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Abstract: Tree counting is an important plantation practice for biological asset inventories, etc. The
application of precision agriculture in counting oil palm trees can be implemented by detecting
oil palm trees from aerial imagery. This research uses the deep learning approach using YOLOv3,
YOLOv4, and YOLOv5m in detecting oil palm trees. The dataset consists of drone images of an oil
palm plantation acquired using a Fixed Wing VTOL drone with a resolution of 5cm/pixel, covering
an area of 730 ha labeled with an oil palm class of 56,614 labels. The test dataset covers an area
of 180 ha with flat and hilly conditions with sparse, dense, and overlapping canopy and oil palm
trees intersecting with other vegetations. Model testing using images from 24 regions, each of
which covering 12 ha with up to 1000 trees (for a total of 17,343 oil palm trees), yielded F1-scores
of 97.28%, 97.74%, and 94.94%, with an average detection time of 43 s, 45 s, and 21 s for models
trained with YOLOv3, YOLOv4, and YOLOv5m, respectively. This result shows that the method is
sufficiently accurate and efficient in detecting oil palm trees and has the potential to be implemented
in commercial applications for plantation companies.

Keywords: deep learning; drone; oil palm; tree detection; YOLOv3; YOLOv4; YOLOv5

1. Introduction

Oil palm is an essential agricultural economic crop in many tropical countries such as
Indonesia, Malaysia, Thailand, and Colombia. The primary use of oil palm is to produce
palm oil, which is not only used to make vegetable oil but also as raw material for cosmetics,
biodiesel, and others. Palm oil is the main source of vegetable oil due to its high yield
compared to other vegetable oils [1], and it is the most consumed vegetable oil in the
world [2]. Palm oil is the most important vegetable oil globally in production and trade [3].

Tree counting is an important plantation practice for biological asset inventories,
fresh fruit bunch production estimation, fertilization and maintenance budgeting, plant
growth/health monitoring, replanting, plant layout planning, etc. Counting trees manually
is expensive, labor-intensive, and prone to errors. Most plantations are forced to estimate
the amount of fresh fruit bunch production by multiplying the total area by the number
of oil palm trees per hectare, which often results in significant inaccuracy due to the
heterogeneity of the land surface, which is hilly and undulating, as well as the presence of
rivers, wasteland, and forests. Remote sensing is a solution to these problems because of
the broad view of the plantation area, and it is a means of counting oil palm trees [4].

Yin et al. [5] stated that drone remote sensing is cheaper and more flexible than satellite
imagery on an industrial scale. The rapid development of drone technology, information
technology, and sensor technology allows drones to also be applied to various fields of
agriculture and forestry. Drone remote sensing technology can monitor large areas of
plantations with high spatial resolution, so it is widely used for oil palm research such as
tree counting [6–8], oil palm harvest prediction [9], plant nutrition monitoring [10], and
plant health monitoring [11].
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The use of remote sensing as an alternative to traditional methods has led many re-
searchers to find various techniques and ways to increase the accuracy of counting oil palm
trees. Oil palm plantations have a unique shape and pattern based on the discrimination
of oil palms from non-oil palms using spectral analysis, texture analysis, edge enhance-
ment, segmentation processes, morphological analysis, and blob analysis, as reported
by Shafri et al. [12]. Syed Hanapi et al. [13] reviewed several methods for detecting and
delineating trees in forests and oil palm plantations, including several sample algorithms
from techniques such as image processing, machine learning, point cloud, and deep learn-
ing. There are still gaps for improvement and development, especially in the methods
used. With the improvement of remote sensing technology, it is possible to focus on the
practicality of the methods used at lower costs which yield results of a higher quality.

Currently, deep learning methods have been widely used in various applications,
particularly in image detection and classification [14–19]. Furthermore, oil palm research
using deep learning has been widely carried out, including tree counting [20], fruit ripeness
classification [21], plant health classification [22], the mapping of oil palm land [23], and
the counting of Fresh Fruit Bunches (FFB) [24]. Deep learning is a subset of machine learning
belonging to the broader artificial intelligence family. Deep learning is based on an artificial
neural network (ANN) with many hidden layer networks. Deep learning has a network capable
of implementing supervised or unsupervised learning from labeled or unlabeled data [25].

YOLO (You Only Look Once) is a new approach in computer vision for object de-
tection, namely, recognizing objects and their location in images or videos. YOLO uses
a Convolutional Neural Network (CNN) architecture, applies a single neural network
to the entire image, divides the image into grids, and predicts the coordinates and class
probabilities of the bounding box [26]. The development of YOLOv1 was first initiated by
Redmon et al. [26]. The following year, YOLOv2, or YOLO9000, was developed by Redmon
and Farhadi [27], YOLOv3 was developed by Redmon and Farhadi [28], YOLOv4 was
developed by Bochkovskiy et al. [29], and YOLOv5 was developed by Jocher [30]. Several
oil palm studies using the YOLO algorithm include tree counting [31], Fresh Fruit Bunches
(FFB) counting [32], and harvesting systems [33].

In recent years, there have been many deep learning studies for detecting and count-
ing oil palm trees. Li et al. [34] used the Convolutional Neural Network (CNN) LeNet
architecture and sliding window technique approach to detect oil palm trees from Quick-
Bird high-resolution satellite imagery. This method achieves a detection accuracy of 96%.
Li et al. [35] proposed Deep Convolutional Neural Network (DCNN) AlexNet architecture,
a sliding window, and post-processing to detect large-scale oil palm trees from Quickbird
high-resolution satellite imagery. The object under study is a dense and overlapping oil
palm tree with various scenes of oil palm trees, backgrounds, vegetation, and settlements
with an accuracy of 92–97%. Mubin et al. [36] proposed the CNN method of the LeNet
architecture combined with GIS in processing and storing data, as well as high-resolution
Worldview-3 satellite imagery to capture object images. The accuracy rates for detecting
young and mature oil palm trees were 95.11% and 92.96%, respectively. Bonet et al. [37]
used the Transfer Learning CNN approach with the VGG-16 architecture (without the last
layer) for feature extraction. The SVM classifier produces 97-98% accuracy in detecting oil
palm trees from UAV images. Liu et al. [38] proposed the Faster R-CNN method to build a
model to detect and automatically count oil palm trees from UAV images. Data testing was
carried out in three regions with accuracy rates of 97.06%, 96.58%, and 97.79%, respectively.

In this study, we propose the detection of oil palm trees from drone imagery over
large areas. The research location consists of an oil palm plantation area with a flat and
hilly topography. In a flat area, the distance between the plant canopy is sparse and
close together, whereas, in a hilly area, the plant canopy distance overlaps when viewed
from the drone image. In addition, oil palm tree leaf areas can also intersect with other
vegetations with leaf colors similar to oil palm. Hilly conditions with overlapping canopies
and intersecting with other vegetations are challenging for object detection algorithms to
identify oil palm trees. The method used in this study is a deep learning approach based on
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YOLOv3, YOLOv4, and YOLOv5m due to its real-time object detection capability, which
typically has a higher accuracy in object detection and a faster computation time than other
deep learning algorithms [28–30].

The rest of this paper is organized as follows. Section 2 presents the research plan,
the study area and datasets, the data preprocessing and model building steps, and the
evaluation metrics; Section 3 describes the training and testing results of our proposed
method; Section 4 describes the performance and limitation methods; Section 5 presents
some important conclusions of this research.

2. Materials and Methods
2.1. Overview

The research plan in this study is presented in the flowchart in Figure 1. Preprocessing
the data on the drone images produces training data, validation data, and testing data. The
training and validation process uses YOLO pre-trained weights for convolutional layers to
be more accurate and to avoid lengthy model training steps. Hyperparameter tuning is
also performed in order to find the optimal model during training, which will then be used
during model testing. The detection results will be evaluated by comparing the accuracies
and detection times of YOLOv3, YOLOv4, and YOLOv5m.
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2.2. Study Area and Datasets

The research location in this study is an oil palm plantation located in Jambi province,
Indonesia, as shown in Figure 2. The image was acquired from 2–3 May 2021 using a
Fixed Wing VTOL drone, shown in Figure 3, at an altitude of 200 m above ground level
with a resolution of 5 cm/pixel. The drone specifications can be seen in Table 1. Each of
the sample dataset areas (training, validation, testing) includes oil palm trees under the
criteria of young plants (the planting year 2013–2014) and mature plants (the planting year
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2009–2011) in oil palm plantation areas with flat and hilly contours with sparse, dense,
and overlapping canopy spacing conditions, as well as oil palm trees intersecting with
other vegetations. The training and validation area covers 730 ha, while the testing area
covers 180 ha. The distribution of datasets based on the blocks area in regions in oil palm
plantations can be seen in Table 2.
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plantations consist of three areas. Blue and yellow polygons are for training and validation areas,
while red polygons are for testing areas.
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Figure 3. Fixed Wing VTOL drone.

Table 1. Drone specifications.

Attributes Description

Wingspan 2000 mm
Weight 3.8 kg

Radio control 2.4 GHz
Camera RGB 24 mp support PPK GNSS

Telemetry type long-range 15 km
Flying ability Full system auto/fly without remote

Cruising flight maximum 70 min/60 km

Table 2. The distribution of datasets based on blocks area.

Datasets Blocks

Training

101,106,107,108,109,110,111,112,113,117,118,119,122,126,127,128,131,133,136,
137,140,141,143,144,147,150,151,152,153,154,155,156,157,158,159,160,162,164,
165,170,172,174,176,201,202,206,207,208,215,216,218,225,228,229,230,231,232,
233,237,238,239,240,241,242,243,244,253,254,256.

Validation 102,103,104,105,114,115,116,120,121,124,145,161.

Testing 203,204,205,209,210,211,212,213,214,217,219,220,221,222,223,224,227,234,257.

2.3. Data Preprocessing

Before performing input data processing in the YOLO architecture, we first preprocess
the data with the following steps:

1. Cropping the drone images for the training (311 images) and validation (66 images)
datasets into grids with a size of 3943× 3943 pixels, which corresponds to 200 m × 200 m
(4 ha) using QGIS. An example of the image can be seen in Figure 4.

2. Manually identifying and labeling 56,614 oil palm trees in the training and validation
datasets using LabelImg. The composition of the training data is 80% (45,290), and
that of the validation data is 20% (11,324). An example of image labeling can be seen
in Figure 5.

3. Cropping 24 drone images on the testing data block into grids with an image size
of 7886 × 5914 pixels, which corresponds to 400 m × 300 m (12 ha) using QGIS. An
example of the image can be seen in Figure 6.
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Figure 6. An example of image cropping 7886 × 5914 pixels: (a) Mapping on block area; (b) Cropping
results on grid number 10. There are 24 testing areas from cropping results on the map, namely on
grid numbers 1,2,3,9,10,11,12,13,14,15,17,18,19,20,21,22,23,26,27,28,29,30,31,32.
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2.4. Model Development

The model development uses the Darknet framework on YOLOv3 [28] and YOLOv4 [29],
while YOLOv5m [30] uses the PyTorch framework. We tried several input sizes of the
network (width × height)—416 × 416, 608 × 608, 832 × 832, and 1024 × 1024 for YOLOv3,
YOLOv4, and YOLOv5m—to obtain the best alternative model. The hyperparameters
used are batch size, subdivision, momentum, decay, and learning rate. The larger the
network input size, the greater the computational process. Therefore, some adjustments
to the batch size and subdivision values were made, while the momentum, decay, and
learning rate were set to their default values. The network input size and hyperparameter
scenarios for YOLOv3, YOLOv4, and YOLOv5m are given, respectively, in Tables 3–5. We used
YOLO pre-trained weights for convolutional layers to increase the accuracy and to avoid longer
training times. Hyperparameter tunings were also performed to optimize the training process.

Table 3. YOLOv3 network input sizes and hyperparameters scenario for training and validation.

Network Input Size
(Width × Height)

Hyperparameters

Batch Subdivision Momentum Decay Learning Rate

416 × 416 64 16 0.9 0.0005 0.001
608 × 608 64 16 0.9 0.0005 0.001
832 × 832 64 16 0.9 0.0005 0.001

1024 × 1024 64 32 0.9 0.0005 0.001

Table 4. YOLOv4 network input sizes and hyperparameters scenario for training and validation.

Network Input Size
(Width × Height)

Hyperparameters

Batch Subdivision Momentum Decay Learning Rate

416 × 416 64 16 0.949 0.0005 0.001
608 × 608 64 16 0.949 0.0005 0.001
832 × 832 64 32 0.949 0.0005 0.001

1024 × 1024 64 64 0.949 0.0005 0.001

Table 5. YOLOv5m network input sizes and hyperparameters scenario for training and validation.

Network Input Size (Width ×
Height)

Hyperparameters

Batch Momentum Decay Learning Rate

416 × 416 64 0.937 0.0005 0.01
608 × 608 32 0.937 0.0005 0.01
832 × 832 16 0.937 0.0005 0.01

1024 × 1024 8 0.937 0.0005 0.01

2.5. Evaluation Metrics

The measurement of model performance in this study used Recall, Precision, and
F1-score [39], as shown in Equations (1)–(3). Recall measures how well the model can detect
oil palm trees, precision measures how accurately the model predicts oil palm trees, and
F1-score is the harmonic mean of recall and precision. In addition, detection time is also
used as a metric in model evaluation in order to be able to compare model efficiency during
detection. Average IoU is also needed to assess the accuracy of the bounding box location
for detection [40], as shown in Equation (4); the illustration can be seen in Figure 7.

Recall =
TP

(TP + FN)
(1)

Precision =
TP

(TP + FP)
(2)
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F1 − score =
(2 × Recall × Precision)
(Recall + Precision)

(3)

TP (True Positive) = The objects of oil palm trees were detected as oil palm trees.
FP (False Positive) = Objects other than oil palm trees were detected as oil palm trees.
FN (False Negative) = The objects of oil palm trees were not detected as oil palm trees.
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IoU =
Area of Overlap
Area of Union

(4)

3. Results
3.1. Training Results

Training and validation with four network input size scenarios in YOLOv3 were
carried out for 8000 iterations with a saved model every 1000 iterations, while the training
and validation of YOLOv4 and YOLOv5m were carried out for 6000 iterations with a
saved model every 500 iterations. Each saved model iteration is validated with a threshold
variation of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 for the Precision, Recall, F1-score,
and Average IoU values. The selection of the threshold of each saved model iteration
prioritizes the Recall value—in this case, the model’s ability to detect oil palm tree objects.
The determination of the best model as a result of training from the saved model iteration is
based on the highest Precision, Recall, and F1-score values for YOLOv3 and YOLOv4, while
YOLOv5m is based on 6000 iterations because the training tends to be stable overall. The
results of the training evaluation for each network input size for YOLOv3, YOLOv4, and
YOLOv5m can be seen in Supplementary Spreadsheet S1. The best models obtained from
each network input size on YOLOv3, YOLOv4, and YOLOv5m are shown in Tables 6–8,
respectively. These models will be used for testing the test data.

Table 6. The best model for each network input size on YOLOv3 is based on training and validation.

Network Input Size
(Width × Height) Iteration Threshold Precision Recall F1-Score Average IoU (%)

416 × 416 4000 0.2 0.84 0.99 0.91 72.71
608 × 608 7000 0.2 0.85 0.99 0.91 74.84
832 × 832 7000 0.4 0.86 0.99 0.92 76.52

1024 × 1024 8000 0.4 0.86 0.99 0.92 76.42
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Table 7. The best model for each network input size on YOLOv4 is based on training and validation.

Network Input Size
(Width × Height) Iteration Threshold Precision Recall F1-Score Average IoU (%)

416 × 416 5000 0.3 0.85 0.99 0.91 73.92
608 × 608 3500 0.4 0.86 0.99 0.92 76.17
832 × 832 4000 0.4 0.86 0.99 0.92 76.76

1024 × 1024 2000 0.4 0.86 0.99 0.92 70.35

Table 8. The best model for each network input size on YOLOv5m is based on training and validation.

Network Input Size
(Width × Height) Iteration Threshold Precision Recall F1-Score Average IoU (%)

416 × 416 6000 0.5 0.97 0.89 0.93 71.20
608 × 608 6000 0.5 0.97 0.89 0.93 73.60
832 × 832 6000 0.5 0.97 0.89 0.93 74.70

1024 × 1024 6000 0.5 0.97 0.89 0.93 75.10

3.2. Testing Results

The oil palm detection test is carried out on the testing data block with image grids
measuring 7886 × 5914 pixels, which corresponds to 400 m × 300 m (12 ha), with as many
as 24 images (regions) and as many as 17,343 oil palm trees objects (ground truth), as shown
in Table 9. The oil palm tree detection test results using the models from YOLOv3, YOLOv4,
and YOLOv5m, referred to in Tables 6–8, are given in Tables 10–12, respectively. The testing
results per region based on the network input size for YOLOv3, YOLOv4, and YOLOv5m
can be seen in Supplementary Spreadsheet S2.

Table 9. Oil palm tree detection testing area.

Region Ground Truth

Region 1 (grid 1) 547
Region 2 (grid 2) 1079
Region 3 (grid 3) 324
Region 4 (grid 9) 423
Region 5 (grid 10) 1301
Region 6 (grid 11) 1213
Region 7 (grid 12) 991
Region 8 (grid 13) 982
Region 9 (grid 14) 754

Region 10 (grid 15) 407
Region 11 (grid 17) 251
Region 12 (grid 18) 1117
Region 13 (grid 19) 731
Region 14 (grid 20) 674
Region 15 (grid 21) 1170
Region 16 (grid 22) 1090
Region 17 (grid 23) 889
Region 18 (grid 26) 539
Region 19 (grid 27) 1209
Region 20 (grid 28) 440
Region 21 (grid 29) 98
Region 22 (grid 30) 190
Region 23 (grid 31) 485
Region 24 (grid 32) 439
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Table 10. YOLOv3 model evaluation results.

Network Input Size
(Width × Height) GT TP FP FN Recall

(%)
Precision

(%)
F1-Score

(%)
Detection Time

(s)

416 × 416 17,343 15,542 235 1801 89.62 98.51 93.85 42
608 × 608 17,343 16,403 146 940 94.58 99.12 96.80 41
832 × 832 17,343 16,073 19 1270 92.68 99.88 96.14 43

1024 × 1024 17,343 16,432 7 911 94.75 99.96 97.28 43

Table 11. YOLOv4 model evaluation results.

Network Input Size
(Width × Height) GT TP FP FN Recall

(%)
Precision

(%)
F1-Score

(%)
Detection Time

(s)

416 × 416 17,343 14,946 145 2397 86.18 99.04 92.16 42
608 × 608 17,343 15,509 33 1834 89.43 99.79 94.32 45
832 × 832 17,343 16,600 23 743 95.72 99.86 97.74 45

1024 × 1024 17,343 10,699 7 6644 61.69 99.93 76.29 44

Table 12. YOLOv5m model evaluation results.

Network Input Size
(Width × Height) GT TP FP FN Recall

(%)
Precision

(%)
F1-Score

(%)
Detection Time

(s)

416 × 416 17,343 6935 69 10,408 39.99 99.01 56.97 20
608 × 608 17,343 15,257 84 2086 87.97 99.45 93.36 20
832 × 832 17,343 15,599 68 1744 89.94 99.57 94.51 20

1024 × 1024 17,343 15,717 49 1626 90.62 99.69 94.94 21

The comparison based on the evaluation results of the YOLOv3, YOLOv4, and
YOLOv5m models refers to Tables 10–12. The object detection tests on 17,343 oil palm trees
in 24 images (regions), in general, showed satisfactory results on YOLOv3, YOLOv4, and
YOLOv5m. The precision values reached above 98%, as shown in Figure 8. This shows that
the three models are sufficiently good at predicting the oil palm class correctly, with minor
incorrect detections (false positives).
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The recall value on YOLOv3, in general, is above 90%, indicating that the model is
sufficiently good at detecting oil palm tree objects, with the highest value of 94.75% at the
network input size 1024 × 1024. The highest recall value of YOLOv4 on the network input
size 832 × 832 is 95.72%, but the network input size 1024 × 1024 only yields 61.69%. This is
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likely due to the limited computing resources, causing poor training results when using
the subdivision parameter value of 64. Based on the experimental results, where a larger
network input size requires greater computational resources, we used larger subdivision
parameter values for YOLOv3 and YOLOv4, with the consequence of reduced accuracies
for both. The recall value on YOLOv5m shows an upward trend for the network input
sizes 416 × 416, 608 × 608, 832 × 832, and 1024 × 1024, but there is a large gap between
the network input size 416 × 416 and the others. This happens because the default value
of the YOLOv5m network input size is 640 × 640; so, for a smaller network input size,
the accuracy is lower. The comparison of the recall values of YOLOv3, YOLOv4, and
YOLOv5m is shown in Figure 9.
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The poor training on the network input size 1024 × 1024 YOLOv4 is shown in Table S2
Supplementary Spreadsheet S1; there is a downward trend in the precision, F1-score, and
average IoU values in the 2500 to 6000 iterations. This can also be seen in the comparison
of the average IoU values in the training validation, as shown in Figure 10. YOLOv3
and YOLOv5m have an upward trend for the network input sizes 416 × 416, 608 × 608,
832 × 832, and 1024 × 1024, while YOLOv4 has an uptrend for the network input sizes
416 × 416, 608 × 608, and 832 × 832 but a downward trend at 1024 × 1024.
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This is also in line with the F1-score values. YOLOv4 has an upward trend with
values above 90% for the network input sizes 416 × 416, 608 × 608, and 832 × 832 but a
downward trend in the network input size 1024 × 1024, with a value of 76.29%. YOLOv3
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has a stable value at over 90% for the network input sizes 416 × 416, 608 × 608, 832 × 832,
and 1024 × 1024, and YOLOv5m has an uptrend for the network input sizes 416 × 416,
608 × 608, 832 × 832, and 1024 × 1024. The low value of the F1-score on the network input
sizes 1024 × 1024 YOLOv4 and 416 × 416 YOLOv5m is due to the low recall value. The
comparison of the F1-score values of YOLOv3, YOLOv4, and YOLOv5m can be seen in
Figure 11.
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The average detection time in testing 24 images (regions) with a size of 7886 × 5914 pix-
els can be seen in Figure 12. On the network input sizes 416 × 416, 608 × 608, 832 × 832, and
1024 × 1024, YOLOv3 reaches 41–43 s, YOLOv4 reaches 42–45 s, and YOLOv5m reaches
20–21 s. There was no significant difference in the average detection time of YOLOv3 and
YOLOv4, but YOLOv5m was twice as fast as YOLOv3 and YOLOv4.
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Based on the experiments and visual detection results, we concluded that determining
the best network input size model from each of the YOLOv3, YOLOv4, and YOLOv5m
models is not based only on the criteria for the F1-score value and the detection time but
also on the average IoU value. The F1-score is used to determine the overall accuracy, the
detection time is used to find out how fast the model detects objects, and the average IoU is
used to assess the accuracy of the bounding box location for detection. The accuracy of the
bounding box location is important because the number of oil palm trees in one image file
is quite large—up to hundreds to thousands of oil palm trees. The higher the IoU average
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value, the better the accuracy of the location bounding box to the detected object, making
for better visuals for large amounts of data, as shown in the comparison in Figure 13.
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Figure 13. Comparison of the bounding box location to the detected object of the YOLOv3 detection
results: (a) Poor accuracy on the network input size 416 × 416; (b) Good accuracy on the network
input size 1024 × 1024.

The best model for the network input size on YOLOv3 is 1024 × 1024, with an F1-score
of 97.28%, a detection time of 43 s, and an average IoU of 76.42%. On YOLOv4, the best
model for the network input size is 832 × 832, with an F1-score of 97.74%, a detection time
of 45 s, and an average IoU of 76.76%. On YOLOv5m, the best model for the network input
size is 1024 × 1024, with an F1-score of 94.94%, a detection time of 21 s, and an average
IoU of 75.1%. The image detection results per region based on the best model for YOLOv3,
YOLOv4, and YOLOv5m can be seen in Supplementary Spreadsheet S3.

4. Discussion

YOLOv3, YOLOv4, and YOLOv5m have high accuracy and are fast in detecting oil
palm trees (purple boxes), with only a few palm trees not detected (red circles). The
models can detect oil palm trees with sparse and dense canopy conditions, as shown in
Figures 14 and 15; besides that, the models are also able to detect oil palm trees with a hilly
topography when viewed from the drone imagery of overlapping oil palm trees canopy, as
shown in Figure 16. YOLOv5m was quite good at detecting oil palm trees in areas with
hundreds of trees, but for the number of trees reaching thousands, there were many false
negatives—namely, oil palm trees cannot be detected. YOLOv3 and YOLOv4 were quite
good at detecting oil palm trees in areas with hundreds or even thousands of trees.

There were several shortcomings of the models during testing. It was quite challenging
to detect oil palm trees with unhealthy oil palm conditions (stressed growth or nutrient
deficiency), as shown by the red circles in Figures 17 and 18. In addition, the models had
difficulty detecting (red circles) or incorrectly detecting (blue circles) for the condition
where the oil palm trees intersect with other vegetations, so it is disguised, as shown in
Figure 19. This weakness occurs because, at the time of labeling the oil palm class dataset,
the majority of oil palm tree conditions are healthy/normal, while, for the unhealthy oil
palm tree conditions and the oil palm trees intersecting with other vegetations (disguised),
the labeling samples are few, so it is quite difficult to detect when testing the data.
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Figure 14. The sparse canopy condition of the oil palm trees: (a) Original image; (b) YOLOv3
detection; (c) YOLOv4 detection; (d) YOLOv5m detection.
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The three models can be applied to oil palm tree inventories in plantation companies
because of their high accuracy, reaching 94–97%, while the fast detection time helps make
the work more efficient for large-scale oil palm fields. Further development can add
datasets of unhealthy oil palm trees (stressed growth/nutrient deficiency) and oil palm
trees that are covered/camouflaged by other vegetations so that the model can recognize
these objects during testing/detection. These datasets are not only used for an inventory of
oil palm trees but can also detect/differentiate classes of healthy and unhealthy oil palm
trees. Developing models with a larger network input size using hardware with higher
resources is expected to increase accuracy. It is also possible to develop the model into a
desktop/web-based application to make it easier for end-users to operate.

Compared to the previous oil palm tree counting research using deep learning [31,34–38],
our method also provides accurate results, but what is different is that we present the
results of the detection time on testing the test data and the accuracy of the bounding box.
This information is important for the implementation of the large-scale detection of oil
palm trees in areas reaching thousands to tens of thousands of hectares of oil palm land.
With this large oil palm area, it requires a fast model in the detection and also needs the
accuracy of the location of the bounding box for detection objects with a lot of data.

5. Conclusions

In this research, we have proposed an oil palm trees detection model using YOLOv3,
YOLOv4, and YOLOv5m. The results of testing the YOLOv3, YOLOv4, and YOLOv5m
models in four scenarios of the network input sizes 416 × 416, 608 × 608, 832 × 832, and
1024 × 1024 obtained the best model for YOLOv3 and YOLOv5m using the network input
size of 1024 × 1024, while for YOLOv4, the best model used the network input size of
832 × 832. The test was carried out on 24 images/regions of 17,343 oil palm trees, with
an average detection time of 43 s for YOLOv3, 45 s for YOLOv4, and 21 s for YOLOv5m.
YOLOv3 obtained an F1 score of 97.28% and an average IoU of 76.42%, YOLOv4 obtained
an F1 score of 97.74% and an average IoU of 76.76%, and YOLOV5m obtained an F1 score of
94.94% and an average IoU 75.1%. In terms of large-scale oil palm tree detection, accuracy
is the top priority, so the recommendation for the best model is YOLOv3 and YOLOv4
because they have the highest accuracy, with a time difference of just under 25 s compared
to YOLOv5m.

Supplementary Materials: Available online at https://ipb.link/supplementaryfiles. Spreadsheet S1:
Results of training and validation on YOLOv3, YOLOv4, and YOLOv5m. Spreadsheet S2: Model
evaluation per region on YOLOv3, YOLOv4, and YOLOv5m. Spreadsheet S3: Image detection results
per region of the best models of YOLOv3, YOLOv4, and YOLOv5m.
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