
Citation: Győrödi, C.A.;

Dumşe-Burescu, D.V.; Zmaranda,

D.R.; Győrödi, R.Ş. A Comparative

Study of MongoDB and

Document-Based MySQL for Big

Data Application Data Management.

Big Data Cogn. Comput. 2022, 6, 49.

https://doi.org/10.3390/

bdcc6020049

Academic Editors: S. Ejaz Ahmed,

Shuangge Steven Ma and Peter

X.K. Song

Received: 29 March 2022

Accepted: 3 May 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

A Comparative Study of MongoDB and Document-Based
MySQL for Big Data Application Data Management
Cornelia A. Győrödi * , Diana V. Dumşe-Burescu, Doina R. Zmaranda and Robert Ş. Győrödi

Department of Computers and Information Technology, University of Oradea, 410087 Oradea, Romania;
burescu.diana@gmail.com (D.V.D.-B.); dzmaranda@uoradea.ro (D.R.Z.); rgyorodi@uoradea.ro (R.Ş.G.)
* Correspondence: cgyorodi@uoradea.ro

Abstract: In the context of the heavy demands of Big Data, software developers have also begun
to consider NoSQL data storage solutions. One of the important criteria when choosing a NoSQL
database for an application is its performance in terms of speed of data accessing and processing,
including response times to the most important CRUD operations (CREATE, READ, UPDATE,
DELETE). In this paper, the behavior of two of the major document-based NoSQL databases, Mon-
goDB and document-based MySQL, was analyzed in terms of the complexity and performance of
CRUD operations, especially in query operations. The main objective of the paper is to make a
comparative analysis of the impact that each specific database has on application performance when
realizing CRUD requests. To perform this analysis, a case-study application was developed using
the two document-based MongoDB and MySQL databases, which aim to model and streamline the
activity of service providers that use a lot of data. The results obtained demonstrate the performance
of both databases for different volumes of data; based on these, a detailed analysis and several
conclusions were presented to support a decision for choosing an appropriate solution that could be
used in a big-data application.

Keywords: NoSQL; Big Data applications; document-based MySQL; MongoDB; CRUD operations

1. Introduction

Currently, an explosion of data to be stored has been observed to originate from
social media, cloud computing services, and Internet of Things (IoT). The term, “Internet
of Things” actually refers to the combination of three distinct ideas: a large number of
“smart” objects, all connected to the Internet, with applications and services using the data
from these objects to create interactions [1]. Nowadays, IoT applications can be made to
be very complex by using interdisciplinary approaches and integrating several emerging
technologies such as human–computer interactions, machine learning, pattern recognition,
and ubiquitous computing [2]. Additionally, several approaches and environments for
conducting out analytics on clouds for Big Data applications have appeared in recent
years [3].

The widespread deployment of IoT drives the high growth of data, both in quantity
and category, thus leading to a need for the development of Big Data applications. The large
volume of data from IoT has three characteristics that conform to the Big Data paradigm:
(i) Abundant terminals that generate a large volume of data; (ii) the data generated from
IoT is usually semi-structured or unstructured; (iii) the data of IoT is only useful when it is
analyzed [4].

As the volume of data has increased exponentially and applications must handle
millions of users simultaneously and process a huge volume of unstructured and complex
data sets, a relational database model has serious limitations when it has to handle that
huge volume of data. These limitations have led to the development of non-relational
databases, also commonly known as NoSQL (Not Only SQL) [5]. This huge number

Big Data Cogn. Comput. 2022, 6, 49. https://doi.org/10.3390/bdcc6020049 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6020049
https://doi.org/10.3390/bdcc6020049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-7815-4355
https://orcid.org/0000-0002-3344-5714
https://orcid.org/0000-0002-7027-5750
https://doi.org/10.3390/bdcc6020049
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6020049?type=check_update&version=1

Big Data Cogn. Comput. 2022, 6, 49 2 of 19

of unstructured and complex data sets, typically indicated with the term Big Data, are
characterized by a large volume, velocity, and variety, and cannot be managed efficiently
by using relational databases, due to their static structure [6]. For this reason, software
developers have also begun to consider NoSQL data storage solutions. In today’s context
of Big Data, the developments in NoSQL databases have achieved the right infrastructure
which can very much be well-adapted to support the heavy demands of Big Data [7].

NoSQL databases are extensively useful when they are needed to access and analyze
huge amounts of unstructured data or data that are stored remotely on multiple virtual
servers [8]. A NoSQL database does not store information in the traditional relational
format [9]. NoSQL databases are not built on tables and, in some cases, they do not
fully satisfy the properties of atomicity, consistency, isolation, and durability (ACID) [10].
A feature that is common to almost all NoSQL databases is that they handle individual
items, which are identified by unique keys [11]. Additionally, their structures are flexible,
in the sense that schemas are often relaxed or free schemas. A classification that is based
on different data models has been proposed in [6,8], it groups NoSQL databases into four
major families, each based on a different data model: Key–value-stores databases (Redis,
Riak, Amazon’s DynamoDB, and Project Voldemort), column-oriented databases (HBase
and Cassandra), document-based databases (MongoDB, CouchDB, and the document-
based MySQL), and graph databases (Neo4j, OrientDB and Allegro Graph). From the
several NoSQL databases that we have today, this paper focuses on document-based model
databases, choosing two well-known NoSQL databases, MongoDB and document-based
MySQL, and analyzing their behavior in terms of the performance of CRUD operations.

To perform performance analysis, a server application has been developed and pre-
sented in this paper. The application serves as a backend for streamlining the activity of
small service providers, using the two document-based MongoDB and MySQL data-bases,
with an emphasis on how to use query operations through which the CRUD operations are
performed and tested, the analysis being performed on the response times of these for a
data volume of up to 100,000 items.

The paper is organized as follows: The first section contains a short introduction
emphasizing the motivation of the paper, followed by Section 2, which gives a short
overview of the two databases features, followed by Section 3, which reviews the related
work. The structure of the databases, methods, and the testing architecture used in this
work is described in Section 4. The experimental results and their analysis on the two
databases in an application that uses large amounts of data are presented in Section 5.
Discussions and the analysis of the obtained results are made in Section 6, followed by
some conclusions in Section 7.

2. Overview of MongoDB and the Document-Based MySQL

MongoDB is the most popular type of NoSQL database, with a continuous and secure
rise in popularity since its launch [12]. It is a cross-platform, open-source NoSQL database
that is document-based (which is written in C++), completely schema-free, and manages
JSON-style documents [8]. Improvements to each version, and its flexible structure, which
can change quite often during its development, provides automatic scaling with high
performance and availability. The document-based MySQL is not so popular yet, with
MySQL providing a solution for non-relational databases only since 2018, starting with
version 8.0 [10], which has several similarities but also several differences regarding the
model approach to MongoDB, as shown in Table 1.

Big Data Cogn. Comput. 2022, 6, 49 3 of 19

Table 1. Comparison of the characteristics between MongoDB and document-based MySQL.

MongoDB Document-Based MySQL

Data model
BSON objects [8]—key–value documents, each document

identified via a unique identifier, offer predefined methods for all
relational MySQL commands.

BSON objects [8]—key–value documents, each
document identified via a unique identifier,
does not require defining a fixed structure

during document creation [13,14].

Query
model

Queries are expressed as JSON objects and are sent by the
database driver using the “find” method [15]; more complex

queries could be expressed using a Map Reduce operation for
batch processing of data and aggregation operations [8]. The user
specifies the map and reduces functions in JavaScript, and they
are executed on the server side [15]. The results of the operation

are possible to store in a temporary collection that is
automatically removed after the client receives the results, or they
can be stored in a permanent collection, so that they are always

available. MongoDB has introduced the $lookup operator in
version 3.2. that performs Left Outer Join (called left join)

operations with two or more collections [9].

Document-based MySQL allows developers,
through the X Dev API, to work with relational

tables and JSON document collections [13].
The X DEV API provides an easy-to-use API

for performing CRUD operations, being
optimized and extensible for performing these

operations. In the case of more complex
operations, knowledge of relational MySQL is

very helpful for writing queries in
document-based MySQL, because certain

search or edit methods take as a parameter part
of the query from relational MySQL; more
precisely, the conditions, the part after the

“where” clause.

Replication
model

Provides Master–Slave replication and replica sets, where data is
asynchronously replicated between servers [8]. A replica set

contains several data-bearing nodes and optionally, one arbiter
node. Of the data-bearing nodes, one and only one member is
deemed the primary node, while the other nodes are deemed

secondary nodes [15]. Replica sets provide a high performance
for replication with automated failure handling, while sharded
clusters make it possible to divide large data sets over different
machines that are transparent to the users [13]. MongoDB users
combine replica sets and sharded clusters to provide high levels

of redundancy in data sets that are transparent for
applications [8].

Provides multi-document transaction support
and full ACID compliance for schema-less

JSON documents having a high availability by
using all the advantages of MySQL Group

Replication and the InnoDB Cluster to
scale-out applications [13,14]. Documents are

replicated across all members of the
high-availability group, and transactions are

committed in sync across masters. Any source
server can take over from another source

server if one fails, without downtime [13].

The structure of both databases is especially suitable for flexible applications whose
structure is not static from the beginning, and it is expected that there will be many changes
along the way. When it comes to large volumes of data—in the order of millions, even if
thousands of queries per second are allowed in any type of database, the way in which they
manage operations and the optimizations that come with the package define their efficiency,
both being optimized to operate upon a large volume of data. However, in MongoDB,
access is based on the roles defined for each user, and in document-based MySQL, access is
achieved by defining a username and password, benefiting from all of the security features
available in MySQL. Both databases are available and free of charge, and can be used to
develop individual or small projects at no extra cost. In the case of large applications,
monthly or annual subscriptions appear for MongoDB, which involve a cost of several
thousand dollars [16]. For document-based MySQL, this is not specified.

In terms of security, both databases provide security mechanisms. Document-based
MySQL is a relatively new database, but it benefits from all the security mechanism features
offered by MySQL: encryption, audit, authentication, and firewalls; in addition, MongoDB
adds role-based authentication, encryption, and TLS/SSL configuration for clients.

3. Related Work

There are many studies that have been conducted to compare different relational
databases with NoSQL databases in terms of the implementation language, replication,
transactions, and scalability. The authors provide in [8] an overview of the different NoSQL
databases, in terms of the data model, query model, replication model, and consistency
model, without testing the CRUD operations performed upon them. In [17], the authors
outlined the differences between the MySQL relational database and MongoDB, a NoSQL

Big Data Cogn. Comput. 2022, 6, 49 4 of 19

database, through their integration in an online platform and then through various opera-
tions being performed in parallel by many users. The advantage of using the MongoDB
database compared to relational MySQL was highlighted by performed tests, conclud-
ing that the query times of the MongoDB database were much lower than those of the
relational MySQL.

The authors present in [18] a comparative analysis between the NoSQL databases, such
as HBase, MongoDB, BigTable, and SimpleDB, and relational databases such as MySQL,
highlighting their limits in implementing a real application by performing some tests on
the databases, analyzing both simple and more complex queries. In [19,20], the Open
Archival Information System (OAIS) was presented, which exploits the NoSQL column-
oriented Database (DB) Cassandra. As a result of the tests performed, they noticed that
in an undistributed infrastructure, Cassandra does not perform very well compared to
MySQL. Additionally, in [21], the authors propose a framework that aims at analyzing
semi-structured data applications using the MongoDB database. The proposed frame-
work focuses on the key aspects needed for semi-structured data analytics in terms of
data collection, data parsing, and data prediction. In the paper [22], the authors focused
mainly on comparing the execution speed of writes/insert and update/read operations
upon different benchmark workloads for seven NoSQL database engines such as Redis,
Memcached, Voldemort, OrientDB, MongoDB, HBase, and Cassandra.

In [23], the Cassandra and MongoDB database systems were described, presenting
a comparative study of both systems by performing the tests on various workloads. The
study involved testing the operations—reading and writing, through progressive increases
in client numbers to perform the operations, in order to compare the two solutions in terms
of performance.

In [24], the authors performed a comparative analysis of the performance of three non-
relational databases, Redis, MongoDB, and Cassandra, by utilizing the YCSB (Yahoo Cloud
Service Benchmark) [24] tool. The purpose of the analysis was to evaluate the performance
of the three non-relational databases when primarily performing inserts, updates, scans,
and reads using the YCSB tool by creating and running six workloads. YCSB (Yahoo Cloud
Service Benchmark Client) [25] is a tool that is available under an open-source license, and it
allows for the benchmarking and comparison of multiple systems by creating “workloads”.

In [26], an analysis of the state of the security of the most popular open-source
databases, representing both the relational and NoSQL databases, is described, and includes
MongoDB and MySQL. From a security point of view, both these databases need to be
properly configured so as to significantly reduce the risks of data exposure and intrusion.

Between MongoDB and MySQL, several comparisons exist in the literature, most of
them focusing on a comparison with relational MySQL, and not with document-based
MySQL; for example, in [27], a login system project developed using Python programming
language was used to analyze the performance of MongoDB and relational MySQL, based
on the data-fetching speed from databases. This paper performed an analysis of the two
databases to decide which type of database was more suitable for a login-based system. The
paper presented in [28] presents information on the upsides of the NoSQL databases over
the relational databases during the investigation of Big Data, by making a performance
comparison of various queries and commands in the MongoDB and relational MySQL.
Additionally, the concepts of NoSQL and the relational databases, together with their
limitations, were presented in [29]. Consequently, despite the fact that MongoDB has been
approached in many scientific papers, to our knowledge, at the time of writing this paper,
no paper has focused directly on comparing it with the document-based MySQL.

4. Method and Testing Architecture

For each database considered, an application was created in Java using IntelliJ IDEA
Community Edition (4 February 2020), which aims to develop a server for the processing
and storage of data on the frontend. When creating the testing architecture setup, it was
considered that it is very important to test the types of databases that exactly fit the criteria

Big Data Cogn. Comput. 2022, 6, 49 5 of 19

that are imposed in an application that is similar to the one to be developed, and not just by
using their tools; such as for MongoDB, the MongoDB web interface, or the Mongo shell,
because there are differences, both in how to use them and with regard to the response
times, which if tested directly may seem easy and fast, but in practice itself are found to be
slower or more difficult to achieve.

The two applications are identical in terms of structure, with both containing the
objects that we need and a service class for each object, annotated with @Service. In addition
to these classes, each application contains a class within which there is a cron (a process by
which a method can be called automatically and repeatedly at a range set by us, taking as a
parameter a string that is composed of six digits separated by a space to represent every
second, minute, hour, day, month, and year to run in. To replace any second, minute, hour,
day, month, or year, “*” is denoted, and for example, the timeline would read “@Scheduled
(cron = “0 */2 * * * * “)”), and from this, the tested commands are repeatedly called, to
determine how the response times and the database communication evolve. The path taken
by each method called is the same; it sends the executed command to the database that
parses and executes it, giving back to the server an answer to the executed command, as
can be seen in Figure 1. Because there are exceptions to any method, parsing and server
communication exceptions can occur, so each method call is contained in a try {} catch {},
ensuring that the application can run without stopping at the first exception.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 5 of 20

been approached in many scientific papers, to our knowledge, at the time of writing this

paper, no paper has focused directly on comparing it with the document-based MySQL.

4. Method and Testing Architecture

For each database considered, an application was created in Java using IntelliJ IDEA

Community Edition (4 February 2020), which aims to develop a server for the processing

and storage of data on the frontend. When creating the testing architecture setup, it was

considered that it is very important to test the types of databases that exactly fit the criteria

that are imposed in an application that is similar to the one to be developed, and not just

by using their tools; such as for MongoDB, the MongoDB web interface, or the Mongo

shell, because there are differences, both in how to use them and with regard to the re-

sponse times, which if tested directly may seem easy and fast, but in practice itself are

found to be slower or more difficult to achieve.

The two applications are identical in terms of structure, with both containing the ob-

jects that we need and a service class for each object, annotated with @Service. In addition

to these classes, each application contains a class within which there is a cron (a process

by which a method can be called automatically and repeatedly at a range set by us, taking

as a parameter a string that is composed of six digits separated by a space to represent

every second, minute, hour, day, month, and year to run in. To replace any second, mi-

nute, hour, day, month, or year, “*” is denoted, and for example, the timeline would read

“@Scheduled (cron = “0 * / 2 * * * * “)”), and from this, the tested commands are repeatedly

called, to determine how the response times and the database communication evolve. The

path taken by each method called is the same; it sends the executed command to the da-

tabase that parses and executes it, giving back to the server an answer to the executed

command, as can be seen in Figure 1. Because there are exceptions to any method, parsing

and server communication exceptions can occur, so each method call is contained in a try

{} catch {}, ensuring that the application can run without stopping at the first exception.

Figure 1. Application flow. Figure 1. Application flow.

Big Data Cogn. Comput. 2022, 6, 49 6 of 19

Since they are just method calls, without any logic for manipulating or modifying
these documents, it was not necessary to create a service class for each object; by creating
them from the beginning and by dividing the methods according to the resulting objects,
or by it being modified and deleted, the application can be developed in an easier and safer
way, as it was created with a clear structure from the beginning.

The document structure used is based on the independence of documents approach,
where each document is independent, and where documents can be added or deleted
without the existing documents being affected in any way; in this manner, the data is
duplicated, with the stored data volume being much larger, but also much easier to handle.

The types of documents used are as follows:

1. User document—stores user information, as can be seen in Figure 2a. Since the user is
the main entity in the application, both the services and the clients are linked to this
entity. With each service being associated with a user, the document contains data
about the user that is also present in the user document and the fields of the service
entity as an embedded object (and the same for the client). These fields that define
the user entity are the same everywhere, in order to provide independence. In this
way, these documents can be used independently. Each document type has its own
collection, corresponding to a table in relational MySQL; therefore, they are stored
in different collections and the difference in terms of structure involves whether the
embedded object is either a service or a client with the corresponding fields.

2. Appointment document—stores information about the main object, i.e., the user, with
the scheduling details being embedded in an object in the user, as can be seen in
Figure 2b. This embedded object, the appointment, in turn contains two objects in
addition to the other details, a list of customers and a list of services with all their
information.

3. Service document—as each document is independent, the service document must
contain all of the information about the user because it is the main entity, and the
service entity appears as an embedded document that contains all the necessary fields,
as shown in Figure 2c.

4. Customer type document—as shown is Figure 2d, customer information (client)
appears as an object that is embedded in the user object, because the user is the main
entity and each document must contain this information to be independent.

In this way, each type of document is independent, with all of the information nec-
essary to display the details of customers, services, or appointments being stored in
each document.

This type of application can be used as a server for a mobile or web scheduling
application, where the user represents the service provider, the client entity represents the
user’s customers, the services provided are stored in services, and the user’s schedules
are stored in an appointment. This is applied to a number of 100,000 entities, in order
to highlight the implementation of the backend application, as well as the differences in
response, in the case of the read-only CRUD operations, where the creation of complex
queries is highlighted. The application can be scaled to a higher level by developing new
features such as online booking, payments, and reports, with an overview of how the
databases work, and the response times that are already present.

Big Data Cogn. Comput. 2022, 6, 49 7 of 19
Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 7 of 20

(a) (b)

(c) (d)

Figure 2. Application’s document structure: (a) User document; (b) Appointment document; (c) Ser-

vice document; (d) Customer document.

In this way, each type of document is independent, with all of the information nec-

essary to display the details of customers, services, or appointments being stored in each

document.

This type of application can be used as a server for a mobile or web scheduling ap-

plication, where the user represents the service provider, the client entity represents the

user’s customers, the services provided are stored in services, and the user’s schedules are

stored in an appointment. This is applied to a number of 100,000 entities, in order to high-

light the implementation of the backend application, as well as the differences in response,

in the case of the read-only CRUD operations, where the creation of complex queries is

highlighted. The application can be scaled to a higher level by developing new features

such as online booking, payments, and reports, with an overview of how the databases

work, and the response times that are already present.

Figure 2. Application’s document structure: (a) User document; (b) Appointment document; (c) Ser-
vice document; (d) Customer document.

5. Performance Tests

Performance test operations were performed on a number of items (up to 100,000).
The data used was randomly generated using a for iteration, and accepting only certain
fields to have as diverse data as possible:

for (int a = 1; a <= 1000; a++) {
Date createdAt = DateUtils.addDays(new Date(), -a);
String userEmail = a + “@gmail.com”;
boolean deleted = a % 2 == 0;
// generate items
}

In this sense, the createdAt, deleted, and email fields were generated using the value of
the variable from the for iteration, so that there are no two users with the same email address,
which is otherwise impossible. The creation of database connections for each application
is shown in Table 2. The connection was made in the main class of the application, and

Big Data Cogn. Comput. 2022, 6, 49 8 of 19

with applications being run locally on localhost, to which a port on which to run had been
associated. A collection with a suggestive name was created for each item, depending on
what it stored. For each of the main operations, insert, select, update, and delete, one or
more specific relevant operations were created in order to run the tests.

Table 2. Creating the connections.

Operations for Creating the Connections

MongoDB

MongoClient mongoClient = new MongoClient(“localhost”, 27017);
MongoDatabase database = mongoClient.getDatabase(“application”);
database.createCollection(“user”);
database.createCollection(“client”);
database.createCollection(“service”);
database.createCollection(“appointment”);

Document-based
MySQL

SessionFactory sFact = new SessionFactory ();
Session session = sFact.getSession

(“mysqlx://name:password@localhost:33060”);
Schema schema = session.createSchema (“application”, true);
Collection userCollection = schema.createCollection(“user”, true);
Collection clientCollection = schema.createCollection(“client”, true);
Collection serviceCollection = schema.createCollection(“service”, true);
Collection appointmentCollection

= schema.createCollection(“appointment”, true);

All the tests presented were further conducted on a computer with the following
configuration: Windows 10 Home 64-bit, Intel Core processor i7-1065G7 CPU @1.50GHz,
16 GB RAM, and a 512 GB SSD being used for document-based MySQL version 8.0.23 and
for MongoDB version 4.4.

5.1. Insert Operation

The insertion of a service was performed as shown in Table 3.

Table 3. Insert operations.

MongoDB Insert Operation

public void insert(MongoCollection<Document> collection) {
Document document = new Document();
Service service = new Service(1, false, “Makeup”, 100, 60);
document.put(“userId”, 1); document.put(“name”, “Ioana”);
document.put(“createdAt”, new Date());
document.put(“email”, “ioana@gmail.com”); document.put(“password”, “password”);
document.put(“deleted”, false); document.put(“service”, service);
collection.insertOne(document);
}
// and from cron it is called
serviceEntityService.insert(serviceCollection);

Document-based MySQL Insert operation

public void insert(Collection collection) {
Service service = new Service(1, false, “Makeup”, 100, 60);
User user = new User(1, false, new Date(), “Ioana”, “ioana@gmail.com”, “password”, service);
try {collection.add(new ObjectMapper().writeValueAsString(user)).execute();}
catch (JsonProcessingException e) {
System.out.println(“Failed to insert service with id “ + service.getServiceId());
}
}

Big Data Cogn. Comput. 2022, 6, 49 9 of 19

For both databases, the insertion mode was similar, using the predefined insert()
method. When using MongoDB, for the insertion of multiple documents at the same time,
there is the default method of insertMany() in document-based MySQL using the same
method that takes a list of DbDoc as a parameter. The insertOne() method in MongoDB
takes a document object as a parameter, which is why it is created as a Map, with each
field being added as a key–value. If a single document is inserted into the document-based
MySQL, the insert() method can take several types as a parameter, including a string in
which the object is in the format of a JSON, which is easier to insert than via building a
DbDoc object.

The execution times are approximate, as shown in Figure 3, for both a small number of
elements and a large number of elements, with the increase being minor. The times remain
small because there is no validation, neither on the structure nor on the inserted data, with
both databases having predefined insertion methods optimized in this respect.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 9 of 20

document.put(“email”, “ioana@gmail.com”); document.put(“password”, “password”);

document.put(“deleted”, false); document.put(“service”, service);

collection.insertOne(document);

}

// and from cron it is called

serviceEntityService.insert(serviceCollection);

Document-based MySQL Insert operation

public void insert(Collection collection) {

Service service = new Service(1, false, “Makeup”, 100, 60);

User user = new User(1, false, new Date(), “Ioana”, “ioana@gmail.com”, “password”, service);

try {collection.add(new ObjectMapper().writeValueAsString(user)).execute();}

catch (JsonProcessingException e) {

System.out.println(“Failed to insert service with id “ + service.getServiceId());

}

}

For both databases, the insertion mode was similar, using the predefined insert()

method. When using MongoDB, for the insertion of multiple documents at the same time,

there is the default method of insertMany() in document-based MySQL using the same

method that takes a list of DbDoc as a parameter. The insertOne() method in MongoDB

takes a document object as a parameter, which is why it is created as a Map, with each

field being added as a key–value. If a single document is inserted into the document-based

MySQL, the insert() method can take several types as a parameter, including a string in

which the object is in the format of a JSON, which is easier to insert than via building a

DbDoc object.

The execution times are approximate, as shown in Figure 3, for both a small number

of elements and a large number of elements, with the increase being minor. The times

remain small because there is no validation, neither on the structure nor on the inserted

data, with both databases having predefined insertion methods optimized in this respect.

Figure 3. Execution times for the insert operation.

5.2. Update Operation

When using MongoDB, there are different methods for modifying one or more items,

as well as inserting them. The first parameter of the method is a BSON, through which the

elements to be modified are obtained, functioning as a filter, and the second is also a BSON

with the field that changes, and a new value, as described in Table 4. The modification of

the field in document-based MySQL is very close to that of MongoDB, but here are two

consecutive methods, the first being modify(), which by its parameter filters the documents

with respect to the given condition or conditions, and the second being set(), which has

Figure 3. Execution times for the insert operation.

5.2. Update Operation

When using MongoDB, there are different methods for modifying one or more items,
as well as inserting them. The first parameter of the method is a BSON, through which the
elements to be modified are obtained, functioning as a filter, and the second is also a BSON
with the field that changes, and a new value, as described in Table 4. The modification of
the field in document-based MySQL is very close to that of MongoDB, but here are two
consecutive methods, the first being modify(), which by its parameter filters the documents
with respect to the given condition or conditions, and the second being set(), which has the
same parameters as the second Bson of the updateMany() method in MongodB; for their
execution, the execute() method is called at the end.

Table 4. Update operations.

MongoDB Update Operation

public void updateEmailByUserId(MongoCollection<Document> collection, int userId) {
collection.updateMany(new BasicDBObject(“userId”, userId),
new BasicDBObject(“client.email”, ““));
}
// and from cron it is called
clientService.updateEmailByUserId(clientCollection, 100);

Document-based MySQL Update operation

public void updateEmailByUserId(Collection collection, int userId) {
collection.modify(“userId = “ + userId).set(“client.email”, ““).execute();
}
// and from cron it is called
clientService.updateEmailByUserId(clientCollection, 100);

Big Data Cogn. Comput. 2022, 6, 49 10 of 19

There may be parsing and connection exceptions, and it is advisable to catch them.
The change (update) of the email field for all of the customers of a user is performed as
shown in Table 4.

In the case of both of the NoSQL databases, the update is performed by predefined
methods, having behind them some optimizations that are specially made to be as fast as
possible, with their execution times being very close for both a small number and a larger
number of elements, as shown in Figure 4.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 10 of 20

the same parameters as the second Bson of the updateMany() method in MongodB; for

their execution, the execute() method is called at the end.

There may be parsing and connection exceptions, and it is advisable to catch them.

The change (update) of the email field for all of the customers of a user is performed as

shown in Table 4.

Table 4. Update operations.

MongoDB Update Operation

public void updateEmailByUserId(MongoCollection<Document> collection, int userId) {

collection.updateMany(new BasicDBObject(“userId”, userId),

new BasicDBObject(“client.email”, ““));

}

// and from cron it is called

clientService.updateEmailByUserId(clientCollection, 100);

Document-based MySQL Update operation

public void updateEmailByUserId(Collection collection, int userId) {

collection.modify(“userId = “ + userId).set(“client.email”, ““).execute();

}

// and from cron it is called

clientService.updateEmailByUserId(clientCollection, 100);

In the case of both of the NoSQL databases, the update is performed by predefined

methods, having behind them some optimizations that are specially made to be as fast as

possible, with their execution times being very close for both a small number and a larger

number of elements, as shown in Figure 4.

Figure 4. Execution times for the update operation.

5.3. Select Operation

For the select operation, several types of selections were made and tested, from sim-

ple to complex, in order to better highlight the differences between the databases regard-

ing their response times and how to use them.

5.3.1. Simple Select Operation

The selection of a user based on email is conducted as presented in Table 5. The

search for a user with a specific email address is performed using the predefined find()

method, which, when using MongoDB, takes as the parameter a BSON with the searched

email, representing the searched value and the field name, i.e., the key, and when using

Figure 4. Execution times for the update operation.

5.3. Select Operation

For the select operation, several types of selections were made and tested, from simple
to complex, in order to better highlight the differences between the databases regarding
their response times and how to use them.

5.3.1. Simple Select Operation

The selection of a user based on email is conducted as presented in Table 5. The
search for a user with a specific email address is performed using the predefined find()
method, which, when using MongoDB, takes as the parameter a BSON with the searched
email, representing the searched value and the field name, i.e., the key, and when using
document-based MySQL, it takes a string in which the search condition is specified, as can
be seen in Table 5.

Table 5. Simple select operations.

MongoDB Simple Select Operation

public FindIterable<Document> getByEmail(MongoCollection<Document> collection,
String email) { return collection.find(new BasicDBObject(“email”, email)); }
// and from cron it is called
userService.getByEmail(userCollection, “ioana@gmail.com”);

Document-based MySQL Simple Select operation

public DbDoc getByEmail(Collection collection, String email) {
return collection.find(“email = ‘“ + email + “‘“).execute().fetchOne();
}
// and from cron it is called
userService.getByEmail(userCollection, “ioana@gmail.com”);

It can be seen from Figure 5 that both the NoSQL databases have very short execution
times, both in the case of a small number of elements and when their number increases
using predefined methods that are specially created for the search function.

Big Data Cogn. Comput. 2022, 6, 49 11 of 19

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 11 of 20

document-based MySQL, it takes a string in which the search condition is specified, as

can be seen in Table 5.

Table 5. Simple select operations.

MongoDB Simple Select Operation

public FindIterable<Document> getByEmail(MongoCollection<Document> collection,

String email) { return collection.find(new BasicDBObject(“email”, email)); }

// and from cron it is called

userService.getByEmail(userCollection, “ioana@gmail.com”);

Document-based MySQL Simple Select operation

public DbDoc getByEmail(Collection collection, String email) {

return collection.find(“email = ‘“ + email + “‘“).execute().fetchOne();

}

// and from cron it is called

userService.getByEmail(userCollection, “ioana@gmail.com”);

It can be seen from Figure 5 that both the NoSQL databases have very short execution

times, both in the case of a small number of elements and when their number increases

using predefined methods that are specially created for the search function.

Figure 5. Execution times for the simple select operation.

5.3.2. Select Using a Single Join Operation

The selection in Table 6 shows a method for selecting the number of appointments

for each user, as well as their email address, excluding users and soft-deleted appoint-

ments.

Table 6. Select using a single join operation.

MongoDB Select Using a Single Join Operation

public MongoCursor<Document> getAppointmentsForEachUser

 (MongoCollection<Document> collection) {

Bson matchCondition = match(and(eq(“deleted”, false), eq(“appointment.deleted”, false)));

Bson groupCondition = group(“userId”, first(“userId”, “$userId”));

Bson projection = project(fields(include(“userId”), fields(include(“email”),

 count(“appointment.start”), excludeId()));

return collection.aggregate(asList(matchCondition, groupCondition, projection)).iterator();

}

// and from cron it is called

appointmentService.getAppointmentsForEachUser(appointmentCollection);

Figure 5. Execution times for the simple select operation.

5.3.2. Select Using a Single Join Operation

The selection in Table 6 shows a method for selecting the number of appointments for
each user, as well as their email address, excluding users and soft-deleted appointments.

Table 6. Select using a single join operation.

MongoDB Select Using a Single Join Operation

public MongoCursor<Document> getAppointmentsForEachUser
(MongoCollection<Document> collection) {

Bson matchCondition = match(and(eq(“deleted”, false), eq(“appointment.deleted”, false)));
Bson groupCondition = group(“userId”, first(“userId”, “$userId”));
Bson projection = project(fields(include(“userId”), fields(include(“email”),

count(“appointment.start”), excludeId()));
return collection.aggregate(asList(matchCondition, groupCondition, projection)).iterator();
}
// and from cron it is called
appointmentService.getAppointmentsForEachUser(appointmentCollection);

Document-based MySQL Select using a single join operation

public DocResult getAppointmentsForEachUser(Collection collection) {
return collection.find(“deleted = false and appointment.deleted = false”)

.fields(“userId as userId”, “email as userEmail”,
“count(appointment.start) as appointments”).groupBy(“userId”).execute();

}
// and from cron it is called
appointmentService.getAppointmentsForEachUser(appointmentCollection);

Selecting the number of appointments for each user for the MongoDB database is
much more complex than for the other database. This selection consists of three parts: item
filtering conditions, item grouping, and retrieving only certain fields from documents. Each
part is created as a BSON using keyword-named methods that indicate their functionality.

Filtering conditions are created as parameters of the and() method inside the match()
method, a mechanism by which all past conditions are linked to and are similar to relational
MySQL. The match() method, whose name also suggests its function, checks that the values
in the documents match those that are given as parameters. The eq() method with the two
parameters, the field name and the searched value, filters all documents that have the value
in the given field that are equal to the searched one. The BSON that is required for grouping
documents is created using the group() method, which takes as a parameter the field on
which the grouping is based, requiring the exact name of the field and its expression. This
can take as parameters one or more comma-separated fields.

The last part, the selection of only certain fields, is performed using the projection()
method, which takes several parameters, depending on what is selected. To select a field,

Big Data Cogn. Comput. 2022, 6, 49 12 of 19

the fields() method was used, inside which the name of the field to be included was passed.
To select the number of appointments, the count() method was used, which is functionally
identical to the relational MySQL method, finally excluding the document ID. The desired
result was achieved by using these three conditions together via the aggregate method()
where the conditions are listed. The document-based MySQL result was divided into
predefined methods for each function in the query: find() contains the filter condition,
fields() select only the desired fields, and the “group by method” groups the documents
obtained based on the field received as a parameter.

As can be seen from Figure 6, the execution times are very close for both a small
number of elements and a larger number of elements, with the search mode being similar,
by predefined methods. In the case of the MongoDB database, in addition to calling the
method, it is also necessary to create the three parameters, which in MySQL differ from the
previous selection only by the data to be selected and their grouping.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 12 of 20

Document-based MySQL Select using a single join operation

public DocResult getAppointmentsForEachUser(Collection collection) {

return collection.find(“deleted = false and appointment.deleted = false”)

 .fields(“userId as userId”, “email as userEmail”,

 “count(appointment.start) as appointments”).groupBy(“userId”).execute();

}

// and from cron it is called

appointmentService.getAppointmentsForEachUser(appointmentCollection);

Selecting the number of appointments for each user for the MongoDB database is

much more complex than for the other database. This selection consists of three parts: item

filtering conditions, item grouping, and retrieving only certain fields from documents.

Each part is created as a BSON using keyword-named methods that indicate their func-

tionality.

Filtering conditions are created as parameters of the and() method inside the match()

method, a mechanism by which all past conditions are linked to and are similar to rela-

tional MySQL. The match() method, whose name also suggests its function, checks that the

values in the documents match those that are given as parameters. The eq() method with

the two parameters, the field name and the searched value, filters all documents that have

the value in the given field that are equal to the searched one. The BSON that is required

for grouping documents is created using the group() method, which takes as a parameter

the field on which the grouping is based, requiring the exact name of the field and its

expression. This can take as parameters one or more comma-separated fields.

The last part, the selection of only certain fields, is performed using the projection()

method, which takes several parameters, depending on what is selected. To select a field,

the fields() method was used, inside which the name of the field to be included was passed.

To select the number of appointments, the count() method was used, which is functionally

identical to the relational MySQL method, finally excluding the document ID. The desired

result was achieved by using these three conditions together via the aggregate method()

where the conditions are listed. The document-based MySQL result was divided into pre-

defined methods for each function in the query: find() contains the filter condition, fields()

select only the desired fields, and the “group by method” groups the documents obtained

based on the field received as a parameter.

As can be seen from Figure 6, the execution times are very close for both a small

number of elements and a larger number of elements, with the search mode being similar,

by predefined methods. In the case of the MongoDB database, in addition to calling the

method, it is also necessary to create the three parameters, which in MySQL differ from

the previous selection only by the data to be selected and their grouping.

Figure 6. Execution times for select using a single join operation.
Figure 6. Execution times for select using a single join operation.

5.3.3. Select Using Two Joins Operations

The selection of only the client entity that has an appointment created in the last month
and that has a start greater than a certain date is presented in Table 7.

Table 7. Selection using two joins operations.

MongoDB SELECT Using Two Joins Operation

public FindIterable<Document>
getClientsForAppointmentsNewerThan(MongoCollection<Document> collection,
Date minCreatedAt, Date minAppointmentStart) {
Bson matchCondition = match(and(gt(“createdAt”, minCreatedAt),
gt(“appointment.start”, minAppointmentStart)));
Bson fields= project(fields(include(“clients”), excludeId()));
return collection.find(matchCondition).projection(fields); }
// and from cron it is called
clientService.getClientsForAppointmentsNewerThan(appointmentCollection,
new Date(1620468000000L), new Date(1621072800000L));

Document-based MySQL SELECT using two joins operation

public List<JsonValue> getClientsForAppointmentsNewerThan (Collection collection,
Date minCreatedAt, Date minAppointmentStart) {
return collection.find(“createdAt > “ + minCreatedAt + “and appointment.start > “ +
minAppointmentStart).execute().fetchAll().stream()
.map(dbDoc -> dbDoc.get(“clients”)).collect(Collectors.toList());
}
// and from cron it is called
clientService.getClientsForAppointmentsNewerThan(appointmentCollection,
new Date(1620468000000L), new Date(1621072800000L));

Big Data Cogn. Comput. 2022, 6, 49 13 of 19

This selection involves two filtering conditions and the selection of only a certain
field. The two Date() parameters through which the items are filtered are sent as a cron
parameter. When using the MongoDB database, the selection is made using two BSONs,
one for filtering the items and one for selecting only the clients field in each document. The
first BSON has the two data as a parameter, with both contained in the gt() method that
means “greater than”; it filters only the documents whose createdAt and appointment.start,
are higher than the date sent as a parameter, and the second BSON extracts only the client’s
field out of these.

For the document-based MySQL, the select was based on the find() method, which
performs filtering based on the given condition as a parameter, and on the map() method
by which only the desired field is selected, with the outcome being that they are collected
as a list.

As can be seen from Figure 7, the response times are close, regardless of the volume of
data, and slightly longer than the previous selection due to new filtering conditions having
emerged. However, the basics are the same methods, which is why they do not differ much
in terms of execution time.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 14 of 20

Figure 7. Execution times for the select with the two joins operation.

5.3.4. Select with Multiple Joins

Often the most important queries involve selecting only certain fields and not entire

entities. Table 8 involves selecting only certain details about the newly created appoint-

ments more than once, and excluding soft-deleted ones.

Table 8. Selection using a multiple joins operation.

MongoDB SELECT Using Multiple Joins Operation

public MongoCursor<Document> getDetailsAboutAppointmentsNewerThan

 (MongoCollection<Document> collection,

Date minCreatedAt) {

Bson matchCondition = match(and(eq(“deleted”, false), eq(“appointment.deleted”, false),

gt(“createdAt”, minCreatedAt)));

Bson projection = project(fields(include(“userId”, “appointment.services.name”,

“appointment.clients.name”), excludeId()));

return collection.aggregate(asList(matchCondition, projection)).iterator();

}

// and from cron it is called

appointmentService.getDetailsAboutAppointmentsNewerThan

 (appointmentCollection, new Date(1620468000000L));

Document-based MySQL SELECT using multiple joins operation

public DocResult getDetailsAboutAppointmentsNewerThan

 (Collection collection, Date minCreatedAt) {

return collection.find(“deleted = false and appointment.deleted = false and createdAt >“

+ minCreatedAt).fields(“email”, “appointment.services.name”,

“appointment.client.name”).execute();

}

// and from cron it is called

appointmentService.getDetailsAboutAppointmentsNewerThan

 (appointmentCollection, new Date(1620468000000L));

This selection is similar to the previous one, as it differs in the filtering condition and

the selected fields. In the application using MongoDB, two BSONs are also used, one con-

taining the filtering conditions and one containing the desired fields, and in the case of

the use of MySQL based on documents, the same two methods are used consecutively,

with find() for filtering and fields() to extract the desired fields.

In MongoDB, the methods eq(), and gt() are considered as filters; within the Filters

class, many more such methods are available, thus replacing the operations of “<”, “>”,

Figure 7. Execution times for the select with the two joins operation.

5.3.4. Select with Multiple Joins

Often the most important queries involve selecting only certain fields and not entire en-
tities. Table 8 involves selecting only certain details about the newly created appointments
more than once, and excluding soft-deleted ones.

This selection is similar to the previous one, as it differs in the filtering condition
and the selected fields. In the application using MongoDB, two BSONs are also used, one
containing the filtering conditions and one containing the desired fields, and in the case
of the use of MySQL based on documents, the same two methods are used consecutively,
with find() for filtering and fields() to extract the desired fields.

In MongoDB, the methods eq(), and gt() are considered as filters; within the Filters
class, many more such methods are available, thus replacing the operations of “<”, “>”, “=”,
and “<>” in MySQL based on documents. More details are available in the Mongo library.

As shown in Figure 8, the execution times are slightly longer than for the previous
selection and continue the same growth trend. The methods, being very similar, differ in
the filtering conditions of the documents and the extracted fields, and for this reason, they
do not differ much. In all of the selections, regardless of the number of items, the response
times are close, with a minor increase with the increase in the number of items, which
shows their true performance with an increase in the number of items. For all of the above
selection operations, there is no significant difference between the two databases in terms
of the response times.

Big Data Cogn. Comput. 2022, 6, 49 14 of 19

Table 8. Selection using a multiple joins operation.

MongoDB SELECT Using Multiple Joins Operation

public MongoCursor<Document> getDetailsAboutAppointmentsNewerThan
(MongoCollection<Document> collection,

Date minCreatedAt) {
Bson matchCondition = match(and(eq(“deleted”, false), eq(“appointment.deleted”, false),
gt(“createdAt”, minCreatedAt)));
Bson projection = project(fields(include(“userId”, “appointment.services.name”,
“appointment.clients.name”), excludeId()));
return collection.aggregate(asList(matchCondition, projection)).iterator();
}
// and from cron it is called
appointmentService.getDetailsAboutAppointmentsNewerThan

(appointmentCollection, new Date(1620468000000L));

Document-based MySQL SELECT using multiple joins operation

public DocResult getDetailsAboutAppointmentsNewerThan
(Collection collection, Date minCreatedAt) {

return collection.find(“deleted = false and appointment.deleted = false and createdAt >“
+ minCreatedAt).fields(“email”, “appointment.services.name”,
“appointment.client.name”).execute();
}
// and from cron it is called
appointmentService.getDetailsAboutAppointmentsNewerThan

(appointmentCollection, new Date(1620468000000L));

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 15 of 20

“=”, and “<>” in MySQL based on documents. More details are available in the Mongo

library.

As shown in Figure 8, the execution times are slightly longer than for the previous

selection and continue the same growth trend. The methods, being very similar, differ in

the filtering conditions of the documents and the extracted fields, and for this reason, they

do not differ much. In all of the selections, regardless of the number of items, the response

times are close, with a minor increase with the increase in the number of items, which

shows their true performance with an increase in the number of items. For all of the above

selection operations, there is no significant difference between the two databases in terms

of the response times.

Figure 8. Execution times for select with multiple joins.

The major differences are at the level of synthesis and of carrying out the operations,

and in the case of MySQL, these operations are carried out in a chain, without the need to

create auxiliary procedures through which to obtain the results. Both databases can be

improved by adding indexes, which can be simple, compound, or text-level indexes for

MongoDB. MySQL document-based was developed by an old company that currently has

the most frequently used database, and it has all the existing optimizations in relational

MySQL, with all of the predefined methods being as highly optimized as possible.

5.4. Delete Operation

The delete operation often involves two types of deletion: soft delete, which involves

marking as deleted some items but with them still being present in the database, and hard

delete, where items are completely deleted. The soft delete operation is identical to the

update operation, and it is based on an actual update that changes the value of the deleted

field, setting it to true.

5.4.1. Soft Delete

Marking as deleted all customers whose users are already marked as deleted is per-

formed as in Table 9. In the case of the document-based MySQL database, the delete is

syntactically identical to that of the edit operation, with the documents being filtered us-

ing the modify() method, followed by the set() method, which changes the value of the

deleted field to true. The same can be said for MongoDB, in which documents are filtered

and modified using the predefined updateMany() method.

Figure 8. Execution times for select with multiple joins.

The major differences are at the level of synthesis and of carrying out the operations,
and in the case of MySQL, these operations are carried out in a chain, without the need
to create auxiliary procedures through which to obtain the results. Both databases can be
improved by adding indexes, which can be simple, compound, or text-level indexes for
MongoDB. MySQL document-based was developed by an old company that currently has
the most frequently used database, and it has all the existing optimizations in relational
MySQL, with all of the predefined methods being as highly optimized as possible.

5.4. Delete Operation

The delete operation often involves two types of deletion: soft delete, which involves
marking as deleted some items but with them still being present in the database, and hard
delete, where items are completely deleted. The soft delete operation is identical to the
update operation, and it is based on an actual update that changes the value of the deleted
field, setting it to true.

Big Data Cogn. Comput. 2022, 6, 49 15 of 19

5.4.1. Soft Delete

Marking as deleted all customers whose users are already marked as deleted is per-
formed as in Table 9. In the case of the document-based MySQL database, the delete is
syntactically identical to that of the edit operation, with the documents being filtered using
the modify() method, followed by the set() method, which changes the value of the deleted
field to true. The same can be said for MongoDB, in which documents are filtered and
modified using the predefined updateMany() method.

Table 9. Soft delete operation.

MongoDB Soft Delete Operation

public void markAsSoftDeletedClientsForDeletedUsers
(MongoCollection<Document> collection) {
collection.updateMany(new BasicDBObject(“deleted”, true),
new BasicDBObject(“client.deleted”, true));
}
// and from cron it is called
clientService.markAsSoftDeletedClientsForDeletedUsers(appointmentCollection);

Document-based MySQL Soft delete operation

public void markAsSoftDeletedClientsForDeletedUsers(Collection collection) {
collection.modify(“deleted = true”).set(“client.deleted”, “true”).execute();
}
// and from cron it is called
clientService.markAsSoftDeletedClientsForDeletedUsers(appointmentCollection);

The performance of the soft delete operation is similar to that of the update operation.
The differences in response times between these operations are quite small, because the
operations are similar, though the collection on which they have been applied differs, and
their filtering also uses predefined methods. In the case of both databases, there is an
increase in the execution times with the number of elements, as shown in Figure 9.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 16 of 20

Table 9. Soft delete operation.

MongoDB Soft Delete Operation

public void markAsSoftDeletedClientsForDeletedUsers

(MongoCollection<Document> collection) {

collection.updateMany(new BasicDBObject(“deleted”, true),

new BasicDBObject(“client.deleted”, true));

}

// and from cron it is called

clientService.markAsSoftDeletedClientsForDeletedUsers(appointmentCollection);

Document-based MySQL Soft delete operation

public void markAsSoftDeletedClientsForDeletedUsers(Collection collection) {

collection.modify(“deleted = true”).set(“client.deleted”, “true”).execute();

}

// and from cron it is called

clientService.markAsSoftDeletedClientsForDeletedUsers(appointmentCollection);

The performance of the soft delete operation is similar to that of the update operation.

The differences in response times between these operations are quite small, because the

operations are similar, though the collection on which they have been applied differs, and

their filtering also uses predefined methods. In the case of both databases, there is an in-

crease in the execution times with the number of elements, as shown in Figure 9.

Figure 9. Execution times for soft delete operation.

5.4.2. Hard Delete

The permanent deletion of services marked as deleted and created earlier than a spec-

ified date was performed as described in Table 10. The permanent deletion of services is

performed using predefined methods—deleteMany() when using MongoDB, and remove()

when using a document-based MySQL database. Both methods take as the parameters

their filtering condition, the first in the form of BSON, and the second in the form of a

string in which they are passed. In the case of a small number of elements, the execution

times are similar, as shown in Figure 10. The predefined methods for the other two data-

bases make their execution times much shorter, both for a small and large number of

items. While soft delete marks elements as being deleted, which from a functional point

of view acts like an update, a hard delete involves the deletion of all elements.

Figure 9. Execution times for soft delete operation.

5.4.2. Hard Delete

The permanent deletion of services marked as deleted and created earlier than a
specified date was performed as described in Table 10. The permanent deletion of services
is performed using predefined methods—deleteMany() when using MongoDB, and remove()
when using a document-based MySQL database. Both methods take as the parameters
their filtering condition, the first in the form of BSON, and the second in the form of a string
in which they are passed. In the case of a small number of elements, the execution times are
similar, as shown in Figure 10. The predefined methods for the other two databases make
their execution times much shorter, both for a small and large number of items. While soft

Big Data Cogn. Comput. 2022, 6, 49 16 of 19

delete marks elements as being deleted, which from a functional point of view acts like an
update, a hard delete involves the deletion of all elements.

Table 10. Hard delete operation.

MongoDB Hard Delete Operation

public void deleteServicesOlderThan(MongoCollection<Document> collection) {
Bson match1 = match(and(lt(“createdAt”, 1620378000000L), eq(“service.deleted”, true)));
collection.deleteMany(match1);
}
// and from cron it is called
serviceEntityService.deleteServicesOlderThan(appointmentCollection);

Document-based MySQL Hard delete operation

public void deleteServicesOlderThan(Collection collection) {
collection.remove(“createdAt < 1620378000000 and service.deleted = true”).execute();
}
// and from cron it is called
serviceEntityService.deleteServicesOlderThan(appointmentCollection);

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 17 of 20

Table 10. Hard delete operation.

MongoDB Hard Delete Operation

public void deleteServicesOlderThan(MongoCollection<Document> collection) {

Bson match1 = match(and(lt(“createdAt”, 1620378000000L), eq(“service.deleted”, true)));

collection.deleteMany(match1);

}

// and from cron it is called

serviceEntityService.deleteServicesOlderThan(appointmentCollection);

Document-based MySQL Hard delete operation

public void deleteServicesOlderThan(Collection collection) {

collection.remove(“createdAt < 1620378000000 and service.deleted = true”).execute();

}

// and from cron it is called

serviceEntityService.deleteServicesOlderThan(appointmentCollection);

Figure 10. Execution times for hard delete operation.

In the case of the soft delete operation, the performance is close to that of the update

operation, and in the case of the hard delete operation, the document-based MySQL has a

slightly imperceptibly better performance than MongoDB. In this case, MongoDB uses the

deleteMany() method, which is optimized for deleting multiple objects, while in document-

based MySQL the same method is used for both deleting a single document and deleting

multiple documents, as it is optimized to support any number of items.

6. Discussions

Since in recent years the document-based MySQL alternative has emerged, this paper

aims to investigate it in comparison to one of the already known alternatives, such as

MongoDB. As it is a much more mature database, several comparisons between Mon-

goDB and other NoSQL databases (other than document-based MySQL) can be found in

the literature, which generally places MongoDB at the forefront from a performance point

of view. For example, from the results of [22], MongoDB represents a good alternative

between all popular NoSQL databases that were tested and evaluated, having on average

the second-best performance; also, MongoDB proves to have achieved better results in a

scenario where the hardware resources are lower, with the performance levels being

slightly higher than for Cassandra, as shown in [23].

When compared to the document-based MySQL, as shown from the results of the

tests performed, in the case of the insert operation, both databases perform well as the

volume of data increases, as a predefined method is used for insertion, and no verification

is performed, with both offering the possibility for a bulk insert for the highest possible

Figure 10. Execution times for hard delete operation.

In the case of the soft delete operation, the performance is close to that of the update
operation, and in the case of the hard delete operation, the document-based MySQL has a
slightly imperceptibly better performance than MongoDB. In this case, MongoDB uses the
deleteMany() method, which is optimized for deleting multiple objects, while in document-
based MySQL the same method is used for both deleting a single document and deleting
multiple documents, as it is optimized to support any number of items.

6. Discussion

Since in recent years the document-based MySQL alternative has emerged, this paper
aims to investigate it in comparison to one of the already known alternatives, such as
MongoDB. As it is a much more mature database, several comparisons between MongoDB
and other NoSQL databases (other than document-based MySQL) can be found in the
literature, which generally places MongoDB at the forefront from a performance point
of view. For example, from the results of [22], MongoDB represents a good alternative
between all popular NoSQL databases that were tested and evaluated, having on average
the second-best performance; also, MongoDB proves to have achieved better results in
a scenario where the hardware resources are lower, with the performance levels being
slightly higher than for Cassandra, as shown in [23].

When compared to the document-based MySQL, as shown from the results of the
tests performed, in the case of the insert operation, both databases perform well as the

Big Data Cogn. Comput. 2022, 6, 49 17 of 19

volume of data increases, as a predefined method is used for insertion, and no verification
is performed, with both offering the possibility for a bulk insert for the highest possible
performance. At the syntax level, MongoDB uses the Document() object, which is similar to
Map<> in terms of construction, while in MySQL, objects can be inserted by mapping them
as strings. Regardless of the volume of data, both databases possess good efficiency in the
case of the update operation, with these being quite similar in terms of use and in terms
of execution.

In the case of the selection operation, several types of joins were performed, from
simple to complex, to highlight as best as possible how to use them. The most well-known
and standard functions avoid as much as possible the use of the primary fields in each
table. The tests performed show that the execution times are good, and even in the case
of complex selection operations, the performances are just as good for a large volume of
data. For more complex selections, there are quite large syntax differences between them;
in MongoDB, the filters, the extraction of only certain fields and the grouping of documents
is performed with the help of BSONs that are built with predefined methods. Conversely,
in the document store of the document-based MySQL, all of these selections can be made
in a single line, and there is a continuous connection between them, as well as predefined
methods that follow the same logic as relational MySQL.

In the case of the delete operation, the trend is the same, with MongoDB and document-
based MySQL displaying good performances with a large volume of data. The soft delete
operation is syntactically but also functionally similar to the update one when using the
same predefined update() methods; only the hard delete operation deletes the elements via
the predefined delete() and, respectively, remove() methods.

The tests performed provide an analysis of the performances of the two databases,
depending on the volume of data, execution times, and the complexity of the queries.
This provides an overview of how the execution times change in relation to the increasing
complexity of queries and the volume of data. For the update and select operations, the
complexity of the tested queries involves the use of several methods, because these CRUD
operations often provide slow queries.

Overall, MongoDB is able to achieve better results for the insert, update, and soft delete
operations scenarios, and is slightly surpassed by document-based MySQL for selection
operations. On the other hand, the MongoDB syntax for expressing operations is generally
more complex than the document-based MySQL syntax.

7. Conclusions

Performance is an important factor for deciding which database will be used for
Big Data applications. In this paper, a comparative analysis of two very actual NoSQL
databases, MongoDB and document-based MySQL was performed, taking into considera-
tion their impact on application performance when realizing CRUD requests.

In conclusion, we can say that both databases are suitable for Big Data applications
involving a large volume of data, as well as very complex databases, with very short
response times being observed regardless of the complexity of the queries and the amount
of data. Both also provide predefined methods for any operation, with document-based
MySQL having methods that take the parameters of code-like portions in a similar manner
to relational MySQL, and MongoDB being based on the BSON format. Thus document-
based MySQL is much easier to use, especially in association with a relational database.

However, the study presented in the paper has several limitations that can be overcome
with further research directions. One of these directions developing upon the presented
study will involve the testing of two alternatives of NoSQL databases over the cloud.
Additionally, a second direction for further development and improvement upon this paper
could be an investigation using the YCSB framework for testing, in order to be able to test
different aspects of performance.

Big Data Cogn. Comput. 2022, 6, 49 18 of 19

Author Contributions: Conceptualization, C.A.G., D.V.D.-B. and D.R.Z.; methodology, C.A.G.,
D.V.D.-B. and D.R.Z.; software, D.V.D.-B. and R.Ş.G.; validation, C.A.G. and R.Ş.G.; writing—original
draft preparation, D.R.Z. and C.A.G.; writing—review and editing, C.A.G. and R.Ş.G.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hoy, M.B. The “Internet of Things”: What it is and what it means for libraries. Med. Ref. Serv. Q. 2015, 34, 353–358. [CrossRef]
2. Thakur, N.; Han, K.Y. An Ambient Intelligence-Based Human Behavior Monitoring Framework for Ubiquitous Environments.

Information 2021, 12, 81. [CrossRef]
3. Assunçãoa, M.D.; Calheiros, R.N.; Bianchi, S.; Netto, M.A.S.; Buyya, R. Big Data computing and clouds: Trends and future

directions. J. Parallel Distrib. Comput. 2015, 79–80, 3–15. [CrossRef]
4. Chen, M.; Mao, S.; Liu, Y. Big data: A survey. Mob. Netw. Appl. 2014, 19, 171–209. [CrossRef]
5. Jatana, N.; Puri, S.; Ahuja, M.; Kathuria, I.; Gosain, D. A survey and comparison of relational and non-relational databases. Int. J.

Eng. Res. Technol. 2012, 1, 1–5.
6. Celesti, A.; Fazio, M.; Villari, M. A study on join operations in MongoDB preserving collections data models for future internet

applications. Future Internet 2019, 11, 83. [CrossRef]
7. Fahd, K.; Venkatraman, S.; Hammeed, F.K. A Comparative Study of NOSQL System Vulnerabilities with Big Data. Int. J. Manag.

Inf. Technol. 2019, 11, 1–19. [CrossRef]
8. Tauro, C.J.M.; Patil, B.R.; Prashanth, K.R. A comparative analysis of different nosql databases on data model, query model and

replication model. In Proceedings of the International Conference on ERCICA, Yelahanka, Bangalore, India, 2–3 August 2013.
9. Győrödi, C.A.; Dumşe-Burescu, D.V.; Győrödi, R.Ş.; Zmaranda, D.R.; Bandici, L.; Popescu, D.E. Performance Impact of Optimiza-

tion Methods on MySQL Document-Based and Relational Databases. Appl. Sci. 2021, 11, 6794. [CrossRef]
10. Feuerstein, S.; Pribyl, B. Oracle PL/SQL Programming, 6th ed.; O’Reilly Media: Sebastopol, CA, USA, 2016; p. 1340.
11. Atzeni, P.; Bugiotti, F.; Rossi, L. Uniform access to NoSQL systems. Inf. Syst. 2014, 43, 117–133. [CrossRef]
12. Damodaran, B.D.; Salim, S.; Vargese, S.M. Performance evaluation of MySQL and MongoDB databases. Int. J. Cybern. Inform.

2016, 5, 387–394. [CrossRef]
13. Document-Based MySQL Library. Available online: https://www.mysql.com/products/enterprise/document_store.html

(accessed on 10 January 2022).
14. Bell, C. Introducing the MySQL 8 Document Store, 1st ed.; Apress: New York City, NY, USA, 2018; p. 555.
15. MapReduce—MongoDB. Available online: https://docs.mongodb.org/manual/core/map-reduce (accessed on 15 January 2022).
16. MongoDB 5.0 Documentation. Available online: https://docs.mongodb.com/manual/replication/ (accessed on 25 January 2022).
17. Gyorödi, C.; Gyorödi, R.; Andrada, I.; Bandici, L. A Comparative Study Between the Capabilities of MySQL vs. MongoDB as a

Back-End for an Online Platform. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 73–78. [CrossRef]
18. Gupta, G.S. Correlation and comparison of nosql specimen with relational data store. Int. J. Res. Eng. Technol. 2015, 4, 1–5.
19. Celesti, A.; Fazio, M.; Romano, A.; Villari, M. A hospital cloud-based archival information system for the efficient management of

HL7 big data. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics
and Microelectronics, Opatija, Croatia, 30 May–3 June 2016; pp. 406–411.

20. Celesti, A.; Fazio, M.; Romano, A.; Bramanti, A.; Bramanti, P.; Villari, M. An OAIS-Based Hospital Information System on the
Cloud: Analysis of a NoSQL Column-Oriented Approach. IEEE J. Biomed Health Inform. 2018, 22, 912–918. [CrossRef] [PubMed]

21. Hiriyannaiah, S.; Siddesh, G.M.; Anoop, P.; Srinivasa, K.G. Semi-structured data analysis and visualisation using NoSQL. Int. J.
Big Data Intell. 2018, 5, 133–142. [CrossRef]

22. Martins, P.; Abbasi, M.; Sá, F. A Study over NoSQL Performance. New Knowledge in Information Systems and Technologies.
In WorldCIST’19 2019. Advances in Intelligent Systems and Computing; Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Eds.; Springer:
Cham, Switzerland, 2019; Volume 930, pp. 603–611.

23. Martins, P.; Tomé, P.; Wanzeller, C.; Sá, F.; Abbasi, M. NoSQL Comparative Performance Study. In Proceedings of the World
Conference on Information Systems and Technologies, Terceira Island, Portugal, 30 March–2 April 2021; Springer: Cham,
Switzerland, 2021; pp. 428–438.

24. Seghier, N.B.; Kazar, O. Performance Benchmarking and Comparison of NoSQL Databases: Redis vs. MongoDB vs. Cassandra
Using YCSB Tool. In Proceedings of the 2021 International Conference on Recent Advances in Mathematics and Informatics
(ICRAMI), Tebessa, Algeria, 21–22 September 2021; IEEE: New York City, NY, USA, 2021; pp. 1–6.

http://doi.org/10.1080/02763869.2015.1052699
http://doi.org/10.3390/info12020081
http://doi.org/10.1016/j.jpdc.2014.08.003
http://doi.org/10.1007/s11036-013-0489-0
http://doi.org/10.3390/fi11040083
http://doi.org/10.5121/ijmit.2019.11401
http://doi.org/10.3390/app11156794
http://doi.org/10.1016/j.is.2013.05.002
http://doi.org/10.5121/ijci.2016.5241
https://www.mysql.com/products/enterprise/document_store.html
https://docs.mongodb.org/manual/core/map-reduce
https://docs.mongodb.com/manual/replication/
http://doi.org/10.14569/IJACSA.2016.071111
http://doi.org/10.1109/JBHI.2017.2681126
http://www.ncbi.nlm.nih.gov/pubmed/28362598
http://doi.org/10.1504/IJBDI.2018.092657

Big Data Cogn. Comput. 2022, 6, 49 19 of 19

25. Gaikwad, R.; Goje, A.C. A Study of YCSB—Tool for measuring a performance of NOSQL databases. Int. J. Eng. Technol. Comput.
Res. IJETCR 2015, 3, 37–40.

26. Daskevics, A.; Nikiforova, A. IoTSE-based open database vulnerability inspection in three Baltic countries: ShoBEVODSDT sees
you. In Proceedings of the 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
Gandia, Spain, 6–9 December 2021; pp. 1–8. [CrossRef]

27. Patel, S.; Kumar, S.; Katiyar, S.; Shanmugam, R.; Chaudhary, R. MongoDB Versus MySQL: A Comparative Study of Two Python
Login Systems Based on Data Fetching Time. In Research in Intelligent and Computing in Engineering; Springer: Singapore, 2021;
pp. 57–64.

28. Jose, B.; Abraham, S. Performance analysis of NoSQL and relational databases with MongoDB and MySQL. Mater. Today Proc.
2020, 24, 2036–2043. [CrossRef]

29. Palanisamy, S.; SuvithaVani, P. A survey on RDBMS and NoSQL Databases MySQL vs. MongoDB. In Proceedings of the 2020
International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 22–24 January 2020; IEEE:
New York City, NY, USA, 2020; pp. 1–7.

http://doi.org/10.1109/IOTSMS53705.2021.9704952
http://doi.org/10.1016/j.matpr.2020.03.634

	Introduction
	Overview of MongoDB and the Document-Based MySQL
	Related Work
	Method and Testing Architecture
	Performance Tests
	Insert Operation
	Update Operation
	Select Operation
	Simple Select Operation
	Select Using a Single Join Operation
	Select Using Two Joins Operations
	Select with Multiple Joins

	Delete Operation
	Soft Delete
	Hard Delete

	Discussion
	Conclusions
	References

