. Additionally, a 2 × 2 max-pooling layer was
applied at the end of each convolution layer to downsample the image and keep important
features of faces. After each pooling phase, the number of 3 × 3 and 1 × 1 filters was
increased by two.

Figure 2. Proposed face detection pipeline.

In order to detect faces, the remaining six convolution layers were used in the second
part of the proposed work pipeline. The anchor box’s sizes are critical for end-to-end
detection methods. When using general, fixed-sized boxes, anchors are made to detect
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objects of various sizes. However, these general-sized boxes may not necessarily work for
other object detection tasks such as face detection. Bounding boxes of faces are mainly in the
size of square or vertical rectangles. Some partially covered faces were challenging to detect
and distinguish. Thus, creating an anchor box whose sizes closely match the ground truth
is preferable in terms of improving detection accuracy. As a result, a multi-scale anchor
box was used in the proposed work. A 19 × 19 grid was employed on the features of the
input image. We utilized 8 different sizes of anchor boxes, which are depicted in Figure 3
with an example. The sizes of the anchor boxes were (32, 32), (78, 88), (94, 40), (128, 128),
(172, 210), (300, 100), (284, 334), and (512, 512). These anchor boxes were selected based on
the input image resolution size and facial parts, as shown in Figure 4. Our model detected
the smallest face with the size of 32 × 32 because the smallest size of the anchor box was
32 × 32. Generally, faces are in shapes of a square and vertical rectangle; thus, we used two
scales of anchor boxes of 1:1 and 2:1 to reflect square and vertical rectangle shapes. The
1:2 scale was not considered, as the shape of faces cannot be a horizontal rectangle. This is
presented in Figure 5. The number of proposals per grid was calculated from Equation (1).
In our work, eight anchor boxes, two scales, one the class existence probability (Pc), four
bounding box coordinates, and one class were considered, and according to Equation (1),
96 proposals were generated per grid in the final convolution layer. In order to reduce the
unnecessary computation of bounding boxes, the concept of a selected multi-scale anchor
box was introduced. The sizes and scales of the anchor boxes were varied based on the
features and shapes of the faces.

#proposals per grid = (#anchor boxes × #scales) × (Pc + #coordinates + #class) (1)

Figure 3. Samples of eight anchor boxes per grid in 19 × 19 grid of input image.
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Figure 4. Facial parts having important features to predict the face.

Figure 5. Types of anchor boxes scale.

The bounding box of each face object was predicted using regression on each proposal.
An IoU of 0.40 was applied to select the right overlapping bounding box, with the highest
probability from a non-max suppression technique.

3.2. Anchor Box Selection Approach

Anchor boxes were utilized for partial face detection and provided the feature maps
for the final convolution layer. In order to detect partially covered faces, it is not necessary
that all of the anchor boxes contain enough information; nonetheless, the prediction score
for each anchor box was calculated, which resulted in increased execution time (training
and testing). As a result, real-time detection became time consuming and decreased the
frame rate. An effective strategy for selecting anchor boxes was employed to mitigate this
problem. Usually, the important feature information is not present in each anchor box;
thus, such anchor boxes can be avoided for further processing in the pipeline. The strategy
to avoid unnecessary anchor boxes is that the anchor boxes are arranged in descending
order per grid. Then, in the absence of relevant information in a large size anchor box,
the small-sized anchor boxes were ignored within the same grid. Canny edge detection
algorithm [39] was applied to validate the information presented in the given anchor boxes.
At the end of the convolution block, this strategy was used, which resulted in a significant
reduction in both computational and memory expenses.
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Another strategy for partial face detection was applied by using the anchor box class
existing probability (Pc). In our work, the anchor boxes comprised only faces, and features
of faces are depicted in Figure 4. The face is divided into main three parts—upper parts,
middle parts, and lower parts. The upper parts consist of the eyebrows, eyes, and forehead.
The middle parts consist of the nose, left and right cheek, along with eyes, and half of the
forehead. The lower parts primarily consist of the lips and chin. In any of the anchor boxes
in which partial features of the face are present, Pc is higher, compared with other anchor
boxes under occluded conditions. During the detection of partial features of faces, the
difference between the location of the bounding box and anchor box was large, compared
with regular object bounding boxes. Small anchor boxes may ignore certain ground truth
boxes if the distance between them is large. Thus, the IoU threshold was reduced from 0.5
to 0.4, in order to alleviate this problem.

4. Experimental Analysis

In this section, the performance of the proposed work is evaluated with extensive
experiments on the FDDB dataset.

4.1. Dataset

The Face Detection Dataset and Benchmark (FDDB)g [40] comprises annotated faces
and is a subset of the Faces in the Wild dataset, including greyscale and color images.
The FDDB images were obtained from Yahoo! News. This dataset comprises a collection
of 2845 images with 5171 face annotations, with different resolutions. Images from this
dataset contain various challenges, notably, faces with side angles, multiple expressions,
scale, illumination, and occlusion. Samples of the FDDB dataset are depicted in Figure 6.
In the FDDB dataset, faces were annotated in elliptical areas, which were converted into
rectangles or square areas before training the model.

Figure 6. Samples of the FDDB dataset with variations in pose, expression, scale, illumination,
and occlusion.

4.2. Evaluation Matrices

Accuracy, precision, recall, and F1 score were utilized to evaluate the performance of
the proposed work. These evaluation matrices were calculated using true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs). Accuracy, precision,
recall, and F1 score were computed using Equations (2)–(5), respectively. TPs indicate
correct face detection. FNs represent incorrect face detection, such as misidentifying a
background as the face, whereas FPs show that incorrect face detection is the background
of the face.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (2)

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1-Score = (2 × precision × recall)/(precision + recall) (5)

4.3. Experimental Setup

Experiments were performed on the proposed model using a machine with 32 GB
RAM, 2 TB hard disk, Intel core i7 8th generation processor, NVIDIA Titan Xp 12 GB GPU,
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and 64-bit Windows operating system. Experiments were performed using python 3.7
programming language with OpenCV, Keras, and TensorFlow libraries.

4.4. Discussion

In our experiments, we considered an 80:20 training and testing dataset split. The
model was trained for 50 epochs, with 128 batch sizes, 0.0001 initial learning rate, and
0.9 momenta.

Figure 7 shows the performance of the proposed work with state-of-the-art face
detection algorithms [41,42]. We compared our method with other methods in terms of
average precision (AP), which targets the detection of the faces from the FDDB dataset.
As a result, the proposed method outperformed other methods, with 98.7% accuracy. From
this finding, we could confirm that the proposed work is suitable and more accurate to
detect partially covered faces.

Figure 7. Result analysis of proposed work with other state-of-the-art face detectors in terms of AP.

Table 1 shows the result and performance analysis of the proposed work with the
other state-of-the-art object detection methods on various image resolutions. We compared
our method with other single-stage and two-stage object detection approaches mentioned
in the above table, with accuracy, precision, recall, F1 score, and inference time evaluation
matrices. Our method outperformed in accuracy, precision, and F1 score in all resolutions.
However, recall of the proposed method in resolutions of 416 × 416 and 480 × 480 is 91.6%
and 94.8%, which are less, compared with Faster R-CNN (91.8%) and YOLOv4 (95.3%),
respectively. It can also be seen that there is not much difference in recall values. Results
from the table show that the proposed methods maintain the accuracy, precision, and
recall value along with the F1 score. Out of three resolutions, our model achieved the
highest performance in 608 × 608 resolution. We analyzed the inference time on the test
images of the FDDB dataset and executed Nvidia Titan Xp GPU. Results of inference time
show that YOLOv1 attained the minimum inference time in ms. However, our model
also performed well and reported the second-lowest inference time. YOLOv1 is a single-
stage object detection method and has only a 7 × 7 grid size and two anchor boxes per
grid. In contrast, our work has a 19 × 19 grid size and eight anchor boxes. However, we
introduced an anchor selection strategy to reduce the computation time, and this is evident
from the results of inference time, compared with other detection algorithms except for
YOLOv1. Faster R-CNN took the highest inference time because it is a two-stage object
detection algorithm.
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Table 1. Experiment analysis of the proposed work with other object detectors on the FDDB dataset.

Resolution Method Accuracy Precision Recall F1-Score Inference
Time (ms)

416 × 416

Yolov1 71.4 80.2 83.4 81.77 29.41

Yolov2 73.5 84.3 82.5 83.39 32.47

Yolov3 74.8 86.7 85.1 85.89 41.67

Faster RCNN 79.45 90.6 91.8 91.20 55.56

Yolov4 79.6 91.2 88.4 89.78 34.48

Ours 80.4 94.8 91.6 93.17 31.25

480 × 480

Yolov1 76.8 84.8 85.4 85.10 35.71

Yolov2 78.9 88.7 86.2 87.43 40.49

Yolov3 79.8 90.3 88.7 89.49 47.62

Faster RCNN 84.96 94.3 92.2 93.24 83.33

Yolov4 85.3 94.9 95.3 95.10 43.48

Ours 86.7 97.2 94.8 95.99 37.74

608 × 608

Yolov1 80.1 88.9 86.5 87.68 40.00

Yolov2 86.3 90.7 89.8 90.25 50.00

Yolov3 89.4 93.2 91.3 92.24 58.82

Faster RCNN 92.4 97.2 92.3 94.69 111.11

Yolov4 93.7 96.1 95.2 95.65 52.63

Ours 94.8 98.7 97.8 98.25 47.62

Table 2 shows the performance analysis of our method by taking different IoU thresh-
olds. We achieved 98.7% AP at 0.4 IoU. This IoU was selected to detect partial features
of faces. Comparatively, space occupied by faces in images is small in real-life captured
images. When partial features of faces are detected, the distance between the bounding box
and anchor box locations is substantial in comparison with conventional object bounding
boxes. If the distance between two small anchor boxes is large, they may ignore certain
ground truth boxes. Thus the performance of the proposed work outperformed by accu-
rately detecting fully visible faces as well as partially visible faces. Detection results can be
seen in Figure 8.

Table 2. Proposed work performance (AP) at different IoU thresholds on the FDDB dataset.

IoU 0.4 0.5 0.6

Ours 98.7 98.1 95.4

Figure 8 presents the detection results of the proposed method on the FDDB dataset in
the first row (a); our samples in the second row (b); samples of the MAFA dataset [43] in the
last row (c). The images presented in Figure 1 were fed into the model, and the detection
results are shown in the second row of Figure 8. These sample images of the second row
and samples from the MAFA dataset were tested to show the robustness of the proposed
method. These samples were provided neither during the training nor testing phases of
the model, but rather from other distributions. Detection results of Figure 8 also illustrate
that the model is able to detect the face in various conditions including different poses,
occlusion due to mask, scarf, hands, mobile phone, and blurred faces.

We assessed the real-time computational speed of the proposed network trained on
the FDDB dataset on an NVIDIA Titan Xp with 12 GB GPU. We analyzed the running
speed of our method with other state-of-the-art object detection methods, and the results
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are presented in Figure 9. We utilized a real-time video from a web camera as an input to
evaluate the real-time performance and compared the proposed model with other detection
approaches. It can be seen that our method obtained the second-highest frame per second
(FPS) on all resolutions, due to the anchor boxes selection strategy. YOLOv1 achieved the
highest FPS due to less computation, and Faster R-CNN attained the lowest FPS because of
the two stages of the network.

Figure 8. Face detection results of the proposed method.

Figure 9. Comparative analysis of FPS of proposed method with existing DCNN detection approaches.

5. Conclusions

In this paper, a single-stage, deep convolution neural network-based face detection
method was addressed for detecting partial faces with different occlusions. We applied
an anchor box selection strategy to reduce the computation time. Furthermore, we also



Big Data Cogn. Comput. 2022, 6, 9 11 of 13

utilized class existence probability to identify parts of faces from small-sized anchor boxes.
Additionally, we investigated the effect of implementation factors such as IoU on detection
performance. Finally, we compared the average precision (AP) of the proposed work
with other face detection algorithms using the FDDB dataset. Our network was also
assessed with existing object detection models considering the FDDB dataset with different
resolutions. The experimental findings show that our model exhibited impressive results,
with 98.7% precision, and had a better inference speed. The proposed model was also
evaluated on video and attained 21 FPS, 26.5 FPS, and 32 FPS on 608 × 608, 480 × 480, and
416 × 416 resolutions, respectively.

Our proposed method shows a balance between accuracy and speed. In future work,
this model can be utilized as a base to detect faces for various applications in real life for
which face detection is the first phase such as security monitoring, face recognition, face
mask detection, forensic investigations, attendance monitoring, and face tracking.
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