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Abstract: This paper investigates the robust adaptive synchronization of multi-mode fractional-order
chaotic systems (MMFOCS). To that end, synchronization was performed with unknown parameters,
unknown time delays, the presence of disturbance, and uncertainty with the unknown boundary.
The convergence of the synchronization error to zero was guaranteed using the Lyapunov function.
Additionally, the control rules were extracted as explicit continuous functions. An image encryption
approach was proposed based on maps with time-dependent coding for secure communication.
The simulations indicated the effectiveness of the proposed design regarding the suitability of the
parameters, the convergence of errors, and robustness. Subsequently, the presented method was
applied to fractional-order Chen systems and was encrypted using the chaotic masking of different
benchmark images. The results indicated the desirable performance of the proposed method in
encrypting the benchmark images.

Keywords: multi-mode synchronization; adaptive-robust synchronization; fractional order hyper-
chaotic system; lyapunov stability; secure communication

1. Introduction

Today, many people use digital communications in daily activities, changing this field
into one of the most special human needs [1–3]. Additionally, digital communications facili-
tate commerce in different industrial and medical contexts [4,5]. In that regard, information
security is vital. The digital communications system includes a transmitter, communica-
tion channel, and receiver. Information security in communication channels is of great
importance. The particular importance of information security in digital communications
has led to extensive studies in this domain, and scientists have presented various meth-
ods [6–9]. Encryption is one of the most important information security contexts in digital
communications and includes multiple methods such as chaos theory techniques [10]. Nu-
merous synchronization techniques for various chaotic systems have been proposed based
on control techniques. Generally, chaotic systems fall into standard and fractional order
types, and each is analyzed in many synchronization systems. Control methods applied in
synchronization incorporate linear and nonlinear [11,12], fuzzy [13], active [14,15], back-
stepping [16,17], sliding mode control (SMC) [18,19], and adaptive control [20]. Lai used
various methods such as designing a new memristor that is flux-controlled [21], a Lü chaos
system with coexisting attractors and a nonlinear controller [22], and a new encryption
algorithm performed on hyper chaotic neurons [23] to enhance image encryption security.

The idea of this paper is to employ SMC alongside three chaotic systems. To further
increase efficiency, the parameters of the chaotic systems that are unknown are introduced.
The authors in [24] investigated Hopf bifurcation and amplitude controls in the chaotic
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Toda jerk oscillator system with analysis, circuit realization, and combined synchronization
in the fractional-order form. In [25], the multi-switching synchronization of several chaotic
systems was examined. The proposed Lorenz and Chen chaotic systems were adopted
and explained three-dimensionally. However, in relevant studies, it has been assumed that
their parameters are known. In [26], the combination synchronization of a new fractional-
order chaotic system with two stable node-foci was studied. In [27], dual-phase and dual
anti-phase synchronization of FOCS in real and complex variables with uncertainties was
investigated. The effect of disturbance is not considered in this paper. The authors in [28]
studied the combination synchronization of three fractional-order time-delayed chaotic
systems without disturbance and uncertainty. The authors in [29] surveyed multi-switching
combination-combination synchronization of unknown FOCS, in which three-dimensional
systems were exploited, and the effect of disturbance was not studied. Various studies
deal with system synchronization applications in secure communication: Khan and Nigar
(2020) used sliding-mode disturbance observer control based on adaptive hybrid projective
combination synchronization in fractional-order systems [30]. An adaptive-robust control
for multi-state synchronization of chaotic systems with unknown and time-varying delay
was studied by Kekha javan [31].

A chaotic system with an exponential term was considered in [32] to study its syn-
chronization. It seeks the dynamics of approximation of exponential chaotic systems.
Moreover, combination synchronization was used to control this system. Afterward, its
application was exhibited in secure communication. An application of uncertain chaotic
system adaptive synchronization was studied in secure communication systems in [33].
Khan et al., (2019) proposed a secure communication design through novel fractional
chaotic system synchronization [34]. A finite-time terminal auxiliary observer was used
for fractional-order chaotic systems with application in secure communication [35]. The
authors in [36] used secure communication via projective synchronization of the fractional
matrix. In [37], a secure communication design was used based on the modified hybrid
projective synchronization of fractional hyper-chaotic systems. A novel acoustic encryption
method with finite-time synchronization of the fractional-order hyper-chaotic system was
proposed [38]. Vaseghi et al. (2021) applied finite-time synchronization in chaotic systems
to encrypt medical images [39].

Previous research indicates the gap regarding the multi-mode synchronization of
fractional-order hyper-chaotic systems with unknown and variable parameters using an
adaptive-robust controller. Accordingly, this paper aims to demonstrate a multi-mode syn-
chronization scheme for fractional-order hyper-chaotic systems with parametric uncertainty
and disturbances. The boundaries of these uncertainties and disturbances are estimated
by applying adaptive rules. Furthermore, its detrimental effect on the performance of
synchronization control law is significantly reduced. The proposed novel secure communi-
cation method uses chaotic masking with a new modulation function for benchmark image
encryption. Information entropy, signal-to-noise ratio, histogram, and similar criteria were
used to analyze the proposed method.

The main contributions of the present study are as follows:

(1) Synchronization, despite the stepwise changes of system parameters.
(2) Determination of control rule as an explicit and continuous function that prohibits the

manifestation of chattering phenomenon.
(3) Synchronization is independent of the type of chaotic system.
(4) Determination of several adaptive rules such that the system stability is guaranteed

and the convergence of synchronization errors and estimating errors of disturbance
and uncertainty boundaries converge to zero.

(5) A novel secure communication design was considered the modulation function for
chaotic masking.

To evaluate the performance of the proposed scheme, simulations were carried out on
three fractional-order hyper-chaotic Chen systems with unknown parameters and external



Big Data Cogn. Comput. 2022, 6, 51 3 of 24

disturbances. Their results indicated the adequacy and robustness of the proposed adaptive
controller scheme.

The next part of this paper presents the formulation of the proposed method. It con-
tains the fractional-order systems and adaptive synchronization of multiple FOCS with
unknown parameters expressed in two transmission and circular multi-mode synchro-
nization. This issue was also tested in the presence of disturbance. Section 4 presents the
simulation results. The standard benchmark images were simulated and evaluated with the
statistic criterion. The efficiency of the method was evaluated by histogram analysis, corre-
lation analysis, number of pixel change rate (NPCR), unified average changing intensity
(UACI), peak signal to noise ratio (PSNR), and information entropy. The experiment results
indicated the proposed encryption method’s ability to uplift security and performance.
Section 6 presents the discussion of the proposed method, followed by the conclusion.

2. Problem Formulation

This section discusses the proposed scheme of the paper. First, fractional-order sys-
tems are presented. Subsequently, the synchronization of chaotic systems of multiple
transmission fractional order is described. Finally, the multiple circular synchronizations
are discussed. In both cases, adaptive rules and controllers are designed using the adaptive
control method. Two examples are given to demonstrate the efficiency and performance of
the proposed method.

2.1. Basic Definitions
Fractional-Order Derivative

Due to simple implementation and high performance, several numerical definitions
have been proposed to solve fractional differential equations [40]. This paper uses the
definition of Caputo, whose fractional derivative is as follows [40]:

Dq f (x) = Im−qh(m)(x), q > 0 (1)

where h(m) represents the derivative of mth order of h(x), m = [q] is the first integer that
is less than q, and the Riemann-Lewil integral operator with order q of function g(x) is
described as follows [40]:

Iqg(x) =
1

Γ(q)

∫ x

0
(x− t)q−1g(t)dt, q > 0 (2)

where Γ(q) is the gamma function and the Dq operator is called the Caputo fractional
operator of q order.

Stability analysis of fractional-order systems by Lyapunov’s direct method and deter-
mining the necessary and sufficient conditions guaranteeing stability with the Mittag-Leffler
concept [41] and stability analysis based on convex of the Lyapunov functions [40] for
nonlinear systems are demonstrated.

Lemma 1. [40]: Suppose h(t) ∈ R is a continuous and derivable function. Then, for t ≥ t0,
we have:

Dqh2(t) ≤ 2h(t)·Dqh(t) (3)

Lemma 2. [40]: Suppose h(t) ∈ Rn is a continuous and derivable function. Then, for t ≥ t0,
we have:

DqhT(t)h(t) ≤ 2hT(t)·Dqh(t) (4)

Theorem 1. [41]: Suppose x = 0 is the equilibrium point of the fractional-order system (5) and its
definition domain includes the origin. Suppose V(t.x(t)) is continuous and derivable and that the
Lipschitz function is relative to x such that:
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Dqx(t) = f (x.t) (5)

a1‖x‖a ≤ V(t.x(t)) ≤ a2‖x‖ab (6)

DqV(t.x(t)) ≤ −a3‖x‖ab (7)

where 0 < q < 1 and a1, a2, a3, a, b are arbitrary and positive constants. Then, x = 0 is
stable in the sense of Mittag-Leffler.

Definition 1. The continuous function p : [0, ∞)→ [0, ∞) belongs to the class-K if it is strictly
increasing and p(0) = 0.

Theorem 2. [41]: Suppose x = 0 is the equilibrium point of the fractional-order system (5), where
f (x.t) satisfies the Lipshitz condition and q ∈ (0, 1). If the relations (8) and (9) are established for
the Lyapunov function V(t,x(t)) and the class-K functions δi:

δ1(‖x‖) ≤ V(t.x(t)) ≤ δ2(‖x‖) (8)

DqV(t.x(t)) ≤ −δ3(‖x‖) (9)

Then, the system (5) is asymptotically stable in the sense of Mittag-Leffler [42].

Theorem 3. [43]: For the fractional-order system (5) and the Lyapunov function V(x):

DqV(x) ≤
(

∂V
∂x

)T
·Dqx =

(
∂V
∂x

)T
· f (x.t) (10)

2.2. Adaptive Synchronization between One Drive System and Several Response Systems

Figure 1 shows the synchronization between one master system and several slave
systems.
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The master hyper-chaotic system with unknown parameters is as follows [44]:

Dqx1(t) = f1(x1) + H1(x1)θ1(t) (11)

where x1(t) = [x11, x12, · · · , x1n]
T are the state vectors of the system,

f1(x1(t)) = [ f11, f12, · · · , f1n]
T is a continuous function, H1(x1(t)) = [H11, H12, · · · , H1n]

T

is the matrix function, and θ1(t) = [θ11, θ12. · · · .θ1n]
T are the basic parameters of the master

system that are unknown and variable.
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N-1 slave hyper-chaotic systems with control function are as follows [44]:

Dqxi(t) = fi(xi) + Hi(xi)θi(t) + ui−1(t) i = 2, 3, · · · , N (12)

where xi(t) = [xi1, xi2, · · · , xin]
T is the state vector of ith system, fi(x1(t)) = [ fi1, fi2, · · · , fin]

T

is the continuous function, Hi(xi(t)) = [Hi1, Hi2, · · · , Hin]
T is the matrix function,

θi(t) = [θi1, θi2, · · · , θin]
T are the basic parameters of ith slave system, and

ui−1(t) = [ui−1.1(t), ui−1.2(t), · · · , ui−1.n(t)]
T is the control function of ith slave system.

Therefore, according to Equations (11) and (12), the synchronization of the chaotic system
with the control function is stated as follows:

Dqx1(t) = f1(x1) + H1(x1)θ1
Dqx2(t) = f2(x2) + H2(x2)θ2 + u1(t)

...
DqxN(t) = fN(xN) + HN(xN)θN + uN−1(t)

(13)

In multimode synchronization form, the synchronization error is given as follows:

ei−1(t) = xi(t)− x1(t) i = 2, 3, · · · , N

Definition 2. For N FOCS expressed by (13), if adaptive controllers ui−1(t) exist such that for
dynamic systems the error is given by:

Dqei−1(t) = fi(xi)− f1(x1) + Hi(xi)θi − H1(x1)θ1 + ui−1(t) i = 2, 3, · · · , N − 1 (14)

The required conditions are:

lim
t→∞
‖ei−1(t)‖ = lim

t→∞
‖xi(t)− x1(t)‖ → 0 i = 2, 3, · · · , N

If satisfied, then the adaptive transmission multi-mode synchronization between N
chaotic systems with unknown parameters is realized. The design of controllers and
adaptive rules to achieve the above objective is based on the Lyapunov function, and
synchronization is fulfilled with transmission mode synchronization. The controller law
for u1(t), u2(t), u3(t), · · · , uN−1(t) is designed as below:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i + H1(x1)θ̂1 + Ki−1ei−1 i = 2, 3, · · · , N − 1 (15)

Therefore, the errors of dynamics are given as follows:

Dqei−1(t) = Hi(xi)θ̃i − H1(x1)θ̃1 + Ki−1ei−1 i = 2, 3, · · · , N − 1 (16)

where θ̂i is the estimation of θi,θ̃i(t) = θi(t)− θ̂i(t) is an approximation error, and:

Ki−1 = diag(ki−1,1.ki−1,2. · · · .ki−1,n). ki−1,j < 0 j = 1, 2, · · · , n

2.3. Adaptive Circular Multimode Synchronization of Chaotic Systems

Figure 2 depicts a demonstration of circular multi-mode synchronizations. In this
type of synchronization, all systems (except system 1) play both slave and master roles
contemporarily, which helps to achieve more complexity.
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In this case, the first chaotic system is described as the following.

Dqx1(t) = f1(x1) + H1(x1)θ1 (17)

The N-1 chaotic systems are given as follows [44]:
Dqx1(t) = f1(x1) + H1(x1)θ1

Dqx2(t) = f2(x2) + H2(x2)θ2 + m1(t)
...

DqxN(t) = fN(xN) + HN(xN)θN + mN−1(t)

(18)

Control input is in the form of mi−1(t) = [mi−1.1.mi−1.2. · · · .mi−1.n]
T .

For N chaotic system explained by (18), if there are adaptive controllers such that the
error dynamic systems are given as follows:

ri(t) = xi+1(t)− xi(t)i = 1, 2, 3, · · ·N − 1

Dqri−1(t) = fi(xi)− fi−1(xi−1) + Hi(xi)θi − Hi−1(xi−1)θi−1 + mi−1 −mi−2
i = 2, 3, · · · , N − 1

(19)

In addition, conditions are given by:

lim
t→∞
‖ri−1(t)‖ = lim

t→∞
‖xi(t)− xi−1(t)‖ → 0 i = 2, 3, · · · , N

If satisfied, then an adaptive circular multi-mode synchronization between N chaotic
systems with unknown parameters is accomplished.

Theorem 4. For multi-mode synchronization of hyper-chaotic in two circular and transitional
states, the following statements are satisfied.

1-A. If the transmission and circular synchronization are established with the con-
trollers ui(t) and mi(t), then:

∀i.j : lim
t→∞
‖xi(t)− xj(t)‖ → 0

2-A. If transmission synchronization is established, then circular synchronization is
also realized and vice versa.

Proof 1-A. Suppose there is a transmission synchronization, therefore: ∀ i : ei(t)→ 0. Thus:�

∀i.j : ‖xi(t)− xj(t)‖ = ‖(xi(t)− x1(t))−
(
xj(t)− x1(t)

)
‖ ≤ ‖ei(t)‖+ ‖ej(t)‖ → 0
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If circular synchronization is met (assuming i > j):

∀i.j : ‖xi(t)− xj(t)‖ = ‖(xi(t)− xi−1(t)) + (xi−1(t)− xi−2(t)) + · · ·+ (xj+1(t)− xj(t))‖

≤ ‖ri−1(t)‖+ · · ·+ ‖rj(t)‖ =
i−1
∑

k=j
‖rk(t)‖ → 0 (20)

Proof 2-A. The following relationships between errors exist in two synchronization modes:�

ri(t) =
{

ei(t)− ei−1(t) i = 2, 3, · · · , N − 1
ei(t) i = 1

. ei(t) =
i

∑
k=1

rk(t)

If the transmission synchronization is true, ei(t)→ 0 ; therefore:

‖ri(t)‖ =
{
‖ei(t)− ei−1(t)‖ ≤ ‖ei(t)‖+ ‖ei−1(t)‖ → 0 i ≥ 2
‖e1(t)‖ → 0 i = 1

So, circular synchronization is true.
Conversely, assume that circular synchronization is true; ri(t)→ 0 . Therefore:

‖ei(t)‖ = ‖
i

∑
k=1

rk(t)‖ ≤
i

∑
k=1
‖rk(t)‖ → 0

Therefore, transmission synchronization is also true. So, both types of synchronization
are equivalent to each other.

Theorem 5. The control law is identical for transmission synchronization ui(t) and circular
synchronization mi(t) of the fractional-order of chaotic systems.

Proof. Utilizing the relationship between two types of errors, we have:�

Dqei(t) = Dqei−1(t) + Dqri(t)

Which can be acquired by substituting in Equations (14) and (23):

ui−1(t) = ui(t)− (mi(t)−mi−1(t)) i ≥ 2 (21)

For i = 1, we have:

e1(t) = r1(t)⇒ Dqe1(t) = Dqr1(t)⇒ m1(t) = u1(t) (22)

By the substitution of (22) in (21) we have: mi(t) = ui(t); hence, the proof is complete.

2.4. Synchronization in the Presence of Disturbance, Time Delay and Uncertainty in the Systems

In this case, the master and slave system with disturbance, time delay, and uncertainty
is as follows:

Dqx1(t) = f1(x1) + H1(x1)θ1 ++F1(x1(t− τ1)) + ∆ f1(x1) + D1(t)
Dqx2(t) = f2(x2) + H2(x2)θ2 + F2(x2(t− τ2)) + ∆ f2(x2) + D2(t) + u1(t)

...
DqxN(t) = fN(xN) + HN(xN)θN + FN(xN(t− τN)) + ∆ fN(xN) + DN(t) + uN−1(t)

(23)



Big Data Cogn. Comput. 2022, 6, 51 8 of 24

It is assumed that Fi(xi(t− τi)) are Lipschitz, uncertainties and disturbances are
bounded but with an unknown boundary.

|∆ fi(xi)| ≤ γigi(xi) . |Di(t)| ≤ di i = 1, 2, . . . , N

|Fi(xi(t− τi))− Fi(xi(t− pi))| ≤ li|τi − pi|

where γi, li and di are constant but unknown and gi(xi) is definite and positive. The error
dynamic is described as follows:

Dqei−1(t) = fi(xi)− f1(x1) + Hi(xi)θi − H1(x1)θ1 + Fi(xi(t− τi))− F1(x1(t− τ1)) + ∆ fi(xi)− ∆ f1(x1) + Di(t)
−D1(t) + ui−1(t) i = 2, 3, · · · , N − 1

(24)

Defining the control function as follows:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i + H1(x1)θ̂1 + Ki−1ei−1 − Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1)) + ui−1(t)i
= 2, 3, · · · , N − 1

(25)

where θ̂i, τ̂i are estimations of θi, τi and ui−1(t) is the section of the control function, which
is introduced below. By placing the control function in (24), the error dynamics are given
as follows:

Dqei−1(t) = Hi(xi)θ̃i − H1(x1)θ̃1 + ∆ fi(xi)− ∆ f1(x1) + Di(t)− D1(t) + Ki−1ei−1 + Fi(xi(t− τi))− F1(x1(t− τ1))
−Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1)) + ui−1(t), i = 2, 3, · · · , N − 1

(26)

Theorem 6. The error dynamics system (26) is under control law (36), the update rules (35) are
stable, and the synchronization errors converge to zero despite the uncertainty, time delay, and
disturbance.

Proof. By explaining the Lyapunov function as follows:�

V =
1
2
(Ve + Vθ + Vγ + Vd + Vτ) (27)

Wherein:

Ve =
N

∑
i=2

eT
i−1Ki−1ei−1Vθ =

N

∑
i=2

θ̃T
i θ̃i + θ̃T

1 θ̃1

Vγ =
N

∑
i=2

γ̃i
2 + γ̃1

2 , Vd =
N

∑
i=2

d̃i
2 + d̃1

2 , Vτ =
N

∑
i=2

liτ̃i
2 + l1τ̃1

2

and: θ̃i = θi − θ̂i, γ̃i = γi − γ̂i, d̃i = di − d̂i, τ̃i = τi − τ̂i.
By calculating the fractional derivative of the Lyapunov function and replacing control

function (27):

DqV ≤
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1 + ∆ fi(xi)− ∆ f1(x1) + Fi(xi(t− τi))− Fi(xi(t− τ̂i))− F1(x1(t− τ1))

+F1(x1(t− τ̂1)) + Di(t)− D1(t) + 1
2
(
Ki−1 + Ki−1

T)ei−1

)
+θ̃T

i Dq θ̃i + γ̃iDqγ̃i + d̃iDqd̃i + liτ̃iDqτi

+ui−1(t)]+θ̃T
1 Dq θ̃1 + γ̃1Dqγ̃1 + d̃1Dqd̃1 + l1τ̃1Dqτ1

(28)

If ui
j, ∆ fi

j, Di
j, ej

i−1 is the component jth of the vectors ui−1(t), ∆ fi, Di, ei−1, respec-
tively. Then:
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DqV ≤
N
∑

i=2

n
∑

j=1
ej

i−1(∆ fi
j − ∆ f1

j + Di
j − D1

j + Fi(xi(t− τi))− Fi(xi(t− τ̂i))− F1(x1(t− τ1)) + F1(x1(t− τ̂1))

+ui−1
j) +

N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i Dq θ̃i]+
N
∑

i=2

(
γ̃iDqγ̃i + d̃iDqd̃i + liτ̃iDqτi

)
+

N
∑

i=2

1
2 eT

i−1

(
Ki−1 + Ki−1

T
)

ei−1 + γ̃1Dqγ̃1 + d̃1Dqd̃1 + l1τ̃1Dqτ1 + θ̃T
1 Dq θ̃1

(29)

Therefore:

DqV ≤
N
∑

i=2

n
∑

j=1
[
∣∣∣ej

i−1

∣∣∣(∣∣∣∆ fi
j
∣∣∣+ ∣∣∣∆ f1

j
∣∣∣+ ∣∣∣Di

j
∣∣∣+ ∣∣∣D1

j
∣∣∣+ |Fi(xi(t− τi))− Fi(xi(t− τ̂i))|+ |−F1(x1(t− τ1)) + F1(x1(t− τ̂1))|

)
+ej

i−1ui−1
j] +

N
∑

i=2

(
γ̃iDqγ̃i + d̃iDq d̃i + li τ̃iDqτi

)
+

N
∑

i=2
eT

i−1Ki−1ei−1+
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+θ̃T

i Dq θ̃i] + γ̃1Dqγ̃1 + d̃1Dq d̃1 + l1τ̃1Dqτ1 + θ̃T
1 Dq θ̃1

(30)

The disturbance and uncertainty boundary condition can be extended to the components of
∆ fi and Di(t) as follows: ∣∣∣∆ fi

j
∣∣∣ ≤ max

j

∣∣∣∆ fi
j
∣∣∣ ≤ |∆ fi(xi)| ≤ γigi(xi)

∣∣∣Di
j(t)
∣∣∣ ≤ max

j

∣∣∣Di
j(t)
∣∣∣ ≤ |Di(t)| ≤ di

which we have by substituting in (30):

DqV ≤
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(γigi(xi) + γ1g1(x1) + di + d1 + li|τ̃i|) + ej
i−1ui−1

j
]
+

N
∑

i=2

(
γ̃iDqγ̃i + d̃iDq d̃i + li τ̃iDqτi

)
+

N
∑

i=2
eT

i−1Ki−1ei−1+
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i Dq θ̃i] + γ̃1Dqγ̃1 + d̃1Dq d̃1 + l1τ̃1Dqτ1

+θ̃T
1 Dq θ̃1

(31)

If ui−1
j(t) is defined as follows:

ui−1
j(t) = −(γ̂igi(xi) + γ̂1g1(x1) + d̂i + d̂1 + l̂i + l̂1)·sgn

(
ej

i−1(t)
)

(32)

Through the estimation of disturbance and uncertainty bounds in ui−1
j(t), an effort was made to

eliminate the effects of disturbance, delay, and uncertainty as much as possible. Therefore, Lyapunov
function derivatives will be negative by selecting the proper update rules, and, ultimately, the
convergence of the synchronization error to zero will be guaranteed.

Then,

DqV ≤
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(γ̃igi(xi) + γ̃1g1(x1) + d̃i + d̃1 + li|τ̃i|
)]

+
N
∑

i=2

(
γ̃iDqγ̃i + d̃iDq d̃i + li τ̃iDqτi

)
+

N
∑

i=2
eT

i−1Ki−1ei−1

+
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i Dq θ̃i] + γ̃1Dqγ̃1 + d̃1Dq d̃1 + l1τ̃1Dqτ1 + θ̃T
1 Dq θ̃1

(33)

The rules updating estimation errors are as follows:

Dqγ̃i = −(gi(xi)
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ αiγ̃i), i = 2, 3, . . . , N (34)

Dqγ̃1 = −

 N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣g1(x1) + α1γ̃1

 (35)

Dq d̃i = −

 n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ βi d̃i

, i = 2, 3, . . . , N (36)
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Dq d̃1 = −

 N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ β1d̃1

 (37)

Dqτ̃i = −

 n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µi τ̃i

, i = 2, 3, . . . , N (38)

Dqτ̃1 = −

 N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µ1τ̃1

 (39)

Dq θ̃i = −Hi
T(xi)ei−1 − σi θ̃i, i = 2, 3, . . . , N (40)

Dq θ̃1 = −
N

∑
i=2

H1
T(x1)ei−1 − σ1 θ̃1 (41)

where αi, βi, σi, µi are positive. By placing the above update rules in (33), we have:

DqV ≤
N

∑
i=2

eT
i−1Ki−1ei−1 −

N

∑
i=1

(αiγ̃i
2 + βi d̃i

2 + µi τ̃i
2)−

N

∑
i=1

σi θ̃
T
i θ̃i < −µV

where: µ = min
i,j

(
αi, βi, σi, µi,−ki−1,j

)
> 0. Therefore, according to the Theorems 1 and 2 and

being Hurwitz Ki−1, the stability of the system according to Mittag-Leffler is also confirmed. The
convergence of synchronization errors to zero is also guaranteed despite uncertainty and disturbance.

The estimations updating rules are obtained as follows:

Dqγ̂i = gi(xi)
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ αiγ̃i, i = 2, 3, . . . , N (42)

Dqγ̂1 = g1(x1)
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ α1γ̃1. (43)

Dq d̂i =
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ βi d̃i, i = 2, 3, . . . , N. (44)

Dq d̂1 =
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ β1d̃1. (45)

Dqτ̂i =
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µi τ̃i, i = 2, 3, . . . , N (46)

Dqτ̂1 =
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µ1τ̃1 (47)

Therefore, the final control function is as follows:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i(t) + H1(x1)θ̂1(t) + Ki−1ei−1(t)− Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1))− (γ̂i gi(xi) + γ̂1g1(x1) + d̂i

+d̂1 + l̂i + l̂1)·sgn
(

ej
i−1(t)

)
, i = 1, 2, · · · , N − 1

(48)

Selecting ui−1
j(t) as (36) due to the presence of the discontinuous function sgn

(
ej

i−1(t)
)

causes discontinuity
in the control function (48). This problem will be solved by correcting Equation (32) and update rules (42–47), as
well as Theorem 7.
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Theorem 7. If ui−1
j(t) is selected as ui−1

j(t) = −(γ̂i gi(xi) + γ̂1g1(x1) + d̂i + d̂1 + l̂i + l̂1)·sat
(

ej
i−1, λ

)
, then the

control function ui−1(t) will become continuous and the convergence of synchronization errors would be guaranteed to be at
zero. Further, update rules will be as follows:

Dqγ̃i = −gi(xi)− αiγ̃i − γ̂i gi(xi)
γ̃i

ϕi−1(t).

Dq d̃i = −
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− βi d̃i − d̂i
d̃i

ϕi−1(t)

Dq τ̃i = −
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− µi τ̃i − τ̂i
τ̃i

ϕi−1(t)

Dqγ̃1 = −g1(x1)
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− α1γ̃1 − γ̂1 g1(x1)
γ̃1

N
∑

i=2
ϕi−1(t)

Dq d̃1 = −
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− β1 d̃1 − d̂1
d̃1

N
∑

i=2
ϕi−1(t)

Dq τ̃1 = −
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− µ1τ̃1 − τ̂1
τ̃1

N
∑

i=2
ϕi−1(t)

Dqγ̂i = −Dqγ̃i , Dq d̂i = −Dq d̃i , Dq τ̂i = −Dq τ̃i

(49)

where λ and ε are small positive numbers and:

sat
(

ej
i−1, λ

)
=


sgn
(

ej
i−1(t)

)
,

∣∣∣ej
i−1(t)

∣∣∣ ≥ λ

ej
i−1(t)

λ ,
∣∣∣ej

i−1(t)
∣∣∣ ≤ λ

ϕi−1(t) =
n

∑
j=1

[∣∣∣ej
i−1

∣∣∣− ej
i−1·sat

(
ej

i−1, λ
)]

Proof. Through Equation (31) and by placing ui−1
j(t) = −(γ̂i gi(xi) + γ̂1g1(x1) + d̂i + d̂1 + l̂i + l̂1)·sat

(
ej

i−1, λ
)

and γi = γ̃i + γ̂i , τi = τi + τ̂i , di = d̃i + d̂i , we will get:�

DqV ≤
N
∑

i=2

n
∑

j=1
[
∣∣∣ej

i−1

∣∣∣((γ̃i + γ̂i)gi(xi) + (γ̃1 + γ̂1)g1(x1) +
(

d̃i + d̂i

)
+
(

d̃1 + d̂1

)
+
(

l̃i + l̂i
)
+
(

l̃1 + l̂1
))
− ej

i−1(γ̂i gi(xi)

+γ̂1g1(x1) + d̂i + d̂1 + l̂i + l̂1)·sat
(

ej
i−1, λ

)
] +

N
∑

i=2

(
γ̃i Dqγ̃i + d̃i Dq d̃i + τ̃i Dqτi

)
+

N
∑

i=2
eT

i−1Ki−1ei−1

+γ̃1Dqγ̃1 + d̃1Dq d̃1 + τ̃1Dqτ1 −
N
∑

i=1
σi θ̃

T
i θ̃i

(50)

By classifying the function above as below:

DqV ≤
N
∑

i=2

(
n
∑

j=1

[∣∣∣ej
i−1

∣∣∣((γ̃i + γ̂i)gi(xi))− ej
i−1γ̂i gi(xi)·sat

(
ej

i−1, λ
)]

+ γ̃i Dqγ̃i

)
+

N
∑

i=2
(

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(d̃i + d̂i

)
− ej

i−1 d̂i ·sat
(

ej
i−1, λ

)]
+ d̃i Dq d̃i)

+
N
∑

i=2
(

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(τ̃i + τ̂i)− ej
i−1τ̂i ·sat

(
ej

i−1, λ
)]

+ τ̃i Dq τ̃i)

+
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣((γ̃1 + γ̂1)g1(x1))− ej
i−1γ̂1g1(x1)·sat

(
ej

i−1, λ
)]

+γ̃1Dqγ̃1 +
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(d̃1 + d̂1

)
− ej

i−1 d̂1·sat
(

ej
i−1, λ

)]
+ d̃1Dq d̃1

+
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(τ̃1 + τ̂1)− ej
i−1τ̂1·sat

(
ej

i−1, λ
)]

+ τ̃1Dq τ̃1

+
N
∑

i=2
eT

i−1Ki−1ei−1 −
N
∑

i=1
σi θ̃

T
i θ̃i

(51)

To determine update rules, we can act as below:

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣((γ̃i + γ̂i)gi(xi))− ej
i−1γ̂i gi(xi)·sat

(
ej

i−1, λ
)]

+ γ̃i Dqγ̃i = −αiγ̃i
2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(d̃i + d̂i

)
− ej

i−1 d̂i ·sat
(

ej
i−1, λ

)]
+ d̃i Dq d̃i = −βi d̃i

2

N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣((γ̃1 + γ̂1)g1(x1))− ej
i−1γ̂1g1(x1)·sat

(
ej

i−1, λ
)]

+ γ̃1Dqγ̃1 = −α1γ̃1
2

N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(d̃1 + d̂1

)
− ej

i−1d̂1·sat
(

ej
i−1, λ

)]
+ d̃1Dq d̃1 = −β1 d̃1

2

(52)

n

∑
j=1

[∣∣∣ej
i−1

∣∣∣(τ̃i + τ̂i)− ej
i−1τ̂i ·sat

(
ej

i−1, λ
)]

+ τ̃i Dq τ̃i = −µi τ̃i
2
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N

∑
i=2

n

∑
j=1

[∣∣∣ej
i−1

∣∣∣(τ̃1 + τ̂1)− ej
i−1τ̂1·sat

(
ej

i−1, λ
)]

+ τ̃1Dq τ̃1 = −µ1τ̃1
2

Given the definition of function ϕi−1(t), the obtained update rules will be as follows:

Dqγ̃i = −gi(xi)− αiγ̃i − γ̂i gi(xi)
γ̃i

]ϕi−1(t)

Dq d̃i = −
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− βi d̃i − d̂i
d̃i
]ϕi−1(t)

Dqγ̃1 = −g1(x1)
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− α1γ̃1 − γ̂1 g1(x1)
γ̃1

N
∑

i=2
ϕi−1(t)

(53)

Dq d̃1 = −
N

∑
i=2

n

∑
j=1

∣∣∣ej
i−1

∣∣∣− β1 d̃1 −
d̂1

d̃1

N

∑
i=2

ϕi−1(t)

Dq τ̃i = −
n

∑
j=1

∣∣∣ej
i−1

∣∣∣− µi τ̃i −
τ̂i

τ̃i
ϕi−1(t)

Dq τ̃1 = −
N

∑
i=2

n

∑
j=1

∣∣∣ej
i−1

∣∣∣− β1τ̃1 −
τ̂1

τ̃1

N

∑
i=2

ϕi−1(t)

In Equation (52), it is possible that each of the estimation errors (d̃i , γ̃i , τ̃i , i = 1, 2, 3, · · ·N) equal zero, in
which case the update rules cannot be used. Therefore, to prevent denominators from tending to zero in the
update rules, the rules will be corrected as follows:

Dqγ̃i = −gi(xi)
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− αiγ̃i − γ̃i γ̂i gi(xi)
γ̃i

2+ε
ϕi−1(t)

Dq d̃i = −
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− βi d̃i − d̃i d̂i
d̃i

2+ε
ϕi−1(t)

Dqγ̃1 = −g1(x1)
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− α1γ̃1 − γ̃1 γ̂1 g1(x1)
γ̃1

2+ε

N
∑

i=2
ϕi−1(t)

Dq d̃1 = −
N
∑

i=2

n
∑

j=1

∣∣∣ej
i−1

∣∣∣− β1d̃1 − d̃1 d̂1
d̃1

2+ε

N
∑

i=2
]ϕi−1(t)

Dq τ̃i = −
n
∑

j=1

∣∣∣ej
i−1

∣∣∣− µi τ̃i − τ̃i τ̂i
τ̃i

2+ε
ϕi−1(t)

(54)

Dq τ̃1 = −
N

∑
i=2

n

∑
j=1

∣∣∣ej
i−1

∣∣∣− β1τ̃1 −
τ̃1τ̂1

τ̃1
2 + ε

N

∑
i=2

ϕi−1(t)

where ε is positive and very small in the equation above (0 < ε� 1).

In the rules above, if
∣∣∣ej

i−1

∣∣∣ ≥ λ⇒ ϕi−1(t) = 0 , they change to the previous rules (54). Hence, Equation

(33) stands for
∣∣∣ej

i−1

∣∣∣ ≥ λ.

Given the definition of equation ϕi−1(t), we get:

|ϕi−1(t)| =

 0
∣∣∣ej

i−1

∣∣∣ ≥ λ

≤ n
4 λ

∣∣∣ej
i−1

∣∣∣ < λ
(55)

By placing corrected update rules (52) in (39), we get:

DqV ≤
N

∑
i=2

eT
i−1Ki−1ei−1 −

N

∑
i=1

(αiγ̃i
2 + βi d̃i

2 + µi τ̃i
2)−

N

∑
i=1

σi θ̃
T
i θ̃i + ρ(t) (56)

where:

ρ(t) =
N

∑
i=2

(
γ̂i gi(xi)

γ̃i
2 + ε

+
d̂i

d̃i
2 + ε

+
τ̂i

τ̃i
2 + ε

)ϕi−1(t) + ε

(
γ̂1g1(x1)

γ̃1
2 + ε

+
d̂i

d̃i
2 + ε

+
τ̂i

τ̃i
2 + ε

)
N

∑
i=2

ϕi−1(t)

Given condition
∣∣∣ej

i−1

∣∣∣ ≥ λ⇒ ϕi−1(t) = 0, we get:

DqV ≤
N

∑
i=2

eT
i−1K2

i−1ei−1 −
N

∑
i=1

(αiγ̃i
2 + βi d̃i

2 + µi τ̃i
2)−

N

∑
i=1

σi θ̃
T
i θ̃i < −µV

Which indicates the norm reduction of ei−1, θ̃i , γ̃i , d̃i , and τ̃i . Therefore, the norm of synchronization errors
is bounded.

In
∣∣∣ej

i−1

∣∣∣ < λ, we have:

|ρ(t)| =
∣∣∣∣ N

∑
i=2

( γ̂i gi(xi)
γ̃i

2+ε
+ d̂i

d̃i
2+ε

+ τ̂i
τ̃i

2+ε
)εϕi−1(t) + ε

(
γ̂1 g1(x1)
γ̃1

2+ε
+ d̂i

d̃i
2+ε

+ τ̂i
τ̃i

2+ε

) N
∑

i=2
ϕi−1(t)

∣∣∣∣
≤
∣∣∣∣ N

∑
i=2

( γ̂i gi(xi)
γ̃i

2+ε
+ d̂i

d̃i
2+ε

+ τ̂i
τ̃i

2+ε
)

∣∣∣∣ n
4 λε +

∣∣∣ γ̂1 g1(x1)
γ̃1

2+ε
+ d̂i

d̃i
2+ε

+ τ̂i
τ̃i

2+ε

∣∣∣ n(N−1)
4 λε = ρ0(t)λε
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where: ρ0(t) =
∣∣∣∑N

i=2(
γ̂i gi(xi)
γ̃i

2+ε
+ d̂i

d̃i
2+ε

+ τ̂i
τ̃i

2+ε
)
∣∣∣ n

4 +
∣∣∣ γ̂1 g1(x1)

γ̃1
2+ε

+ d̂i
d̃i

2+ε
+ τ̂i

τ̃i
2+ε

∣∣∣ n(N−1)
4 and bounded. Therefore:

DqV ≤
N

∑
i=2

eT
i−1Ki−1ei−1 −

N

∑
i=1

(αiγ̃i
2 + βiγ̃i

2 + µi τ̃i
2)−

N

∑
i=1

σi θ̃
T
i θ̃i + ρ0(t)λε

If the tracking error enters zone
∣∣∣ej

i−1

∣∣∣ < λ, it will remain there because, as soon as it reaches that zone,∣∣∣ej
i−1

∣∣∣ = λ. Given condition ϕi−1(t) = 0⇒ ρ(t) = 0 and Equation (54), the Lyapunov function derivative in the
equation is as follows:

DqV < −µV

Which indicates a decrease in all errors. Hence, by selecting λ and ε, which are sufficiently small, synchro-
nization errors would consistently be very small, and synchronization will be conducted with proper precision.

Therefore, the final control function is as follows:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i(t) + H1(x1)θ̂1(t)− Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1)) + Ki−1ei−1(t)
−(γ̂i gi(xi) + γ̂1g1(x1) + d̂i + d̂1)·sat

(
ej

i−1, λ
)

,
i = 1, 2, · · · , N − 1

(57)

Note 2: Theorems 5 and 6 are valid despite the uncertainty and disturbance, because the nature of their
proof does not depend on the existence or non-existence of uncertainty and disturbance. Therefore, the problem
of circular multi-mode synchronization is addressed in the presence of uncertainty and disturbance.

3. Application in Secure Communication Based on Mapping and Chaotic Masking
Chaotic signals have complex behavior and are thus hardly predictable. Using chaotic signals as message

carriers in secure communications and cryptography is a suitable and secure solution. Chaotic masking is a way
to hide the signal (integration of synchronization with masking) [33,37]. In this approach, the message signal is
added to a linear combination of state vector components of the master system. In other words, the message signal
information is concealed within the chaotic behavior of the state components, which can enhance communication
channel security. The message signal can be recovered from the receiver side by synchronizing the slave system
with the master system. Ensuring the synchronization error convergence to zero and the disturbance signals and
unknown parameters in the master and slave systems can increase security in the communication channel.

The following lines discuss the application of the proposed method in secure communication for chaotic masking.
Suppose m(t) is a message. It is encrypted with a proper map:

m0(t) = Λ(m(t), f (t), a) (58)

where Λ(m(t), f (t), a) is a definite and continuous function as the map, and f (t) is a definite and continuous
signal as a coder. For instance, we can define Λ(m(t), f (t), a) as follows:

Λ(m(t), f (t), a) = tanh(a·m(t) + f (t)) ,

f (t) = 0.2sin(10t) + 0.1sin(20πt) + 0.05cos(2πt), a ∈ R (59)
where a is a coefficient so that |a·m(t) + f (t)| ≤ 4 will stand.

Signals m0(t) , f (t) will be masked as follows and transmitted in two components different from the
chaotic system:

m̃(t) = m0(t) +
n

∑
i=1

λixi f̃ (t) = f (t) +
n

∑
i=1

µixi (60)

The receiver initially obtains the estimation of signals m0(t) and f (t). Then, it will calculate m̂0(t), and,
ultimately, we will calculate m̂(t) as follows:

m̂0(t) = m̃(t)−
n
∑

i=1
λiyi =

m0(t) +
n
∑

i=1
λixi −

n
∑

i=1
λiyi = m0(t) +

n
∑

i=1
λiei → m0(t)

(61)

f̂ (t) = f̃ (t)−
n

∑
i=1

µiyi = f (t) +
n

∑
i=1

µixi −
n

∑
i=1

µiyi = f (t) +
n

∑
i=1

µiei → f (t) (62)

To recover the signal of message m(t), we can do as follows:

m0(t) = Λ(m(t), f (t), a)→ m̂0(t) = Λ
(

m̂(t), f̂ (t), a
)
= tanh

(
a·m̂(t) + f̂ (t)

)
⇒ m̂(t) = 1

a (tanh−1
(

m̂0(t)− f̂ (t)
) (63)

Figure 3 shows the chaotic masking in multi-mode synchronization.
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Figure 3. Block diagram of chaotic masking with multi-state synchronization.

Various statistical methods demonstrate the efficiency of synchronization systems of chaotic systems
using image encryption. The histogram, correlation, number of pixels change rate (NPCR), unified average
changing intensity (UACI), peak signal-to-noise ratio (PSNR), and information entropy parameters were used
to demonstrate the efficacy of the proposed synchronization method for the synchronization of fractional-order
chaotic systems. The description of the image evaluation parameters is given in references [45–49].

4. Simulation and Results
Here, the fractional-order hyper-chaotic Chen system [47] and two fractional-order Chen systems are

considered as master and slave, respectively. They were determined as follows:
Dqx11 = θ11(x12 − x11) + x14(t− τ1)

Dqx12 = θ21x11 − x11x13 + θ13x12
Dqx13 = x11x12 − θ14x13
Dqx14 = x12x13 + θ15x14

(64)


Dqx31 = θ31(x32 − x31) + x34(t− τ3) + u21

Dqx32 = θ31x31 − x31x33 + θ33x32 + u22
Dqx33 = x31x32 − θ34x33 + u23
Dqx34 = x32x33 + θ35x34 + u24


Dqx21 = θ21(x22 − x21) + x24(t− τ2) + u11

Dqx22 = θ22x11 − x21x23 + θ23x22 + u12
Dqx23 = x21x22 − θ24x13 + u13
Dqx24 = x22x13 + θ25x14 + u14

(65)

where θ11, θ12, θ13, θ14, θ15 are unknown parameters. When θi4 = 0.3, θi1 = 35, θi2 = 3, θi3 = 12, θi5 = 7,
i = 1, 2, 3, then systems (64) and (65) are chaotic systems. The expressions:

u1 = [u11, u12, u13, u14]
T , u2 = [u21, u22, u23, u24]

T

are control inputs and

f1(x1) =


0

−x11x13
x11x12
x12x13

 , F1(x1) =


(x12 − x11)

x11
x12
x14



f3(x3) =


0

−x31x33
x31x32
x32x33

 , F3(x3) =


(x32 − x31)

x31
x32
x34

 , f2(x2) =


0

−x21x23
x21x22
x22x23

 , F2(x2) =


(x22 − x31)

x21
x22
x24


Error dynamics systems are attained as follows:

Dqe11 = θ21(x22 − x21)− θ11(x12 − x11) + x24(t− τ2)− x14(t− τ1) + u11
Dqe12 = (θ22x21 − x21x23 + θ23x23) + (−θ12x11 + x11x13 − θ13x31) + u12

Dqe13 = (x21x22 − θ24x23) + (−x11x12 + θ14x13) + u13
Dqe14 = (x22x13 + θ2x24) + (−x12x13 − θ15x14) + u14

(66)


Dqe21 = θ31(x32 − x31)− θ11(x12 − x11) + x34(t− τ2)− x14(t− τ1) + u21
Dqe21 = (θ32x31 − x31x33 + θ33x33) + (−θ12x11 + x11x13 − θ13x31) + u22

Dqe23 = (x31x32 − θ34x33) + (−x11x12 + θ14x13) + u23
Dqe24 = (x32x33 + θ35x34) + (−x12x13 − θ15x14) + u24

(67)
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In order to simulate, the initial states of the master system and two slave systems are chosen as follows:

x1(0) =


10
10
10
10

x2(0) =


2
2
2
2

x3(0) =


3
3
3
3


It is assumed that the initial values of the adaptive parameters are as follows:

θ̂1(0) =


3
3
3
3

θ̂2(0) =


3
3
3
3

θ̂3(0) =


4
4
4
4

σi = 10. i = 1, 2, 3, 4, 5

The parameters of the controller gains Ki−1 are as follows:

K1 =


−12 0 0 0

0 −12 0 0
0 0 −12 0
0 0 0 −12

, K2 =


−12 0 0 0

0 −12 0 0
0 0 −12 0
0 0 0 −12


Time-varying delay for master and slave systems has been considered as below:

τ1(t) =


1 0 ≤ t ≤ 2
3 2 ≤ t ≤ 4
1 t ≥ 4

τ2(t) =


1 0 ≤ t ≤ 3
2 3 ≤ t ≤ 6.5
1 t ≥ 6.5

τ3(t) =


1 0 ≤ t ≤ 2.5
3 2.5 ≤ t ≤ 5.5

1 t ≥ 5.5

Later, phase diagrams for chaotic synchronization systems will be depicted. Figure 4 illustrates the chaotic
behavior of the fractional-order system. Master and slave systems display chaotic behavior, and their parameters
are determined so that the behavior of all the systems will be chaotic.
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Figure 4. Phase diagrams for master and slave systems. (a) Master System, (b) slave System 1, (c)
slave system 2.

As can be seen from Figure 4, the phase curves of all three systems are chaotic.
In the simulations, it is supposed that the main parameters vary with time stepwise. The values of

disturbances and uncertainties are supposed as follows:

∆ f1 =


0.01x2

11cos(x11)
0.02sin(x12)

0.015x13cos(x13)
0.025sin(x14)

 . g1(x1) = |x1|2 + 20|x1|

∆ f2 =


0.15sin(x21)

0.025x22cos(x22)
0.035sin(x23)

0.02x24sin(x24)

. g2(x2) = |x2|



Big Data Cogn. Comput. 2022, 6, 51 16 of 24

∆ f3 =


0.025x31sin(x31)

0.015x31x32sin(x32)
0.035sin(x33)

0.02x34sin(x34)

. g3(x3) = |x3|2 + 14|x3|

D1 =


0.025sin

(
π
3 t
)

0.05sin
(

π
3 t
)

0.05sin
(

π
6 t
)

0.04sin
(

π
5 t
)

D2 =


0.035sin

(
π
3 t
)

0.045sin
(

π
3 t
)

0.025sin
(

π
5 t
)

0.03sin
(

π
6 t
)

D3 =


0.015sin

(
π
3 t
)

0.025sin
(

π
2 t
)

0.035sin
(

π
10 t
)

0.01sin
(

π
25 t
)


The estimation errors of the system parameters and time delay errors are shown in Figure 5. The paths of

error dynamics systems and control efforts are exhibited in Figure 6.
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Figure 6. Curves of synchronization errors obtained during disturbance and uncertainty. (subfigures
(a,b) show dynamic state errors and subfigures (c,d) show control efforts).

Figure 5 shows that the parameters and time delay errors in the multi-mode synchronization properly
converge to zero despite the uncertainty and disturbance. The figure shows minimal fluctuation. Therefore,
the synchronization approach produced successful results despite the parametric changes. Figure 5 depicts the
multi-mode synchronization errors during disturbance and structural uncertainty. Figure 6 presents the error
values for the disturbance and uncertainty boundaries estimation.

As indicated in Figure 6,despite the disturbance and uncertainty, the errors were large initially and then
approached zero with very little fluctuation. There were fluctuations in these control efforts. Synchronization
errors altered slightly with parameter variation, which rapidly converged to zero over time.

Figure 7 indicates that the errors in estimating the uncertain boundaries were initially large due to the
initial values of the parameters but are approximated to zero over time. Additionally, the errors related to the
uncertainty have converged with very little oscillation to near-zero values. The proper and fast estimation of
error boundaries as well as the rapid identification of system parameters leads to proper controller performance.
Overall, despite the disturbances, uncertainties, and parametric changes in the master and slave hyper-chaotic
systems, the multi-mode synchronization, with the help of the proposed adaptive controller, performed desirably
and produced excellent results.
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5. Experiment Results
This section describes the results of the synchronization method of the fractional-order Chen chaotic

systems for image encryption. First, the images used to perform the experiments were investigated. In the next
stage, the encrypted images were represented using the synchronization methods of the fractional-order Chen
chaotic systems for q = 0.97, followed by illustrating the histogram of the encrypted images for q = 0.97. Finally,
various statistical parameters indicated the effectiveness of the synchronization methods with the fractional-order
chaotic system.

Figure 8 illustrates the results obtained from the encryption and decryption results of the proposed secure
communication design in five benchmark images.

Figure 8 shows the proper encryption and decryption of the five benchmarks. Figure 8 gives a more precise
evaluation by comparing the histograms of the main and recovered images.

Figure 9 shows the main images on the left. In the next column, the histogram of the encrypted image
is illustrated. The third column depicts the recovered image. The fourth column shows the histogram of the
recovered image. This figure reveals that the histograms of the main image and recovered images have slight
differences. However, for more precise analysis, Table 1 demonstrates the results of various statistical criteria.
This table shows histogram criteria, correlation, UACI, NPCR, PSNR, and information entropy.
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Figure 9. Displayed histograms for various Benchmark images encrypted using synchronization of
the fractional-order chaotic system (q = 0.97).

Table 1. Statistical metrics Benchmark images (q = 0.97).

Images
Histogram

Correlation
Differential Attack

PSNR Information
EntropyMain Encrypted Decoded NPCR (%) UACI (%)

Image 1 36,233.046875 10,278,639.63281 35,454.91406 0.9996 99.99 33.46 43.1049 7.590

Image 2 40,953.960938 10,271,802.38281 40,603.99218 0.9993 99.98 33.55 42.8879 7.435

Image 3 61,975.74210 10,270,160.96093 70,547.03900 0.9989 99.69 33.16 43.0529 7.210

Image 4 75,071.242188 3,805,961.023438 75,522.007813 0.9996 99.61 33.46 45.7973 7.421

Image 5 17,756.507813 3,806,198.531250 17,534.671875 0.9998 99.92 33.47 43.9077 7.822

Table 1 reveals that the histograms obtained from the main and the recovered images have slight differences.
The correlation between the main and the recovered images is extremely close to 1. The NPCR is approximately
100%. Moreover, good values were obtained for UACI and PSNR. All five images have an information entropy
greater than 7. The results suggest that the proposed communication design method successfully encrypted and
recovered the main images.

6. Discussion, Advantages and Disadvantages, and Future Works
This paper presents a new secure communication based on Chen fractional order-order chaotic synchroniza-

tion. This study mainly aims to propose a synchronization method based on multi-mode adaptive control and
the Chen fraction order chaos system to encode images. In this work, experiments on five benchmark images
were used with 256 × 256 dimensions. Next, the cryptographic method based on synchronization of the Chen
fractional order chaos system was applied to benchmark images. The fractional order Chen chaotic system had
different delay and q values in this section. Moreover, the presence of an unknown delay factor in the systems
complicated the synchronization problem.

Next, the masking technique of chaotic systems was used to encode images. Then, the parameters of
histogram, correlation, N.P.C.R., U.A.C.I., P.S.N.R., and information entropy for benchmark images were obtained
to demonstrate the efficiency of the proposed synchronization method. The experimental results indicated that
the Chen fractional order synchronization method performed successfully. Derivative change varies the behavior
of the system as a whole. This is an essential point in cryptography that reduces the possibility of decryption.
Considering that the image data are combined with chaotic signals, the amount of security in encryption is
sufficiently high. In this mechanism, the parameters of system and time delays are unknown. Moreover, the
presence of nonlinear uncertainty makes its detection harder. Results from the rigorous security analysis (fractional
order, correlation coefficient, entropy, NPCR, etc.) proved that the proposed method was robust and that the
proposed scheme had a high security order. Thus, it can be used for real-time transmission of other images.

Table 2 indicates the high efficiency of the proposed method compared to other studies.
According to Table 2, it can be perceived that our proposed method has a high efficiency compared to

other research.
Reviewing the previous studies indicates that little attention has been paid to time delays in communication

designs with fractional chaotic system synchronization. The available secure communication synchronization
designs ignore unknown time delays, exogenous disturbances, and unknown parameters at the same time.
However, our proposed design is comprehensive, considers all factors, and is accompanied by a new function
introduced for secure communication based on a flexible map with time-varying coding. The simulations showed
that the proposed algorithm performed flawlessly against parameter changes, disturbance, time delays, and
uncertainty. The guarantee of system stability is based on Lyapunov’s function. The main reason for the proper
performance of the proposed method lies in the form of updated rules obtained in the article; these rules were
defined in such a way that the necessary and sufficient conditions for stability in the concept of Mittag-Leffler
were established. On the other hand, the method can quickly estimate the parameters and the error of estimating
the disturbance and uncertainty boundaries, which results in a faster reaction of the controller against undesirable
factors. In general, the proposed method meets all the requirements and has the ability to be implemented in
different applications.
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Table 2. Comparison of the proposed method with other related works.

Reference Dataset Types of Data Encryption Method Details Encryption
Method

Type of Delay
Details of Method

Unknown
Parameters Disturbance

[30] sinusoids
signal - Fractional-Order

Chaotic Systems Genesio–Tesi system 5 5
√

[31] Voltage
signal - Fractional-Order

Chaotic Systems

Seven-dimensional
fractional-order
chaotic system

5 5 5

[32] sinusoids
signal - Fractional-Order

Chaotic Systems
Exponential Chaotic

System 5 5 5

[33] sinusoids
signal - Fractional-Order

Chaotic Systems
FO complex chaotic

Lü system 5 5 5

[34] sinusoids
signal - Fractional-Order

Chaotic Systems

A Novel Fractional
Order Chaotic

System
5 5 5

[35] square
signal - fractional-order

chaotic systems Chua system 5 5 5

[36] sinusoids
signal - fractional-order

chaotic systems

Fractional chaotic T
system via matrix

projective
5

√ √

[37] sinusoids
signal - fractional-order

chaotic systems

fractional-order Chen
and lu hyper-chaotic

systems
5

√
5

[39]

Benchmark
and

Medical
Image

Color images Integer-order chaotic
systems

Fast Reaching Finite
Time synchronization 5 5

√

[50] Benchmark
Images Color images Fractional order

system
Fractional Order
Chaotic Systems 5 5 5

[51] Benchmark
Images

Gray Scale
Images

Fractional order
system

Fractional-Order
Simplest Chaotic 5 5 5

[52] - - - - Constant-
known

√
5

[53] - - - - Constant-
known 5 5

[54] - sine signal - chaotic masking Time varying-
known

√ √

[55]
“Travelling”

music in
Matlab

speech signal complex Lü systems
self-time-delay

synchronization and
chaotic masking

constant-
known 5 5

Proposed
method

Benchmarks
Images

Gray Scale &
color Images

Fractional order
system

Multi-Mode
Synchronization of
Fractional-Order
Chaotic Systems

Time varying-
unknown

√ √

In the proposed method, four significant and real factors, including disturbance, uncertainty, time delays,
and parameter changes, are considered simultaneously, which helps achieve the highest performance. It is also
beneficial in practical implementations. Still, the presented approach applies to a variety of chaotic systems. The
resulting control law is considered as an explicit and continuous function. Additionally, the proposed theorems
have the ability of two types of multi-mode synchronization. Additionally, the amplitude of the control function
is generally significant in the proposed method; if the changes in the parameters are permanent and at a high rate,
the recommended algorithm will not yield outstanding performance.

Being based on the Caputo fractional-order derivative can be considered one of the disadvantages of this
method. Moreover, parameter changes are only considered as a step change. Proving equivalence between the
two types of synchronization, proving convergence of all the errors to zero in the presence of disturbance and
uncertainty, the continuation of control laws, and proving efficiency are some of the advantages of this proposed
method. To develop the proposed method and solve its weaknesses, we must do as follows: develop the proposed
method for other fractional-order derivatives, develop the proposed method for parameters with permanent
changes, and analyze the application of the proposed method in secure communication.
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It is recommended that future research should address the values of time-varying fractional orders, since
reference [56] suggests that this could describe the system more effectively. As future tasks in the synchronization
method section, first-and-second-order fuzzy controllers can be adopted. Due to the uncertainty in medical data,
fuzzy systems (type 1 and type 2) are highly productive. Modeling chaotic systems using fuzzy systems and
fuzzy controller design can provide better answers to the synchronization problem. Applying a fuzzy polynomial
system is highly effective in chaotic systems modeling and in their synchronization.

7. Conclusions
This paper investigated the multi-mode synchronization of fractional-order hyper-chaotic systems in the

presence of uncertainty, disturbance, time delays, and parameters with stepwise changes in both transmission
and circular modes. First, the results confirmed that they are equivalent to the synchronization method. Then, by
defining the appropriate Lyapunov function and proofing the theorems, the rules for updating the parameters,
as well as error estimating the disturbance and uncertainty boundaries, were assigned. Nonetheless, it should
be noted that the stability of the dynamical synchronization system guarantees that all of the synchronization
errors, the parameter estimation errors, the disturbance boundary estimation errors, and the uncertainty boundary
estimation errors converge to zero. Determining the control law as an explicit and continuous function inhibited
chattering. The results also indicated that the rate of change of parameters was not high since the proposed
algorithm still displayed an acceptable performance. Simulations were conducted in the presence and absence of
disturbance and uncertainty to investigate the effectiveness of the proposed method. The proposed controller
reduced synchronization errors, disturbance errors, and uncertainties to zero with low fluctuation near zero,
despite changes in time-varying parameters of hyper-chaotic systems. During the parameters changing, a small
deviation in synchronization errors was quickly depreciated.

Moreover, unknown time delays were considered. With the help of adaptive regulations, these delays were
estimated and used in equations of control effort. Despite these delays, the results revealed that synchronization
was appropriately conducted. Additionally, a novel masking design was proposed using the hyperbolic tangent
modulation function. To assess this design, benchmark images were encrypted. Various statistical criteria
including PSNR, UACI, NPCR, histogram, and correlation were analyzed. The simulation results indicated that
the proposed design was successful. The obtained higher efficiency results clearly demonstrated the superiority
of the proposed method.
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