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Abstract: Emotion recognition has become one of the most researched subjects in the scientific
community, especially in the human–computer interface field. Decades of scientific research have been
conducted on unimodal emotion analysis, whereas recent contributions concentrate on multimodal
emotion recognition. These efforts have achieved great success in terms of accuracy in diverse areas
of Deep Learning applications. To achieve better performance for multimodal emotion recognition
systems, we exploit Meaningful Neural Network Effectiveness to enable emotion prediction during
a conversation. Using the text and the audio modalities, we proposed feature extraction methods
based on Deep Learning. Then, the bimodal modality that is created following the fusion of the text
and audio features is used. The feature vectors from these three modalities are assigned to feed a
Meaningful Neural Network to separately learn each characteristic. Its architecture consists of a set
of neurons for each component of the input vector before combining them all together in the last
layer. Our model was evaluated on a multimodal and multiparty dataset for emotion recognition
in conversation MELD. The proposed approach reached an accuracy of 86.69%, which significantly
outperforms all current multimodal systems. To sum up, several evaluation techniques applied to
our work demonstrate the robustness and superiority of our model over other state-of-the-art MELD
models.

Keywords: multimodal emotion recognition (MER); deep learning (DL); meaningful neural network
(MNN); multimodal and multiparty dataset for emotion recognition in conversations (MELD)

1. Introduction

Emotions can be defined as a conscious mental reaction, usually directed towards
a specific object, and accompanied by dynamic physiological changes that occur non-
verbally [1], allowing the identification of emotions as a very complicated task.

The process of recognizing emotions is dynamic and focuses on the individual’s emo-
tional state; thus, each person has a particular set of feelings that correlate to their actions [2].
Humans generally express their emotions in a variety of ways. The right understanding of
these emotions is crucial for successful communication. However, recognizing emotions in
daily life is crucial for social interaction, and emotions are a major factor in how people
act [3]. Emotions are manifested through voice intonation, gestures as well as body posture,
speech, and most often through facial expressions, which account for 55% of nonverbal
communication. However, a single modality is unable to quickly assess the emotion of
the person [4]. We cannot decide the emotion of a person by examining a particular entity
or occurrence in front of our eyes [5]. This is one of the reasons why emotion recognition
should be treated as a multimodal problem.

There is an integration of many approaches and strategies to achieve the goal of
the study. Most of them use big data techniques [6], semantic principles [7], and deep
learning [8].
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A variety of various solutions to a range of multimodal sequential challenges have been
developed as a result of the rapid development of DL architectures over the past decade.

The literature has demonstrated numerous methods for producing robust multi-
modal features using DL. from a single model of expression, such as facial expression [9],
speech [10], text [11], EEG signal [12], etc. Since approaches based on DL have proven to be
effective in learning and generalizing data with high dimensional feature spaces such as
images, several emotion datasets have also produced promising results from comparable
attempts to capture the intricate feature space of emotional data, such as MELD [13,14],
IEMOCAP [15], MOSI [16], etc. Unfortunately, human emotions in real life are often
expressed by a complex combination of several expression models.

So, much information is lost by employing unimodal analysis. To address this problem,
the use of approaches based on DL for MER has received much research in recent years.
Choi et al. [17] who utilized a novel approach to learning about the hidden representations
between text and speech data using convolutional attention networks proposed end-to-end
MER with auditory and visual modalities. The speech and the visual networks were built by
Tzirakiz et al. [18] using a convolutional neural network (CNN) and deep residual network,
respectively. To obtain the contextual information, the outputs of the two networks were
combined as the input of a two-layer Long Short-Term Memory (LSTM). By feeding these
features to a multiple kernel learning classifier, Poria et al. [19] proposed a novel technique
for extracting features from visual and textual modalities using deep convolutional neural
networks.

Inspired by these methods, we invented this work that focuses on the MER. It proposes
a new system based on supervised learning algorithms, using three modalities: the first one
concerns the text modality, its feature vector is extracted with CNN and LSTM; the second
one depends on the audio modality that we acquired using the OpenSmile tool. While the
third modality is obtained through the fusion of the text and audio features into a single
vector that will represent the bimodal modality. These modalities vectors will feed the
MNN that we have used as a methodological invention in order to have better predictive
results. The MER by a computer is considered as a technology in full development. These
innovative applications concern several domains such as human–computer interaction.
Maat and Pantic’s research [20], in which the authors created a system to support effective
multimodal human–computer interaction, serves as an illustration of this field of study
(AMM-HCI). The interaction is then modified to reflect the user’s actions and feelings
in order to assist the user in his activity. A further application’s domain concerns the
help of autistic children. In this study [21], the authors explored multimodal emotion and
gaze recognition deficits in children with autism spectrum disorders. Another example
in the MER domain concerns video games; Nemati et al. [22] proposed a hybrid data
fusion method in latent space for MER. Furthermore, faced with the Corona pandemic,
MER applications are developed. Prasad et al. [23] propose a system that analyzes feelings
and emotions for effective human–machine interaction during the COVID-19 pandemic,
etc.

The rest of this paper is structured as follows: In Section 2, we clarify the background
and related works. In Section 3, we defined the materials and methods we used in our paper.
Then, in Section 4, we describe each of the proposed methods and their steps. In Section 5,
we present the results of the comparison between our approach and the existing work.
Finally, a conclusion is given in Section 6.

2. Related Works

Numerous studies based on DL have been conducted to study MER systems, namely,
Priyasad et al. [24], who present an approach based on DL to exploit and merge text and
acoustic data for emotion classification. In order to extract acoustic features from raw audio,
a SincNet layer, band-pass filtering, and neural network are used. The output of these
band-pass filters is then applied to the input of the Deep Convolutional Neural Network
(DCNN). For word processing, they use two branches: a DCNN and a bidirectional Re-
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current Neural Network (RNN), followed by a parallel DCNN where cross-attention is
introduced to infer correlations at the N-gram level. Their experimental results on the
IEMOCAP dataset achieve a 3.5% improvement in weighted accuracy. Researchers have
looked into many features of multimodal autonomous human emotion recognition in the
actual world [25]. In particular, Support Vector Machine (SVM) is utilized to categorize
each feature, and they subsequently suggest a cutting-edge decision-level fusion network
to utilize these feature characteristics. Their network was tested using the EmotiW 2015
AFEW and SFEW datasets, and it shows good results on the testing sets. The audio/visual
emotion challenge (AVEC) 2012 [26], which presented baseline models for concatenating
the audio and visual features into a single feature vector and used support vector regression
to predict the continuous affective values, was one of the major attempts to advance the
state of the art in MER. Another study was conducted on the German language for the
purpose of extracting the emotions from three modalities: visual, audio, and text by Cevher
et al. [27]. For extracting face expressions and audio features, they used an off-the-shelf tool.
Word2vec and Bidirectional LSTM (BiLSTM) are used to extract textual features. For the
purpose of predicting emotions, Georgiou et al. [28] concatenated features from several
modalities at various levels. They showed that their proposed fusion method achieves
greater performance gains compared to other fusion approaches in the literature. To identify
the emotions, Bahreini et al. [29] suggested combining auditory, textual, and facial informa-
tion. They used CNN to extract features from speech, and ResNet 50 to extract features from
visual frames. These two modalities are captured using two different pipelines, valence
and arousal are then extracted using an LSTM-based fusion. Their research demonstrated
that merging two distinct modalities into a multimodal approach increased the software’s
accuracy and produced more reliable results. A method to combine speech textual content
and voice tonality for identifying emotions in conversation was proposed by Poria et al. [13]
Additionally, they offered their benchmark dataset for multi-party emotional conversations
based on the Friend dataset. They used 1D CNN to extract textual utterance characteristics,
and they computed audio utterance features using OpenSmile to extract vocal and prosodic
features of the speech. Likewise, Slavova et al. [30] used textual and speech features for the
purpose of extracting sound from human speech. CNN features are retrieved from a basic
plain transcription of the speech, while speech features such as speech spectrum and Mel-
frequency cepstral coefficients (MFCCs) are extracted from the audio stream. These two
teams concentrated on the transcription of voice tone for emotion recognition. In a recent
study [31], visual and textual signals were used in speech emotion recognition through a hy-
brid fusion technique known as a multimodal attention network (MMAN). They propose a
brand-new multimodal focus mechanism called cLSTM-MMA, which selectively combines
information and promotes attention across three modalities. Other unimodal subnetworks
are fused with the cLSTM-MMA during late fusion. The tests show that textual and visual
signals are quite helpful in identifying speech emotions. While having a significantly more
condensed network topology, the suggested cLSTM-MMA alone is just as successful in
terms of precision as other fusion approaches. For self-supervised learning (SSL), Siriward-
hana et al. [31] investigated the use of the pretrained “BERT-like” architecture to represent
both language and text modalities in order to identify the multimodal language emotions.
They show that a basic fusion mechanism (Shallow-Fusion) strengthens sophisticated fu-
sion mechanisms while simplifying the overall structure. In this work [32], the authors
proposed a deep hierarchical architecture for modality fusion and applied it to the problem
of sentiment analysis from the audio and text modalities. Their proposed method achieves
state-of-the-art results in sentiment analysis on the MOSI database. In [17], the authors
adopted an attention method to learn the multi-modal representation between speech and
textual modalities and used different CNNs to extract the features from embedding word
sequences and speech spectrograms. For the Audio-Visual Emotion Challenge (AVEC
2017), Huang et al. [33] proposed an automatic prediction of dimensional emotional state
using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to train several
feature modalities and concatenate various feature vectors. A conversational transformer
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network (CTNet) was suggested by another recent study [34] to describe the context- and
speaker-sensitive dependencies in a conversation as well as the inter- and intra-modality
interactions for multimodal features. The outcomes confirmed the viability of the sug-
gested transformer fusion technique. In order to investigate the emotion representation
of a query from word- and utterance-level views, Hui et al. [35] introduced a multi-view
network (MVN). Their experimental findings on two datasets of conversations on public
emotions demonstrate that their suggested model outperforms the leading-edge baselines.
An innovative Transformers and Attention-based fusion technique was presented by the
authors in [36] that combines multimodal self-supervised learning features based on text,
audio, and visual input. The model is resilient and outperforms state-of-the-art models
on four datasets, according to the evaluation research. Multimodal emotion identification
based on audio, video, and text modalities was accomplished by Baijun et al. [37] using
a transformer-based cross-modal fusion and the EmbraceNet architecture. On the MELD
dataset, their experimental results show up to 65% accuracy.

Despite the improvements achieved by the researchers in the MER, we were able to
use a classification network MNN, elaborated by us, which allows different modalities to be
classified significantly. In fact, our network learns each vector’s component separately and
applies a concatenation until the fusion layer, not like the other architectures that merge
the modalities without taking into consideration the different components of the resulting
vector for each one. So, the accuracy is raised with 21% as the rate.

3. Materials and Methods
3.1. Convolutional Neural Networks

In this part, we will focus on one of the most powerful algorithms of DL, the Convolu-
tional Neural Network or CNN, which was first introduced in 1998 by Yann LeCun [38],
CNNs are a sub-category of neural networks and are currently one of the most efficient im-
age classification models allowing, in particular, the recognition of images by automatically
attributing to each image provided as input, a label corresponding to its class.

Generally, the architecture of a CNN consists of convolution layers, pooling layers,
plus layers of neurons that are fully connected in the form of a Multilayer Perceptron (MLP)
called fully connected layers.

Moreover, CNNs are composed of two main parts as presented in Figure 1, which are:
the hidden layer part, also called feature extraction, and the classification part.
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Figure 1. Architecture of a convolutional neural network.

In the hidden layers, the network performs a series of convolution and pooling opera-
tions during which features will be detected.
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The convolution layer’s job is to examine the images that are provided as input and
find the existence of a particular set of features. A set of feature maps is located in the
output of this layer.

G(m, n) = ( f ∗ h)[m, n] = ∑
j

∑
k

h[j, k] f [m− j, n− k] (1)

The main difference between standard image processing algorithms and CNNs is that
in the latter, the weights or values of the filters are learned by an optimization algorithm
during the training phase. This allows convolutional neural networks to learn the specific
filters for each task. After applying convolution operations on the input images, the results
(feature maps) will go through a non-linear activation function; for example, the ReLu
function, which replaces all the negative values received as inputs with zeros. The interest
of these activation layers is to make the model non-linear and therefore more complex.
The ReLu function can be calculated by the following formula:

f (x) = max(0, x) (2)

Then, the results will be transferred to the pooling layer that is used, on the one hand,
to reduce the number of parameters by minimizing the size of the characteristic maps and,
on the other hand, to introduce translational invariance into the model.

Let A = [ai,j] ∈ Rn∗m be a matrix that represents a characteristic map of a specific
region, and that will be presented to the pooling layer. The most commonly used pooling
methods are the following:

• Max pooling: replaces the input region with its maximum value.

P(A) = max(A) = max(ai,j
∣∣i ∈ 1, . . . , n, j ∈ 1, . . . , m) (3)

• Average pooling (weighted average pooling): pools the input region by taking its
average or a weighted sum, which can be based on the distance from the region center.

P(A) =
1

nm
=

n

∑
i=1

m

∑
j=1

ai,j (4)

• The Fully Connected (FC) layer, which is at the end of the CNN design and is fully
connected to every output neuron, is used for classification. To classify the input
image, the FC layer first applies a linear combination and then an activation function
after receiving an input vector. In the end, it returns a vector of size d, where d is the
number of classes and each component is the likelihood that the input image belongs
to a particular class.

3.2. Long Short-Term Memory

Long short-term memory (LSTM) is an artificial recurrent neural network architecture,
frequently used in natural language processing. The LSTM was initially proposed by S.
Hochreiter et al. [39], then improved in the article of F. Gers et al. [40] The main idea of
recurrent neural networks is to have the ability of keeping a state over a long period of time.
Moreover, this is the goal of LSTM cells, which have an internal memory called cell. This
last one allows a state to be maintained as long as necessary, and consists of a numerical
value that the network can control according to the situation.

An LSTM’s overall operation can be divided into three steps:

1. Identifying pertinent information from the past, taken from the cell state through the
forget gate;

2. Using the input gate to choose from the current input those items that will be impor-
tant in the long term. The cell state, which serves as long-term memory, will be added
to these;
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3. Select the crucial short-term information from the newly created cell state and use the
output gate to create the subsequent hidden state.

The LSTM defines a recurrence relation using an additional variable, which is the cell
state c:

ht, ct = f (xt, ht−1, ct−1) (5)

The information transits from one cell to the next through two channels, h and c.
At time t, these two channels are updated by the interaction between their previous values
ht−1, ct−1 and the current element of the sequence xt. Figure 2 shows the simplified diagram
of an LSTM cell.
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The equations governing the three control gates are therefore the following: they are
the application of the weighted sum followed by the application of an activation function.

• Forget gate: The forget gate determines what information must be remembered and
what can be forgotten. Data derived from the current input xt and hidden state ht−1
are absorbed by the sigmoid function. The values that Sigmoid produces range from 0
to 1. It draws a conclusion regarding the necessity of the old output’s part (by giving
the output closer to 1). The cell will eventually use this value of ft for point-by-point
multiplication.

ft = σ(w f .[ht−1, xt] + b f ) (6)

t: timestep, ft: forget gate at t, xt: input, ht−1: previous hidden state, w f : weight
matrix between forget gate and input gate, bt: connection bias at t.

• Input gate: Updates to the cell state are made by the input gate using the following
operations. To begin with, the second sigmoid function receives the current state,
xt, and the previously hidden information, ht−1. The values are specified to range
from 0 (important) to 1 (not important). The same data from the current state and
concealed state will then be transferred through the tanh function. The network will

be controlled by the tanh operator, which will produce a vector
∼
Ct containing every

conceivable value between −1 and 1. Point-by-point multiplication can be performed
on the output values produced by the activation functions.

it = σ(wi.[ht−1, xt] + bi) (7)
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∼
Ct = tanh(wc.[ht−1, xt] + bc) (8)

t: timestep, it: input gate at t, xt: input, wi: weight matrix of sigmoid operator between

input gate and output gate, bi: bias vector at t,
∼
Ct: value generated by tanh, wc: weight

matrix of tanh operator between cell state information and network output, bc: bias
vector at t. The input gate and forget gate have provided the network with sufficient
data. Making a decision and storing the data from the new state in the cell state
come next. The forget vector ft multiplies the previous cell state Ct−1. Values will be
removed from the cell state if the result is 0. The network then executes point-by-point
addition on the output value of the input vector it, which updates the cell state and
gives the network a new cell state Ct.

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (9)

t: timestep, it: input gate at t,
∼
Ct: value generated by tanh, ft: forget gate at t, Ct−1:

previous timestep.
• Output gate: The value of the following hidden state is decided by the output gate.

Information about prior inputs is contained in this state. First, the third sigmoid
function receives the values of the current state and the prior concealed state. The tanh
function is then applied to the new cell state that was created from the original cell
state. These two results are multiplied one by one. The network determines which
information the hidden state should carry based on the final value. For prediction, this
hidden state is used.

ot = σ(w0.[ht−1, xt] + b0) (10)

ht = ot ∗ tanh(Ct) (11)

t: timestep, ot: output gate at t, w0: weight matrix of output gate, b0: bias vector, ht:
LSTM output.

3.3. The Meaningful Neural Network

The Meaningful Neural Network (MNN), is a novel neural network model that was
first invented by [41], which allows learning features from different architecture/algorithm/
descriptive vectors representing data of different modalities, i.e., sound, image, text, etc.,
in a meaningful way.

The main idea of MNN is to dedicate a part named (specialized layers) of this network
for learning each input vector component. Indeed, the learning of the latter’s characteristics
is realized independently in a significant manner.

The MNN Architecture contains three types of layers show (Figure 3):

• Specialized layers: Sets of neurons that are trained specifically to extract and learn
the representations of the input vector components are present in each of these layers.
Depending on how many components the input vector contains, we can often have
any number of neuron sets. The weights’ calculation and updating during the gradient
backpropagation step can be expressed as follows: Forward Propagation:

zc(l)
j = Ψ(

T(l−1)

∑
k=1

w(l)
(kj)a

(l−1)
k + b(l)j ) (12)

c: the component numbers, T(l−1): the number of neurons belonging to the layer l − 1

that concerns the component c, w(l)
(kj): the weight that connects the neuron j belonging

to the layer l that concerns the component with the neuron belonging to the layer
l − 1 of the component c, a(l−1)

k : the output of the neuron k belonging to layer l − 1 of
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the component c, b(l)j : the bias connected to the neuron j and belonging to layer l of
component c. Backward Propagation:

δ
c(l)
j = σ′(zl

j) ∗
n(l+1)

∑
k=1

w(l+1)
(jk) δ

(l+1)
k (13)

∂E

∂wc(l)
(ij)

= ac(l−1)
i δ

c(l)
j (14)

∂E

∂bc(l)
j

= δ
c(l)
j (15)

• Directive layer: One directive layer is present in the suggested architecture. While
the other side is fully connected, the left side is semi-connected. By taking into
consideration the two sets of neurons for the specialized layers, this layer enables the
control of error propagation.
Forward Propagation:

zc(l)
j = Ψ(

T(l−1)

∑
k=1

w(l)
(kj)a

(l−1)
k + b(l)j ) (16)

Backward Propagation:

δ
c(l)
j = σ′(zl

j) ∗
n(l+1)

∑
k=1

w(l+1)
(jk) δ

(l+1)
i (17)

∂E

∂wc(l)
(ij)

= ac(l−1)
i δ

c(l)
j (18)

∂E

∂bc(l)
j

= δ
c(l)
j (19)

• Fusing Layer: This layer is completely connected. It enables the merging of learned
representations from earlier levels. Forward Propagation:

zc(l)
J = Ψ(

T(l−1)

∑
k=1

w(l)
(kj)a

(l−1)
k + b(l)j ) (20)

c: the component numbers, T(l−1): the number of neurons belonging to the layer l − 1

that concerns the component c, w(l)
(kj): the weight that connects the neuron j belonging

to the layer l that concerns the component with the neuron belonging to the layer l − 1
of the component c, a(l−1)

k : the output of the neuron k belonging to layer l − 1, b(l)i : the
bias connected to the neuron j and belonging to layer l of component c.
Backward Propagation:

δ
c(l)
i = σ′(zl

j) ∗
n(l+1)

∑
k=1

w(l+1)
(jk) δ

(l+1)
k (21)

∂E

∂wc(l)
(ij)

= ac(l−1)
i δ

c(l)
j (22)

∂E

∂bc(l)
j

= δ
c(l)
j (23)
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4. Proposed Method

The proposed method consists of three steps presented in the Figure 4 below: the first
one is devoted to extracting the features of each single modality (unimodal). The second
step is designed to merge the two modalities audio and text (bimodal). While the third
one is concerned with the classification of the three inputs (audio, text, and bimodal)
concatenated in the same vector using MNN to predict emotions.
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4.1. Extraction of Unimodal Features

Let D = {v1, v2, v3, . . . , vn}, be the database that contains n videos, each video
vi = {ui1, ui2, ui3, . . . , uim} is represented by a set of utterances noted uij with m the number
of utterances in the video vi. We will follow the same sequence of [42] to extract the features
of each statement independently. For the text modality, their features will be passed to an
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LSTM network to allow consecutive utterances in a video to represent relevant information
in the feature extraction process.

4.1.1. Extraction of Text Modality

The first step in extracting the text modality is to prepare and transform the text of
the utterances into a digital format. First, we represent each utterance as the concatena-
tion of vectors for constituent words. In our work, we used GloVe, which is a publicly
available word representation tool based on global frequency statistics [43], with a di-
mensionality equal to 300 pre-trained on 42 billion vocabulary words. This dictionary
provides a 300-dimensional vector for each word. Exploiting this tool, it was thought to
use CNN to extract the features of each utterance given its high discrimination capability.
In sequence classification, each utterance depends on the other utterances in the same
sequence. The statements in a video maintain a sequence. In a video, we assume that there
is a high probability of dependence between statements with respect to their sentimental
cues. In particular, we argue that when classifying an utterance, the other utterances may
provide important contextual information. Thus, a model is needed that takes into account
these interdependencies and the effect they may have on the target utterance. To capture
this flow of informational triggers between utterances, we use a recurrent neural network
(RNN) based on LSTM [44] to extract contextual information based on the results obtained
from CNN.

For the CNN, the input consists of the 300-dimensional pre-trained GloVe vectors.
The proposed approach consists of three convolution layers: the first one contains 40 filters
of size 3 × 3, and the second and the third layer contain, respectively, 100 and 150 filters
of the same size (4 × 4). Each convolution layer uses a Stride equal to 2 and an identical
Padding. At the end of each convolution layer, we apply the ReLu activation function.
The pooling layer comes after each convolution layer. We chose the Max pooling with a
2 × 2 filter. The convoluted features are then concatenated and introduced into a fully
connected layer of 1611 dimensions, whose activations form the representation of the
statement.

The feature vector of the text generated by the CNN for each utterance will be grouped
in a matrix that will be transmitted to the LSTM as input. The LSTM is capable of learning
long-term dependencies. Its special structure with input, output, and forgetting gates
controls the identification of the long-term sequence pattern. The process of the text vector
is presented in the Figure 5.
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4.1.2. Extraction of Audio Modality

To extract acoustic features. There are popular audio feature extraction toolkits avail-
able for free that are capable of extracting all fundamental features. We used The OpenS-
MILE Feature Extraction Toolkit [44], which brings together feature extraction algorithms
from the speech processing and music information retrieval communities. The speech
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features captured by this collection include loudness, CHROMA, CENES, Mel cepstral co-
efficient features, and perceptual linear predictive cepstral features. Additionally, it records
crucial elements such as format frequency and fundamental frequency. We computed three
speech features—the MFCCS, loudness, and CHROMA features—using this package.

At a sliding window of 100 ms and a frame rate of 30 Hz, the audio features are
extracted. Voice normalization is carried out and the voice intensity is thresholded to distin-
guish between voiced and unvoiced samples in order to compute the features. To combine
with the other modalities, the generated features are further downsampled to 49.

4.2. The Fusion of Text and Audio Modalities

Fusion is one of the original topics in multimodal machine learning. In this context,
we have developed a third modality to study the characteristics of text and audio fusion.
We believe that this resulting vector can be used to effectively improve the classification
effect.

A feature vector of 49 dimensions from the acoustic network and a feature vector of
1611 dimensions from the textual network are merged into a single vector that will present
the modality (bimodal) that will be used later as a third component of the MNN network
to classify emotions.

4.3. Classification

After having prepared the input vector of our system, we arrive at the fundamental
part, which consists of the classification of the emotions. For this, the choice of classifier is
very important because it can also significantly impact the accuracy of the recognition.

In the field of emotion recognition, various classifiers have been used. Among the most
common approaches, we can mention the Gaussian mixture model (GMM) [45], the hidden
Markov model (HMM) [46], the neural network (NN) [47], the SVM [48], AdaBoost [49], etc.

In our case, we used the MNN [41]. Its architecture is characterized by significant
learning, which is very adapted to our system. As far as we know, most of the architectures
that use the concatenation of feature vectors do not take into account the different com-
ponents of the resulting vector. In fact, they consider this vector as a single entity while
ignoring its constituent components. On the other hand, the MNN network architecture
allows the components of the global feature vector to be learned in a meaningful way.
It dedicates to each of its components a set of neurons belonging to a number of hidden
layers.

The input vector of our system consists of three components: the text component with
dimension 1611, the audio component with dimension 49, and the bimodal component
with dimension 898.

At the input of the classification step, each input vector component is made of a
number of neurons. We choose 500 neurons for text, 50 neurons for audio, and 300 for
bimodal. The first 2 layers, named specialized layers, are accessed by the 3 components.
Then, they move to the Directive layer and, lastly, to the fusion layer, before recognizing
the final emotions. The passage from one layer to another is performed with a minimal
number of neurons compared to the previous layer and by calculating the weights and their
updates at each passage, with the backward and forward propagation formulas mentioned
in Section 3. Moreover, the audio component keeps the same result at the fusion level even
by increasing the number of neurons at the input. Comparing the components, the number
of neurons used in text and bimodal at the input of the classification step is higher than
the audio component. This justifies the absence of neurons for the audio component in the
directive layer.

The parameters of each component within the MNN network are represented in the
Table 1 below.
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Table 1. Classification parameters.

Layer

Components

C1 Text C2 Audio C3 Bimodal

Dimension Number of
Neurones

Activation
Function Dimension Number of

Neurones
Activation
Function Dimension Number of

Neurones
Activation
Function

Input 1611 500 ReLu 49 50 ReLu 898 300 ReLu

Specialized
layer 1 200 ReLu 20 ReLu 200 ReLu

Specialized
layer 2 50 ReLu 7 Softmax 50 ReLu

Directive
Layer 7 Softmax - - 7 Softmax

Fusion
layer 21 7 Softmax 21 7 Softmax 21 7 Softmax

Output 7 Softmax 7 Softmax 7 Softmax

5. Proposed Experimental Results and Discussion
5.1. Computational Environment

The Python toolbox was used to implement our proposed model. The experiments
were executed on an Asus desktop (Taiwanese multinational computer and phone hardware
and electronics company headquartered in Beitou District, Taipei, Taiwan), which has 8 GB
RAM, Intel (R) Core (TM) i7-8550U CPU @ 1.80 GHz (8 CPUs), ~2.0 GHz, and Windows 10
as the operating system. Moreover, the Google Colab cloud service was used to train the
proposed architecture.

5.2. Dataset

The Multimodal Emotion Lines Dataset (MELD) [13,14] is an evolved version of
the EmotionLines Dataset. MELD has the same dialogue instances as those available in
EmotionLines, but additionally includes audio, visual modality, and text. The MELD has
over 1400 dialogues and 13,000 utterances from the Friends television series, with the
dialogue samples grouped into 1039 for training, 114 for validation, and 280 for testing,
and the utterances samples grouped into 9989 for training, 1109 for validation, and 2610 for
testing.

The utterances in each dialogue were annotated with any of these seven emotions
(Anger, Disgust, Fear, Joy, Neutral, Sadness, and Surprise) were coded as 0, 1, 2, 3, 4, 5,
and 6 annotation labels. This annotation list was extended with two additional emotion
labels: Neutral and Non-Neutral. Label distributions in the training, validation, and test
datasets can be seen in Table 2. Figure 6 shows an example of dialogue extracted from the
MELD dataset.

Table 2. Distributions in the training, validation, and test datasets for each label.

Anger Disgust Fear Joy Neutral Sadness Surprise

Train 1109 271 268 1743 4710 683 1205
Dev 153 22 40 163 470 111 150
Test 345 68 50 402 1256 208 281
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5.3. Evaluation Metrics

We evaluated the performance of our model using the following evaluation metrics:
Accuracy, Precision, Recall, and F1-score. The expression of these metrics is given as
follows:

• Accuracy: the easiest performance metric to understand is accuracy, which is just the
proportion of correctly predicted observations to all observations. TP+TN

TP+FN+TN+FP
• Recall: is a metric for how well a model detects True Positives. TP

TP+FN
• Precision: is the ratio of accurately anticipated positive observations to all actual class

observations—yes. TP
TP+FP

• F1-score: is the average of Precision and Recall, weighted. 2 Precision∗Recall
Precision+Recall

where TP, TN, FN, and FP are defined respectively as:
(TP) A test outcome that accurately detects the existence of a condition or characteristic.
(TN) A test outcome that accurately demonstrates the absence of a condition or

characteristic.
(FN) A test result that falsely suggests the presence of a certain condition or attribute.
(FP) A test result that falsely suggests the absence of a certain condition or attribute.
Moreover, we elaborated the macro average and weighted average metrics, we mounted

the cost, training accuracy, and training accuracy/validation accuracy curves according to
the epochs, and finally we displayed the confusion matrix.

5.4. Performance Evaluation

We evaluated the performance of our system through the following steps: the first
contains a detailed study of the audio, text, and bimodal (text + audio) modalities; the
second presented a test on the multimodal system, and the third, a comparison with existing
works.

5.4.1. Performance Study on Audio, Text, and Bimodal Modalities

The training, validation, and test sets for the MELD dataset were already separated,
as was previously announced. Since we needed the findings, we constructed our model,
adjusted the training hyperparameters based on the training and validation sets, and tested
the model on the test set.

The tables above display the metrics of the three modalities obtained with the MELD
dataset. Each metric for a given modality generates different values for every emotion.
This block of values (modality, emotion) is called the test classification results.

From Table 3, the maximum value of the precision for the text modality concerns the
anger emotion (90%), and with a value of 98% for the disgust emotion in the two other
modalities. Concerning the metric Recall, the text modality reaches a maximum value
of 95% for the emotion surprise, 97% for the audio modality with the disgust emotion,
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and 98% for the same emotion for the bimodal modality. Regarding the third metric, F1-
score registers 89% as a value for the modality text (emotion surprise), a value of 97% for
audio, and 98% for bimodal with emotion disgust.

Table 3. Classification report results for the MELD on text, audio, and bimodal modalities in the
function of (Precision, Recall, and F1-score) (Unit = %).

Emotion

Modality

Text Only Audio Only Bimodal (Text + Audio)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Anger 90 87 88 55 58 56 72 72 72
Disgust 68 80 74 98 97 97 98 98 98

Fear 60 35 44 0 0 0 4 10 6
Joy 76 36 48 9 18 12 23 18 20

Neutral 88 88 88 17 19 18 44 46 45
Sadness 82 40 54 3 1 2 6 9 7
Surprise 84 95 89 27 14 19 39 29 33

Macro avg 78 66 69 30 30 29 41 40 40
Weighted avg 84 84 83 82 82 82 87 87 87

Concerning the values of Macro average and weighted average metrics, they gave a
general view on all the samples of the dataset used.

According to Table 4, the bimodal has the highest value of Accuracy with a rate of
86.51%. In second place, the text modality achieves 83.98% as a value, and in last place,
the audio modality has a value of 81.79%.

Table 4. The accuracy results of the single and bimodal modality.

Modality Accuracy (%)

Audio only 81.79
Text only 83.98

Bimodal (text + audio) 86.51

Figures 7–9 show the training cost of the three modalities. We can see that the maxi-
mum value is reached around 0 epochs and is reduced by increasing the number of epochs.
The cost achieves the value of 0.0115 for the text modality, 0.0634 for the audio, and 0.0046
for the bimodal.
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In Figures 10–12, we visualize the training accuracy of the three modalities. We notice
that for the latter, a maximum value is reached, then a decrease to resume a maximum value,
which stabilizes from a certain number of epochs. For the text modality, the maximum
value of training accuracy is 83.76%. For the audio modality, it is 96.92%. Then, it reaches
98.03% as the value for the bimodal.
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5.4.2. Performance Results on Multimodal System

Above, we have studied the recognition of emotions for the text, audio, and bimodal
modalities separately. In what follows, we go on with the multimodal modality of the
proposed method.



Big Data Cogn. Comput. 2022, 6, 95 17 of 21

Using the multimodal system on the MELD dataset, we notice that the evaluation
metrics reach a maximum value of 98% for the disgust emotion (Table 5). Comparing the
single modalities, we can see equality between the bimodal and multimodal values, which
is not the case. Our method performs better by recording an advanced decimal value (the
values are rounded by the system).

Table 5. Classification report results for the MELD on the multimodal system in the function of
(Precision, Recall, F1-score) (Unit = %).

Emotion
Multimodal

Precision Recall F1-Score Accuracy

Anger 69 71 70

86.69

Disgust 98 98 98
Fear 2 2 2
Joy 29 21 24

Neutral 39 55 46
Sadness 3 3 3
Surprise 46 30 36

Macro avg 41 40 40
Weighted avg 87 87 87

The accuracy reaches 86.69%, where an improvement is detected with the use of a
multimodal system.

Regarding the loss indicator (Figure 16), it registers the value of 0.0039, which is lower
from a certain number of epochs compared to other previous systems. For training accuracy
(Figure 17), the system reaches its peak with a value of 98.42%.
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In Figure 18, the training accuracy and validation accuracy curves are almost superim-
posed and this regenerates the absence of the overfitting problem.
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In the multimodal confusion matrix (Figure 19), the maximum value of the true label
is 6744 for the disgust class. This represents the high value in this matrix.
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Figure 19. Multimodal confusion matrix of 7-class facial expression recognition results obtained by
the MELD database.

Our multimodal fusion model outperformed the unimodal findings, according to all
evaluation metrics.

5.5. Comparison with State-of-the-Art Methods

In order to evaluate the performance of our approach, we have compared it with
other state-of-the-art methods. We have considered relevant approaches that give a good
Accuracy regarding the MELD dataset, and we have drawn a comparison with the methods
proposed by [34–37]. The obtained results are presented in Table 6.

Table 6. A brief comparison of our proposed approach with other related works in the function of
Accuracy (unit = %).

Approaches Year Accuracy

Zheng et al. [34] 2021 62.0
Hui et al. [35] 2022 63.69

Siriwardhana et al. [36] 2020 64.3
Baijun et al. [37] 2021 65

Our proposed approach 2022 86.69

Table 6 shows that our proposed method achieves higher Accuracy that matches
the state-of-the-art performance and propounds its robustness in multimodal emotion
classification.
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6. Conclusions and Futures Work

Through this work, we have proposed a multimodal emotion recognition system for
conversations. This system consists of a model with two different modalities (text, audio)
that are respectively extracted with (CNN, LSTM) and OpenSmile. A third modality is built
from the fusion of the audio and text features into a single vector. All three modalities feed
a meaningful neural network and result in allowing good feature learning to accurately
identify emotional states. Moreover, due to the meaningful neural network structure,
the proposed architecture can be robustly extended to a larger set of input modalities.
The obtained results demonstrate the performance of our proposed approach. Regarding
our future works, we plan to deeply study temporal performance in order to construct a
real-time multimodal emotion recognition system focusing on the visual modality as well
as evaluating other multimodal datasets.
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