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Abstract: Background: Operating rooms are the core of hospitals. They are a primary source of
revenue and are often seen as one of the bottlenecks in the medical system. Many efforts are made
to increase throughput, reduce costs, and maximize incomes, as well as optimize clinical outcomes
and patient satisfaction. We trained a predictive model on the length of surgeries to improve the
productivity and utility of operative rooms in general hospitals. Methods: We collected clinical
and administrative data for the last 10 years from two large general public hospitals in Israel. We
trained a machine learning model to give the expected length of surgery using pre-operative data.
These data included diagnoses, laboratory tests, risk factors, demographics, procedures, anesthesia
type, and the main surgeon’s level of experience. We compared our model to a naïve model that
represented current practice. Findings: Our prediction model achieved better performance than
the naïve model and explained almost 70% of the variance in surgery durations. Interpretation: A
machine learning-based model can be a useful approach for increasing operating room utilization.
Among the most important factors were the type of procedures and the main surgeon’s level of
experience. The model enables the harmonizing of hospital productivity through wise scheduling
and matching suitable teams for a variety of clinical procedures for the benefit of the individual
patient and the system as a whole.

Keywords: surgery; electronic health records (EHR); prediction model; operation room (OR); machine
learning

1. Introduction

Conducting general surgical activity within the framework of a public general hospital
is a challenge; it involves a highly complex ensemble composed of multidisciplinary teams,
working in a risky, overloaded, uncertain environment. Yet, it encompasses promises for
better health solutions for the patient and professional quality branding for the hospital
in a competitive health arena. Moreover, operating rooms are the most important source
of both income and expense for hospitals and the most profitable path for the supplier.
Therefore, hospital managers are motivated to increase the effectiveness of schedules and
plans [1]. The productivity of operating rooms influences not only the performance-related
financial status of hospitals [2] but may also affect service quality and patient satisfaction.

Many elements may affect the effective synchronization of hospital surgical activity,
especially when multiple surgical theaters (STs) are involved. These include operational
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space, equipment, scheduling, various combinations of skilled teams, personal contracts
with workers, and costs. In a public healthcare system with complete insurance coverage
such as in Israel, no selection of cases occurs, so the case mix is unpredictable. Hence,
surgical activity is mostly dictated by clinical urgency and medical guidelines.

Factors that influence operating room (OR) performance include the characteristic
of the surgery (elective/non-elective) and performance criteria such as waiting time (pa-
tient/surgeon), utilization and flow (OR, ICU), overtime, completion time and patient
postponement/rejection and preferences, as well as humanitarian-ethical aspects and
financial assets [1].

Above all, there is the need to deal with unexpected changes in the operational
program as well as urgent patients who burst into the scheduled program, on top of
cancellations due to either a patient’s condition or hospital constraints. Thus, ST adminis-
trators tend to limit activity to the most minimal timeframe possible, yielding insufficient
utilization and productivity.

A relatively simple method to organize OR utilization is to plan a daily or weekly
program by the cumulative length of sequencing procedures. The duration of each pro-
cedure may be influenced by factors related to the patient or their caregivers, and daily
planning should integrate all these factors, as well as the average or median time for
each of the procedures. A successful plan is often a reflection of an OR administrator’s
long-term experience.

Currently, a sufficient OR utilization plan is achieved about one-third of the time.
The rest are shorter or longer than optimal utilization and far from maximizing hospital
capacity [3]. These gaps not only harm patients by delaying treatment but also reduce
income [4] and patient satisfaction [5], as well as overloading hospital personnel. Even in a
publicly funded health system, managers cannot ignore the potential benefit embedded in
increasing surgical activity, to enhance income and branding.

In the United States, nearly a third of all surgeries are overlapping surgeries, which
are defined as two surgeries performed by the same surgeon that overlap in time. This
policy has received significant legal and public scrutiny in aspects related to safety and
transparency [6], and therefore some hospitals have revised administrative policies, elimi-
nating the prospect of overlapping surgeries [7]. The change in policy on the subject has
led to a decrease in the efficiency and outputs of hospitals and has far-reaching economic
consequences [8]. It is therefore a prerequisite to achieve a more accurate OR schedule for
predicting the preliminary times of each individual surgery that can serve as a significant
tool for improving efficiency and productivity in the new legal situation.

OR scheduling is traditionally based on a surgeon’s self-estimation of operation
duration, yet the accuracy of these evaluations is far from being sufficient to enhance
performance [9]. Solutions to maximize OR performance have been discussed. Di Mar-
tinelly suggested a model focusing on the relationship between the operating room and
nurse management, while considering resource constraints [10]. Various mathematical
models have been offered: Hanset proposed a theoretical surgical journey simulation that
involves estimating an optimal time slot for each operation, focusing on technical solutions
such as operation starting time and recovery bed availability [11]. Pham suggested using
multimode job shop or blocking [12]. Lin developed an artificial bee colony algorithm to
quickly find feasible solutions based on the earliest due date and longest processing time
rules [13]. Technical, managerial tools have also been reported, such as a dashboard to
assess workflows of patients to enhance evaluation and prioritization, using hierarchic
filters of date, time, duration, location, surgeon characteristics, and procedure features [14].
A Monte Carlo simulation was used to guide decisions on balancing resources for elective
and non-elective surgical procedures [15]. And finally, Bartek et al. developed predictive
models based on average historic procedure time and surgeon estimates [16]. They used
single-site data to develop a model per surgeon and per service, which limits the usage of
such a model for only the 12 services and 93 surgeons used.
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Different ML-based approaches have been developed to pursue an advanced method-
ology for managing OR utilization. ML is the field of computer algorithms that can perform
a task based on experience [17]. The advantage of ML-based models vs. rule-based models
is that ML models are data-driven and not knowledge-driven. In addition, ML-based
models can take into account complex relationships between data points. The computa-
tional models are trained on large datasets representing past experience and are driven
by algorithms to accurately predict unknown labels or future events. An example of
such prediction models is diagnosing disease from X-ray images [18]. Furthermore, it
has been found that implementing ML algorithms that detect intracranial hemorrhage on
non-contrast-enhanced head CT studies within the clinical workflow reduced wait time,
and thus overall turnaround time, when specifically used to prioritize examinations [19].

However, while adopting artificial intelligence (AI) in imaging focuses on analyzing a
constellation of unstructured data (volume), implementing AI in operating room planning
strategy differs slightly from our model, which is based on multi-dimensional data that
change over time (variety, velocity, and volume). Recently, ML models for OR facilities
were developed: for example, to analyze the key factors that affect the identification of
surgeries with high cancellation risk [20]; to improve the accuracy of duration prediction
of complex surgical activities, such as the duration of robot-assisted surgery [21]; and to
improve the whole surgical workflow [22]. ML can also be used for improving surgery
training [23]. Our assumption is that OR performances may be measured, analyzed, and
assessed through a wise model to achieve better consequences, that is, to enable health
managers to identify pathways to improve patient outcomes, increase the quality of care,
and even prioritize OR activities through the lens of economic benefit as well.

In order to increase OR utilization, we developed an ML model for predicting surgery
duration using pre-operative data of the coming operations. The scheduling for elective
surgeries was done on the day before surgery. We collected relevant data from two general
public hospitals in Israel, trained the models, and evaluated performances.

2. Methods
2.1. Data Source

The data are an extract of the electronic health records (EHR) from two general
hospitals: Hillel-Yaffe (HY) and Shamir (SH). They are both public hospitals owned and
managed by the Israeli Ministry of Health, with 515 and 891 beds, respectively. Both HY
and SH are single-site medical centers. Both treat the general population in their region
without restriction to specific health care insurance providers, meaning no cream skimming
or population bias exists. The data contain all surgeries that occurred from December 2009
to May 2020 in these two medical centers.

2.2. Outcome Measures and Predictors

Surgery length was defined as the difference between the time when the patient
entered the operating room and when they left it. An alternative definition for the duration
of the operation is the time from the first cut to closure, but this was not used here, as we
also wanted to estimate the time of logistical preparation in the operation room, including
anesthetic procedures, thereby estimating the actual OR occupancy slot rather than surgeon–
procedure performance time.

2.3. Data Cleaning and Preprocessing

The features for the prediction model were clinical data from the EHR, and we used
only the data that was available before the surgery took place. Our dataset covered
demographic data such as age, gender, country of origin, marital status, number of children,
religion, and weight. It also included operative plan data such as procedures, localization,
type of anesthesia, number of surgeons, and the main surgeon’s level of experience (hours
in the operating room and number of operations participated in). In addition, it included
clinical data such as previous diagnoses, drug prescriptions, last laboratory test results,
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smoking status, and risk factors (Supplementary Table S1). The source data included
13,520 types of diagnoses in ICD9-CM codes. We grouped them into 282 higher-order
single-level disease categories using Clinical Classifications Software (CCS) (Agency for
Healthcare Research and Quality (AHRQ), Rockville, MD, USA) [24]. The number of
different drugs administrated was 3698. Drugs were grouped into 930 categories based on
matching Anatomical Therapeutic Chemical (ATC) 5th level. The complete list of features
is given in Supplementary Table S1.

Overall, 122,439 surgeries data were extracted from HY and 175,041 from SH EHRs.
We excluded samples with missing data regarding the operating room, time of entrance
or time of exit from the OR (1491 surgeries), gender, age, or main surgeon (205). We also
excluded surgeries with possible bias of an atypical manner, such as surgeries performed
outside the planning schedule (i.e., from 7 PM to 7 AM) (9529 HY, 12,929 SH) or performed
during the weekend (Friday or Saturday) (7778 HY, 10,346 SH), as well as surgeries shorter
than 10 min (1874 HY, 1719 SH). Overall, 102,301 (149,308) surgeries of 77,643 (119,525)
unique patients from HY (SH) were used in our analysis (Figure 1).

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 4 of 13 
 

children, religion, and weight. It also included operative plan data such as procedures, 
localization, type of anesthesia, number of surgeons, and the main surgeon’s level of 
experience (hours in the operating room and number of operations participated in). In 
addition, it included clinical data such as previous diagnoses, drug prescriptions, last 
laboratory test results, smoking status, and risk factors (Supplementary Table S1). The 
source data included 13,520 types of diagnoses in ICD9-CM codes. We grouped them into 
282 higher-order single-level disease categories using Clinical Classifications Software 
(CCS) (Agency for Healthcare Research and Quality (AHRQ), Rockville, MD, USA) [24]. 
The number of different drugs administrated was 3698. Drugs were grouped into 930 
categories based on matching Anatomical Therapeutic Chemical (ATC) 5th level. The 
complete list of features is given in Supplementary Table S1. 

Overall, 122,439 surgeries data were extracted from HY and 175,041 from SH EHRs. 
We excluded samples with missing data regarding the operating room, time of entrance 
or time of exit from the OR (1491 surgeries), gender, age, or main surgeon (205). We also 
excluded surgeries with possible bias of an atypical manner, such as surgeries performed 
outside the planning schedule (i.e., from 7 PM to 7 AM) (9529 HY, 12,929 SH) or performed 
during the weekend (Friday or Saturday) (7778 HY, 10,346 SH), as well as surgeries 
shorter than 10 min (1874 HY, 1719 SH). Overall, 102,301 (149,308) surgeries of 77,643 
(119,525) unique patients from HY (SH) were used in our analysis (Figure 1). 

 
Figure 1. Data selection flow chart. 

Missing data were not imputed, as the two types of prediction models we used 
handled missing data. The naïve model (described below) predicts the median length for 
the procedures and therefore was not affected by missing values. The XGBoost model is 

HY surgeries
122,439

295,784
surgeries

295,989
surgeries

SH surgeries
175,041

205 surgeries
missing age,
gender, main

296,480
surgeries

1491 surgeries
w/o operation 
length

surgeon

273,326
surgeries

22,458 night
surgeries

258,194
surgeries

15,132
weekend
surgeries

254,623
surgeries

HY surgeries
102,301 149,308

SH surgeries

3571 surgeries
shorter than 10

min

Figure 1. Data selection flow chart.



Big Data Cogn. Comput. 2022, 6, 76 5 of 13

Missing data were not imputed, as the two types of prediction models we used handled
missing data. The naïve model (described below) predicts the median length for the
procedures and therefore was not affected by missing values. The XGBoost model is based
on decision trees that handle missing values by adding branches for such values [25,26].

Continuous variables were standardized by reducing the mean value and dividing
by the standard deviation of the training samples. Categorical variables such as previous
diagnoses and procedures were represented using a one-hot encoding, such that every
diagnosis or procedure was represented as a binary feature that indicated whether a specific
diagnosis or procedure was recorded in this sample or not.

2.4. Models’ Training

Because data sharing was impracticable due to indecisive regulation, we repeated the
analysis, including data extraction, cleaning, training, and testing the models independently,
in each medical center. We split the data to train and test based on the year of operation.
Such a split procedure was intended to mimic real-world scenarios, where models are
trained on past data and evaluated on surgeries occurring afterward. Surgeries performed
before 2018 were used to train the model, and the others were used as the testing set. We
trained two types of models. As a baseline, we trained a naïve model based on the median
length of similar surgeries. For a given surgery with a specific set of procedures, the naïve
model predicted the duration of this surgery to be the median duration of all surgeries in
the training data having the same set of procedures. The naïve model did not consider
other factors and parameters of the surgery or the patient. Therefore, missing factors did
not affect the prediction.

The second type of model was an eXtreme Gradient Boosting (XGBoost) model based
on the gradient boosting framework of multiple trees [25]. We used the training data to
optimize the hyperparameters of the XGBoost model using Bayesian search and 5-fold cross-
validation. Bayesian optimization uses a posterior distribution of optimization function,
and as the number of hyperparameters it tries increases, the distribution function becomes
more competent at finding the optimal hyperparameters. We used the BayesianOptimiza-
tion function in the bayes_opt Python package [27] for hyperparameter optimization in our
Bayesian approach [28]. The list of parameters that were optimized, their range, and the
optimal values are described in Table 1.

Table 1. XGBoost Hyperparameter tuning. The list of parameters, the description, and the name of
the parameter in the XGBoost package are given in the table in addition to the range in which the
parameters were optimized as well as the optimal values in SH and HY.

Parameter Type Parameter Name in
XGBoost Package Range of Search Optimal Value in SH Optimal Value in HY

Subsample ratio of columns when
constructing each tree colsample_bytree 0.6–1 0.713555 0.991201

Minimum loss reduction required
to make a further partition on a

leaf node of the tree
gamma 0–5 2.206600 1.073363

Step size weight shrinkage learning_rate 0.01–1 0.247214 0.271243
Maximum depth of a tree max_depth 3–6 5 5

Minimum sum of instance weight
needed in a child min_child_weight 1–10 5.427004 1.240320

Number of trees n_estimators 100–1000 762 486
Subsample ratio of instances subsample 0.6–1 0.767184 0.818254

2.5. Evaluation Metrics

Surgery lengths vary for different procedures, and every evaluation metric has limita-
tions. Therefore, we used several evaluation metrics.
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The root mean squared error (RMSE) is the square root of the average of squared errors:

RMSE(ŷ, y) =

√
∑n

i=1(ŷi − yi)
2

n

where ŷ is the predictions vector, y is the vector with true labels, and n is the number
of samples.

The disadvantage here is that RMSE gives higher weights to larger errors, as the error
is squared.

The mean absolute error (MAE) is the average of absolute errors.

MAE(ŷ, y) =
1
n

n

∑
i=1
|ŷi − yi|

The explained variance (EV) is the fraction of the model’s total variance explained by
the present factors. In regressions, it is also called the coefficient of determination (R2).

The mean absolute percentage error (MAPE) is the average of normalized errors where
each prediction’s error divided by the actual label.

MAPE(ŷ, y) =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
The mean log2 ratio (ML2R) is the mean of log in base 2 of the ratio of observed vs.

expected length of surgery.

ML2R(ŷ, y) =
1
n

n

∑
i=1

log2

∣∣∣∣yi
ŷi

∣∣∣∣
3. Results
3.1. Data Sets

In total, the data of 121,539 and 174,450 surgeries were extracted from HY and SH
from 77,643 and 119,525 patients, respectively (Figure 1). Slightly more than half of the
surgeries were performed on females (59% and 51% in HY and SH). The number of unique
procedure types was 3544 in HY and 4721 in SH. Data were extracted from December 2009
to May 2020. The number of surgical departments was 17 in HY and 30 in SH, and the
number of surgeons was 580 in HY and 983 in SH. The average surgeon’s age was 46.2 in
HY and 49.5 in SH. The average number of diagnoses per patient prior to surgery was 8.62
in HY and 8.86 in SH. The average surgery duration was 67.85 min in HY and 81.73 min in
SH (Table 2 & Figure 2). The range of surgery durations in HY was 10 to 939 min (median
52.45 and average of 67.85 min) and 10 to 1184 min (median 60.95 and average of 81.73 min)
in SH.

Using a density plot of surgery length, we can see that the distribution has a long right
tail, with very few surgeries that took a very long time. A similar pattern is seen in both
hospitals, yet the average surgical length in HY was shorter (Figure 2).

Surgery length distribution varied across the surgical units and medical centers
(Figure 3). Slight differences in the number of surgical departments (20 in HY, 26 in SH)
were found. Accordingly, the intensity of performance based on the number and seniority
of acting physicians is presented.
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Table 2. Statistical summary of the data used in the study, stratified by hospital. N: Number of
surgeries. IQR: Interquartile Range.

HY SH

N 121,539 174,450
Demographic
Age (median, IQR) 44 (30–64) 51 (29–68)
Females (%) 59.4 50.0
Preoperative
Number of drugs (median, IQR) 9 (4–17) 9 (4–18)
Number of diagnoses (median, IQR) 6 (3–11) 6 (3–11)
Surgeon’s experience
Number of previous surgeries (median, IQR) 432 (158–863) 361 (133–775)
Total hours in operating room (median, IQR) 435.55 (154–892) 428 (155–963)
Surgery
Number of procedures (median, IQR) 1 (1–1) 1 (1–1)
Operating time in minutes (median, IQR) 52.45 (31–85) 60.95 (38–102)
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3.2. Model Development

Data was split to train and test such that surgeries from 2018 and on were only used
for testing. In SH, 113,594 (77.04%) surgeries were used for training and 35,714 surgeries
(22.96%) for testing. In HY, 91,240 (76.67%) surgeries were used for training and 27,756
(23.33%) for testing.

We evaluated the feature importance of the model based on the F-score [29], which is
a common way of estimating a feature’s importance. In short, it is the number of times a
feature was used to split data in all trees. Feature importance was computed separately for
each hospital, meaning that we trained, tested, and evaluated one model for HY and one
for SH. The top six most important features in the two models (for both HY and SH, in the
same order of importance) were: the main surgeon’s experience (in number of surgeries
previously conducted), the patient’s age, the number of surgeons assigned to the surgery,
the number of diagnoses, the number of drugs, and the number of planned procedures.
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3.3. Model Performance

The performances of the models are summarized in Table 3. Using different measures
of performance evaluations, the XGBoost models performed better than the naïve models:
the MAE was 21.5 compared to 25.4 in HY and 25.3 compared to 28.7 in SH; RMSE, 36.6
vs. 49.0 (HY), 40.3 vs. 55.0 (SH); PVE, 66.7 vs. 44.0 (HY), 70. vs. 46.8 (SH); and ML2R, 0.46
vs. 0.53 (HY) and 0.46 vs. 0.49 (SH). In the case of MAPE, differences between the naïve
and the ML-based model were minor—35.15 vs. 35.37 in HY and 35.09 vs. 32.48 in SH
according to hospital performance evaluations.
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Table 3. Models’ performances on the test set.

Hospital HY SH

N 27,752 39,468
Median length 54.06 67.35

Model Naïve XGB Naïve XGB

MAE 25.44 21.52 28.69 25.23
RMSE 49.03 36.64 55.03 40.26
MAPE 35.36 35.16 32.48 35.11

PVE 44.02 66.71 46.75 69.97
ML2R 0.14 −0.05 0.14 −0.06

AbsErr ≤ 10 min 40.48 40.95 36.79 32.89
AbsErr ≤ 20 min 63.18 65.56 59.76 57.25

AbsErr ≤ 10% 21.03 22.49 21.93 21.69
AbsErr ≤ 20% 39.63 42.65 42.41 41.21

N: number of samples in the test set; MAE: mean absolute error; RMSE: root mean squared error; MAPE: mean
absolute percent error; PVE: percent variance explained; ML2R: mean of base 2 log of the ratio of observed
and predicted lengths; AbsErr ≤ 10 min: percent of surgeries with predicted error less than or equal to 10 min;
AbsErr ≤ 10%: percent of surgeries with absolute error smaller or equal to 10% of observed length. Bold face
marks the model with best performance according to each evaluation metric in each medical center.

Due to the variety in typical or average surgery length between surgery units and
surgery types, we evaluated the same model stratified by surgery unit and by procedure.
Different evaluation measurements were biased by the duration of surgeries. For example,
MAE and RMSE had on average higher rates of error for more lengthy procedures. In
Figure 4, we plotted the performances according to different measurements by the median
length of surgery of that unit. MAPE, PVE, and ML2R were much less affected by the
duration of surgeries. As shown in Figure 4, the average MAE and RMSE per surgery unit
were highly correlated with the unit’s median surgery duration, whereas MAPSE, PVE,
and ML2R were poorly correlated with median surgery duration. This was due to the fact
the last three included normalization (see Methods).
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4. Discussion

To optimize the utilization of operating rooms, managers and researchers need to
balance the productivity and effectiveness of staff alongside the available resources. Other
investigators have already developed technical and mathematical models to address this
challenge, mainly in a theoretical manner. We present a novel predictive model based
on accumulative data from two large medical centers. In contrast to other, previous
works [16,30], we used different methods to achieve the same goal of optimizing the
prediction of time usage in the operating room. We focused on patients’ clinical parameters
including diagnoses, laboratory tests, risk factors, and more, as well as surgeons’ cumulative
experience over 7 years.

The performances of the models are summarized in Table 3. Using different measures
of performance evaluation, XGBoost models performed better than the naïve model except
for MAPE, in which we found only a slight difference between the naïve and the ML-based
model. One drawback of MAPE is that it is not symmetric. For example, if the actual length
of a surgery is 10 min and the prediction is 100 min, then the MAPE is |10−100|

10 = 900%,
while in the symmetric case, where the actual length is 100 min and the prediction is 10 min,
the MAPE is |100−10|

100 = 90%. Therefore, the same absolute error gives a MAPE of an order
of magnitude larger.

The length of surgeries varies across surgery units (Figure 3) and surgery types.
Therefore, a prediction that is 10 min off for a surgery that typically takes 20 min is a small
error on an absolute scale but a large one on percent scales.

The model is surgeon-based, meaning that the surgeon’s experience plays a significant
role in prediction, which is in accordance with previous studies [31,32]. Inter-hospital
variation among medical personnel (experienced versus inexperienced) will shift the pre-
dictive performance curve. Thus, the model may serve as a powerful tool for hospital
managers, especially when considering relatively small or rural hospitals. We suggest
that this tool enables policymakers to plan strategies that reduce geographic and socio-
economic gaps among subpopulations by targeting nationwide hospital human resources.
In addition, it can improve human resource allocation and utilization by automating the
surgery scheduling that is often done by humans.

Moreover, maximizing OR utilization and minimizing overflow can, in the long run,
reduce the load on personnel, improve staff satisfaction, and reduce burnout, and thus
expand the benefit to the entire healthcare system beyond enhancing performance. OR
managers may consider the benefit of AI as a decision support tool, using simulation-based
training assistance [23]. Moreover, hospitals may expect to significantly reduce financial
losses with the introduction of policies regulating OR scheduling. This should be conducted
wisely to maximize efficiency while still fulfilling the ethical duty to patients [8].

The strengths of our model are that it is based on “real world” accumulative data
from two large general hospitals and we used a train and test phase for validation. Our
model was trained on a large variety of procedures and no specific surgery types were
preselected, other than the exclusion of extremely non-representative surgeries (shorter
than 10 min) and those missing data. Moreover, our model is not limited to previously
seen procedures or surgeons and can handle missing data. The prediction accuracy of
our model was solid, confirming that OR operational performance can be increased by
managerial tools. One must bear in mind that we excluded samples with missing data,
surgeries performed outside the planning schedule (during a night shift or during the
weekend), and surgeries shorter than 10 min, as their predictive value was questionable.

The main limitation of our models is that the model was validated by analyzing only
two medical centers. However, we assume that it can be expanded to a national level for
decision-makers. The next step is to analyze data from the 11 general public hospitals
that are the core network of care providers, thus enabling validation of this model on a
national level.

The model’s performance varied across surgery units. For example, the unit with
more than 50 test samples with the lowest RMSE was found to be the IVF department,
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with a RMSE of 6.9 min (Supplementary Table S2). This is probably because the range of
different procedures performed there is small, and do not tend to lead to complications.
Based on other evaluation metrics, different models achieved the best performance for
different departments. For example, the obstetrics department had the highest MAPE,
while the pediatrics department had the highest ML2R.

5. Conclusions

Surgery length prediction is possible via integrating clinical data and surgeons’ level
of experience. We anticipate that such a prediction model can improve the utilization of OR
resources. Such a model may be more suitable for some surgery units or types of surgeries
than others.

In this study we demonstrated the principle wherein big data can be used to better
predict the duration of surgery in a general hospital. This study should be seen as a
proof of concept. Yet, our model’s performance was not optimal for all surgery types and
surgical departments. Moreover, the prediction model can be further expanded to other
surgical outcomes, such as predicting the length of post-surgery hospitalization, significant
complications, and even the success or failure of surgery. These advanced capabilities will
have a significant impact worldwide, both on clinical aspects of quality and safety as well as
economic aspects. Since our model is surgeon-dependent, it may raise questions regarding
personal and professional abilities that may require input by surgeons’ professional guilds.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/bdcc6030076/s1: Supplementary Table S1: Final list of features
used for training the model, Supplementary Table S2: Model performance by surgery unit.
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1. Gür, Ş.; Eren, T. Application of operatonal research techniques in operating room scheduling problems: Literature overview. J.

Healthcare Eng. 2018, 2018, 5341394. [CrossRef] [PubMed]
2. Lin, Q.-L.; Liu, L.; Liu, H.-C.; Wang, D.-J. Integrating hierarchical balanced scorecard with fuzzy linguistic for evaluating operating

room performance in hospitals. Expert Syst. Appl. 2013, 40, 1917–1924. [CrossRef]
3. Kougias, P.; Tiwari, V.; Barshes, N.R.; Bechara, C.F.; Lowery, B.; Pisimisis, G.; Berger, D.H. Modeling anesthetic times. Predictors

and implications for short-term outcomes. J. Surg. Res. 2013, 180, 1–7. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/bdcc6030076/s1
https://www.mdpi.com/article/10.3390/bdcc6030076/s1
http://doi.org/10.1155/2018/5341394
http://www.ncbi.nlm.nih.gov/pubmed/30008991
http://doi.org/10.1016/j.eswa.2012.10.007
http://doi.org/10.1016/j.jss.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23158406


Big Data Cogn. Comput. 2022, 6, 76 12 of 13

4. Kayis, E.; Wang, H.; Patel, M.; Gonzalez, T.; Jain, S.; Ramamurthi, R.; Santos, C.; Singhal, S.; Suermondt, J.; Sylvester, K. Improving
prediction of surgery duration using operational and temporal factors. In AMIA Annual Symposium Proceedings; American Medical
Informatics Association: Rockville, MD, USA; Volume 2012, pp. 456–462.

5. Stepaniak, P.S.; Heij, C.; Mannaerts, G.H.; de Quelerij, M.; de Vries, G. Modeling procedure and surgical times for current
procedural terminology-anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and operating
room efficiency: A multicenter study. Anesth. Analg. 2009, 109, 1232–1245. [CrossRef] [PubMed]

6. Saltzman, J.; Abelson, J. Overlapping surgeries to face US Senate inquiry. Boston Globe, 13 March 2016.
7. Boodman, S. Is your surgeon double-booked. The Washington Post, 10 July 2017.
8. Brandon, C.; Ghenbot, Y.; Buch, V.; Contreras-Hernandez, E.; Tooker, J.; Dimentberg, R.; Richardson, A.G.; Lucas, T.H. Policies

Restricting Overlapping Surgeries Negatively Impact Access to Care, Clinical Efficiency and Hospital Revenue: A Forecasting
Model for Surgical Scheduling. Ann. Surg. 2020, 275, 1085–1093. [CrossRef] [PubMed]

9. Laskin, D.M.; Abubaker, A.O.; Strauss, R.A. Accuracy of predicting the duration of a surgical operation. J. Oral Maxillofac. Surg.
2013, 71, 446–447. [CrossRef] [PubMed]

10. Di Martinelly, C.; Baptiste, P.; Maknoon, M. An assessment of the integration of nurse timetable changes with operating room
planning and scheduling. Int. J. Prod. Res. 2014, 52, 7239–7250. [CrossRef]

11. Hanset, A.; Meskens, N.; Duvivier, D. Using constraint programming to schedule an operating theatre. In Proceedings of the 2010
IEEE Workshop on Health Care Management (WHCM), Venice, Italy, 18–20 February 2010; pp. 1–6.

12. Pham, D.-N.; Klinkert, A. Surgical case scheduling as a generalized job shop scheduling problem. Eur. J. Oper. Res. 2008, 185,
1011–1025. [CrossRef]

13. Lin, Y.-K.; Li, M.-Y. Solving operating room scheduling problem using artificial bee colony algorithm. Healthcare 2021, 9, 152.
[CrossRef]

14. Martinez-Millana, A.; Lizondo, A.; Gatta, R.; Vera, S.; Salcedo, V.T.; Fernandez-Llatas, C. Process mining dashboard in operating
rooms: Analysis of staff expectations with analytic hierarchy process. Int. J. Environ. Res. Public Health 2019, 16, 199. [CrossRef]

15. Antognini, J.M.B.; Antognini, J.F.; Khatri, V. How many operating rooms are needed to manage non-elective surgical cases? A
Monte Carlo simulation study. BMC Health Serv. Res. 2015, 15, 1–9. [CrossRef]

16. Bartek, M.A.; Saxena, R.C.; Solomon, S.; Fong, C.T.; Behara, L.D.; Venigandla, R.; Velagapudi, K.; Lang, J.D.; Nair, B.G. Improving
operating room efficiency: Machine learning approach to predict case-time duration. J. Am. Coll. Surg. 2019, 229, 346–354.
[CrossRef]

17. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
[PubMed]

18. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
19. O’Neill, T.J.; Xi, Y.; Stehel, E.; Browning, T.; Ng, Y.S.; Baker, C.; Peshock, R.M. Active reprioritization of the reading worklist using

artificial intelligence has a beneficial effect on the turnaround time for interpretation of head CT with intracranial hemorrhage.
Radiol. Artif. Intell. 2020, 3, e200024. [CrossRef]

20. Zhang, F.; Cui, X.; Gong, R.; Zhang, C.; Liao, Z. Key Experimental Factors of Machine Learning-Based Identification of Surgery
Cancellations. J. Healthc. Eng. 2021, 2021, 6247652. [CrossRef]

21. Zhao, B.; Waterman, R.S.; Urman, R.D.; Gabriel, R.A. A machine learning approach to predicting case duration for robot-assisted
surgery. J. Med. Syst. 2019, 43, 32. [CrossRef]

22. Tubaro, P.; Casilli, A.A.; Coville, M. The trainer, the verifier, the imitator: Three ways in which human platform workers support
artificial intelligence. Big Data Soc. 2020, 7, 2053951720919776. [CrossRef]

23. Mirchi, N.; Bissonnette, V.; Yilmaz, R.; Ledwos, N.; Winkler-Schwartz, A.; Del Maestro, R.F. The Virtual Operative Assistant: An
explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS ONE 2020, 15, e0229596.

24. Cowen, M.E.; Dusseau, D.J.; Toth, B.G.; Guisinger, C.; Zodet, M.W.; Shyr, Y. Casemix adjustment of managed care claims data
using the clinical classification for health policy research method. Med. Care 1998, 36, 1108–1113. [CrossRef]

25. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

26. Chen, T.; He, T. Higgs boson discovery with boosted trees. In Proceedings of the NIPS 2014 Workshop on High-Energy Physics
and Machine Learning, Montreal, QC, Canada, 8–13 December 2014; pp. 69–80.

27. Nogueira, F. Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python. 2014. Available online:
https://github.com/fmfn/BayesianOptimization (accessed on 15 June 2021).

28. Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33.
29. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer:

New York, NY, USA, 2009.

http://doi.org/10.1213/ANE.0b013e3181b5de07
http://www.ncbi.nlm.nih.gov/pubmed/19762753
http://doi.org/10.1097/SLA.0000000000004469
http://www.ncbi.nlm.nih.gov/pubmed/33086323
http://doi.org/10.1016/j.joms.2012.10.009
http://www.ncbi.nlm.nih.gov/pubmed/23351763
http://doi.org/10.1080/00207543.2014.916827
http://doi.org/10.1016/j.ejor.2006.03.059
http://doi.org/10.3390/healthcare9020152
http://doi.org/10.3390/ijerph16020199
http://doi.org/10.1186/s12913-015-1148-x
http://doi.org/10.1016/j.jamcollsurg.2019.05.029
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.1148/ryai.2020200024
http://doi.org/10.1155/2021/6247652
http://doi.org/10.1007/s10916-018-1151-y
http://doi.org/10.1177/2053951720919776
http://doi.org/10.1097/00005650-199807000-00016
https://github.com/fmfn/BayesianOptimization


Big Data Cogn. Comput. 2022, 6, 76 13 of 13

30. Lai, J.; Huang, C.-C.; Liu, S.-C.; Huang, J.-Y.; Cho, D.-Y.; Yu, J. Improving and Interpreting Surgical Case Duration Prediction with
Machine Learning Methodology. Available online: https://www.medrxiv.org/content/10.1101/2020.06.10.20127910v2.full-text
(accessed on 4 February 2022).

31. Master, N.; Zhou, Z.; Miller, D.; Scheinker, D.; Bambos, N.; Glynn, P. Improving predictions of pediatric surgical durations with
supervised learning. Int. J. Data Sci. Anal. 2017, 4, 35–52. [CrossRef]

32. Strum, D.P.; Sampson, A.R.; May, J.H.; Vargas, L.G. Surgeon and type of anesthesia predict variability in surgical procedure times.
J. Am. Soc. Anesthesiol. 2000, 92, 1454–1466. [CrossRef] [PubMed]

https://www.medrxiv.org/content/10.1101/2020.06.10.20127910v2.full-text
http://doi.org/10.1007/s41060-017-0055-0
http://doi.org/10.1097/00000542-200005000-00036
http://www.ncbi.nlm.nih.gov/pubmed/10781292

	Introduction 
	Methods 
	Data Source 
	Outcome Measures and Predictors 
	Data Cleaning and Preprocessing 
	Models’ Training 
	Evaluation Metrics 

	Results 
	Data Sets 
	Model Development 
	Model Performance 

	Discussion 
	Conclusions 
	References

