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Abstract: Multi-modal data are widely available for online real estate listings. Announcements
can contain various forms of data, including visual data and unstructured textual descriptions.
Nonetheless, many traditional real estate pricing models rely solely on well-structured tabular
features. This work investigates whether it is possible to improve the performance of the pricing
model using additional unstructured data, namely images of the property and satellite images. We
compare four models based on the type of input data they use: (1) tabular data only, (2) tabular data
and property images, (3) tabular data and satellite images, and (4) tabular data and a combination of
property and satellite images. In a supervised context, the branches of dedicated neural networks
for each data type are fused (concatenated) to predict log rental prices. The novel dataset devised
for the study (SRED) consists of 11,105 flat rentals advertised over the internet in Switzerland. The
results reveal that using all three sources of data generally outperforms machine learning models
built on only tabular information. The findings pave the way for further research on integrating other
non-structured inputs, for instance, the textual descriptions of properties.

Keywords: real estate; visual cues; satellite images; deep learning; computer vision; multi-modal
learning; multi-input model

1. Introduction

Designing models that simultaneously consider various data forms has become in-
creasingly important in recent years. Incorporating assorted forms of unstructured data,
such as images and textual descriptions, has been the focus of many studies [1–3]. However,
coalescing structured and unstructured data remain largely unexplored. The process of
interfusing various data forms has been referred to in different ways depending on the
field and scope: multi-modal learning [4], multi-view learning [5,6], and multi-input learn-
ing [7,8]. The appropriate terminology for amalgamating structured and unstructured data
in pursuit of a supervised goal is open to debate. In this paper, we refer to this phenomenon
as multi-modal learning. Our work sheds light on the application of multi-modal learning
for the real estate industry and automated valuations models (AVMs) that can democratize
the valuation process for the consumers.

The real estate industry is one domain that can significantly benefit from coalescing
different data types. Property price estimation—often said to be more of an art than
science—involves an abundance of data in various forms, thereby making it ideal for
multi-modal learning. Professional appraisers consider many conventional and tangible
factors when evaluating properties. Nevertheless, many automated pipelines and modeling
approaches ignore intangible factors that significantly influence a buyer’s or renter’s
decision. In addition to misleading the consumers, professional appraisers may fall victim
to the wrong valuations as AVMs become indispensable for nourishing the growth and
scalability of the appraiser’s operations. Moreover, in an inefficient setting such as real
estate, it is imperative to harvest the value of internal and external data whereby the
existing features are engineered into a holistic approach capable of producing accurate
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valuations. Similar to a human’s cognitive ability, the design of AVMs should allow the
models to assess different content before generating valuations.

The attributes influencing the price of the property have been the topic of several re-
search studies [9–12]. Most studies model this phenomenon through conventional hedonic
pricing models, where regression analysis is applied to assess the importance of various
features in predicting real estate prices. This includes easily measured attributes such as
the number of rooms, the size of the house, and the year of construction [9]. The selection
of such attributes is often a complex process and highly depends on the local market under
the study [10]. In general, such attributes are characterized according to the information
they provide: (i) the structure, (ii) the general location, or (iii) the neighborhood and the
immediate surrounding environment [11,12].

One prominent form of unstructured data readily available to real estate seekers is
properties’ interior and exterior images. While visual cues may impact the prices, accurately
describing them in structured formats can be challenging. There have been a few studies
that model property sales prices through such property images. Poursaeed et al. [13]
focused on estimating luxury levels through a semi-supervised model combining both
annotated structured visual cues from a crowd-sourcing platform with the tabular data as
inputs to a support-vector machine (SVM). In a similar work, Ahmed and Moustafa [14]
used frontal images of houses, bedrooms, kitchens, and bathrooms to extract visual fea-
tures through the speeded up robust features (SURF) algorithms. Their findings showed
that images could significantly improve price estimations where neural networks (NNs)
outperform SVMs. Furthermore, Lee and Park [15] revealed that more recent deep learning
techniques might outperform SURF by using only the tabular features and exterior images
of a property without a separate algorithm for feature extraction. Zhao et al. [16] simul-
taneously considered luxury levels such as AVA scores [17] and property images to build
hybrid machine learning models for price predictions.

The property images found in online announcements can capture structural informa-
tion; however, the 2D satellite images of the property are arguably better for understand-
ing the neighborhood’s aesthetics and the immediate surroundings of a given property.
Law et al. [11] looked at the effect of adding panoramic street view (referred to as aerial) and
satellite images to tabular features for improving price estimations, where two approaches
are noteworthy to highlight the integration of visual information. In both approaches, con-
volutional neural networks (CNNs) extracted visual cues from the two image types as two
different functions. The difference between the two approaches is that in one, the outputs
of these functions were concatenated with the standard tabular attributes processed by a
separate NN. In contrast, the second technique used visual desirability scores produced
by the CNNs as inputs to a more interpretable model (linear or additive) to understand
individual contributions better. Their results showed that both models outperformed the
simple linear approaches and the NN, in particular, generated the best estimations. Fur-
thermore, Kucklick et al. [18] used the satellite images and tabular features to demonstrate
the power of concatenating multiple inputs and discussed how multi-view learning could
help outperform models with isolated inputs. Finally, Bency et al. [19] showed that transfer
learning and NNs can outperform spatial auto-regressions (SAR) and other models due to
their ability to fuse visual cues from satellite images with typical property attributes.

Our work assesses the value of unstructured data for real estate modeling. We examine
a combined usage of images related to the property (interior and exterior and satellite
images) and structured information. To our best knowledge, our research is the first
attempt to combine these two sources of visual information in a single real estate model.
Furthermore, the aim is to understand whether such multi-input models can outperform
conventional modeling approaches that operate only on structured data.

Research Question

This paper evaluates the effect of multi-modal learning in the form of images and
tabular information. Therefore, the research question consists of two parts:
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i Does the performance of a neural network that uses tabular features for predicting
rental prices improve with additional training data that are non-structured, including
advertised property images and satellite views?

ii Does such a neural network outperform models trained solely on structured features?

The remainder of this paper is as follows: Section 2 describes our real estate datasets
and the pre-processing applied to both the structured information and the images. In
Section 3, we outline the methodology applied for multi-modal learning to predict the log
rental prices. In Section 4, we outline our empirical results by highlighting the performance
of each model. Additionally, the same section derives our findings and their implications.
Lastly, in Section 5, we summarize and conclude the main findings while shedding light on
the limitations of our work.

2. Swiss Real Estate Dataset

Finding publicly available datasets where images and tabular attributes for real estate
listings co-exist is challenging. For this paper, the dataset of listings was gathered from a
Swiss real estate platform. The platform contains property advertisements in Switzerland
and its neighboring cross-border cities. The announcements are published by private
individuals and real estate agencies, expanding over several listing categories. Most
notably, an announcement may involve selling or renting different property types such
as flats or houses. Among these, flat rentals had the highest number of announcements.
While the platform and its structured property features were translated and made available
in four languages (English, French, German, and Italian), the unstructured description of
the property often remained in the original language of the publication.

Our dataset, named SRED (Swiss Real Estate Dataset), consists of 17,758 flat rentals
scraped in English during February and March 2021. Each listing contains a price, which
may refer to rental price or sales price depending on the type of listing. Additionally,
throughout this paper, the term price has been used for rental prices.

2.1. Tabular Data

SRED contains 12 structured and unstructured features, some of which may be rel-
evant for flats. The structured features that are suitable for both property types (flat or
house) are the price, living space (m2), number of bathrooms, number of rooms, location
(longitude and latitude), year of construction, and advertiser (private contact or agency
details). Additionally, there are common unstructured features in the form of a title for the
announcement, attached property images, and a description of the advertisement. Some
features are only meaningful and relevant based on the property type. For instance, a flat
may have a feature indicating the floor number on which it is located.

While the primary aim of this paper is to use all predictive features, the heterogeneity
in the available data played an essential role in the final selection of adequate modeling
features. Some scraped features were frequently missing due to inconsistency in HTML
tags and were often misplaced by the user. The chosen consistent and informative features
include the living space, number of bedrooms, and location. The literature also supports
this choice of variables [9].

The inclusion criteria of a listing are of two types. Firstly, and the methodology dictates
that listings must (i) report the exact address to obtain location features, (ii) have a year of
construction < 2020, since those ≥ 2020 were assumed under construction, and (iii) have at
least four property images, since this is central to the modeling process. Secondly, listings
must (vi) have a surface of at least 18 m2, (v) have rental prices between CHF 200 and 7500,
and (vi) have to be located in Switzerland and its cross-border cities (5 ≤ longitude ≤ 12
and latitude ≤ 45).

2.2. Image Data

Each listing in SRED contains a set of images attached by the advertiser. The real
estate platform assumes that these images provide visual information about the property,
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for instance, showcasing the listing’s interior and exterior. However, some images do not
directly represent a property, such as images of realtor’s logos, pets, nearby forests, and wa-
terfalls. These images should be removed from the dataset to obtain cross-comparable
images across all listings. For this purpose, we designed a three-stage process that included
three classification models where we assumed that most output images were photographs.
Before beginning the image pre-processing, each SRED listing had a mean of 8.42 images
and a median of 8.

In the first step, images representing logos, mock-ups, the layout schemes of a rental
unit or its affiliated buildings, and all images not showing the property’s appearance were
removed. Indeed, a logo could bring information such as the name and contact details
of the commercial realtor, which may also be provided in the tabular feature, and thus
carry redundant information. Removing those prevents a pricing model from learning
shortcuts on incomparable listings. Further, we included other irrelevant images (e.g., pets
and persons) within the irrelevant category. In the first stage of our process, we used a
binary classification model to filter such images out from our dataset.

The second type of images considered irrelevant included mostly outdoor images
where the building of the flat was not identifiable. Such images primarily relate to the prop-
erty’s exterior, for instance, photos taken of or from gardens, balconies, and, more generally,
outdoor shots that did not include the property building. The second pre-processing stage
was designed to remove such outdoor images through another binary classifier.

In the last step, the remaining relevant images were classified into one of seven
categories: bathroom, bedroom, kitchen, living room, dining room, interior (miscellaneous),
and exterior. To this aim, we used the publicly available datasets from Poursaeed et al. [13].
There are four key remarks with regard to these images. First, the interior class mainly
represents the miscellaneous and, in our case, potentially unwanted images, such as stairs,
corridors, elevators, and unusual images, that are not strictly related to the property. Second,
the kitchen category contains open kitchens (no walls or barriers separate the kitchen from
the living or dining rooms), like many SRED listings. Third, distinguishing between living
and dining rooms may not be relevant, particularly for studios or small properties. At last,
the exterior class has the most images which bear various architectural styles. This variety
helps the classification model to identify the different styles of buildings. Since the dataset
provided by [13] is not specific to one region while SRED is specific to Switzerland, it may
be argued that some classes, such as exterior images, could benefit from images that are
primarily Swiss architectural designs. In practice, such architectural styles did not seem to
influence the correct identification of exterior images, as the other classes differed vastly.

We summarize our three-stage image pre-processing in Figure 1. This process was
applied to each image in our dataset.

In order to train our first two binary models, two individual annotators labeled images
from SRED from randomly selected listings. For the first classification task, 15,110 images
were labeled, where 96% belonged to the class with relevant images. For the second
classification model, there were 14,549 images, including 92% relevant images. Examples of
annotated irrelevant images for these two stages have been shown in Figure 2. Additionally,
it should be noted that the irrelevant images of the first model were not carried on to the
second set of annotations. The images in both cases were randomly split in 95:5 proportions
for training and testing. In terms of the performance on the test set, the first classification
model reached a balanced accuracy of 97.5%, while the second model achieved a balanced
accuracy of 94.5% for removing irrelevant exterior images. Attaining a high specificity
in both cases—99.8% and 99.2%, respectively—meant that, on average, very few relevant
images were removed.
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An image of a listing
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Irrelevant?

Remove
Irrelevant
Image
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Exterior?

Remove
Irrelevant
Image

Classify image into one
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Relevant image with labeled room type

yes

no

yes

no

Stage 1

Stage 2

Stage 3

Figure 1. Three stages of image processing for SRED.

(a) (b) (c) (d)

Figure 2. Examples of irrelevant images in stages 1 and 2: logo (a), layout scheme (b) and irrelevant
exterior images (c,d).

We trained the classification model from the third stage based on the combina-
tion of the dataset by Poursaeed et al. [13] and images from SRED. The original dataset
Poursaeed et al. (2018) used had 145,994 images of 224 × 224 pixels. We removed dupli-
cated images from their dataset and added 2352 labeled images from SRED, yielding a
dataset of 148,342 images. The annotations for SRED were performed only for the three
categories of the bathroom, exterior, and kitchen, where the newly annotated images from
SRED were to capture the Swiss architectural idiosyncrasies.
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The images from the exterior category of [13] were incompatible with those found
in SRED. This occurred because the exterior category in [13] consisted mostly of images
taken from the frontal angle of the building. This meant that images from SRED, which
showed a balcony or the building from a side angle, could be mistaken for another category
that interests us (e.g., bathroom) since it was not included in the training set. Moreover,
the images from the balcony of a property were vastly different than those from the frontal
view of the building, and they deserved a dedicated category. However, as there were too
few images of balconies, such images were eventually included within the exterior category.
This inclusion did not pose significant challenges for answering our research question
since we assumed that some irrelevant balcony images were filtered out during the second
stage of image processing, that is, when deploying our second classification model for
removing the irrelevant exterior images. For this task, 95% of the data was randomly taken
for the training set, while the remaining 5% was used for the test set. This multi-class
model reached 89.5% accuracy on the test set. The class distributions and performances are
shown in Table 1. It can be observed that when considering the balanced accuracy, the best
performing classes are exterior and bathroom, while the relatively worse performances are
attained for living room and dining room.

Table 1. The performance of stage on the test set separated by the room type.

Class No Test Balanced F1 Sensitivity SpecificitySamples Accuracy

Living room 1210 0.905 0.828 0.850 0.960
Kitchen 1217 0.937 0.899 0.892 0.982
Interior 950 0.946 0.907 0.905 0.987
Exterior 1315 0.970 0.956 0.947 0.993
Dining room 975 0.920 0.860 0.862 0.979
Bedroom 1206 0.942 0.910 0.898 0.986
Bathroom 542 0.955 0.907 0.919 0.992

To cross-compare the images from the listings, it was necessary to have a homoge-
neous set of room types among them. As certain room types were not found between
all the listings, choosing which room types depended on what kind of rooms a human
appraiser—either a professional individual or a renter—would consider predominant when
comparing properties. Additionally, the choice of the room types was constrained by the
available images from SRED, where certain classes may be more frequently found among
the listings than others. In work by Ahmed and Moustafa [14], the authors used frontal
images of houses (in our case labeled ‘exterior’), bedrooms, kitchens, and bathrooms for
estimating property prices. After running the model and classifying the room types in
SRED, we found the most relevant and frequent classes to be the property’s exterior, living
room, kitchen, and bathroom. An example of each room type is depicted in Figure 3. It
may also be argued that the appearance of certain room types such as the kitchen and
bathroom may differ, while other room types such as the bedroom and living room may be
similar. Therefore, in selecting relevant room types, we sought to find a balance between
the frequency and diversity of the room types. Furthermore, the methodology section
explains why we selected four room types.
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(a) (b) (c) (d)

Figure 3. Example of four commonly found room types after executing stage three. The demonstrated
room types are bathroom (a), living room (b), kitchen (c), and exterior (d).

To avoid having several images belonging to one type, we kept the image with the
highest probability of belonging to that class, removing the atypical room types. There
were some listings where the probability of two images belonging to the same class was
very similar or the same (indicating possible duplicates), and for such cases, we selected
the image with the lowest probability for its most likely alternative.

2.3. Satellite Data

Google Static Maps API was used to acquire the satellite images of real estate listings
via their coordinates. The API provides four maps: roadmap, satellite, hybrid, and terrain.
Although the roadmap type is probably the most recognizable, the satellite map was more
relevant for this paper. As the name suggests, it represents the satellite photographs of the
terrains of a given location.

We had to choose an appropriate zoom level to obtain suitable satellite images.
The zoom level ranges from 0—where the entire world could be seen—to 21+—viewing
the streets and individual buildings closely. We defined an appropriate zoom level as one
with enough information about the neighborhood as a whole, meanwhile bearing rich
information on the immediate surroundings of the target building. It is important to note
that the general prices at the city level may already be reflected in the location features
(longitude and latitude) and our ensuing aim was to have a zoom level leaning towards the
immediate surroundings of a given listing. Through various observations, we found the
zoom level of 19 to strike a good balance between the neighborhood attributes and nearby
roads while maintaining a visible view of the landmark and the building.

For gathering the final SRED satellite images, for every listing, we collected a roadmap
image type—without any labels of the surrounding landmarks/roads—followed by a
satellite image type. Eventually, after a few early attempts, we found the satellite image
type to be more effective and meaningful than artificially generated images and hence
proceeded with using this map type for modeling. Examples of the four available maps are
shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Example of four Google Static Map images for a given listing: satellite (a), roadmap (b),
hybrid (c), and terrain (d).
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2.4. Descriptive Statistics of the Final Dataset

A summary of 11,105 SRED listings that remain after data processing is shown in
Table 2. The rental prices started from CHF 495 to CHF 7400, with mean and median
rentals under CHF 1800. Moreover, the smallest kind of flat was a studio flat or a property
with 1.5 rooms (pièce in French). This is not the smallest possible size for a property in
Switzerland, as this value could be as low as 1; however, no such property was present
after pre-processing the data. Moreover, since the raw value of the price was slightly
skewed, the logarithm transformation should be applied first. The resulting prices after the
transformation were closer to a normal distribution and were, in turn, more suitable for the
regression tasks.

Table 2. Summary statistics for 11,105 SRED flat rentals after pre-processing the features.

Variable Mean SD Min Q1 Median Q3 Max

price (CHF) 1730 598 495 1385 1620 1935 7400
living_space (m2) 86 31 19 68 83 100 1502
rooms 3.589 0.941 1.5 3 3.5 4.5 14
lon 8.018 0.812 6.043 7.456 7.899 8.633 9.869
lat 47.156 0.396 45.832 46.960 47.265 47.443 47.794

All flat rental listings in Switzerland after the data selection process are shown in
Figure 5, where the first map outlines all the Swiss cantons, while the second map sheds
light on fertile and infertile areas. The maps indicate that the listings are geographically
well spread and adequately represent the Swiss market.

(a) (b)

Figure 5. Map of flat rentals in Switzerland represented by the red dots. The first map represents all
the Swiss cantons (a), while the second map with the same cantons (b) also shows infertile areas in
dark color.

3. Predictive Modeling

We considered two families of models that fall within the scope of our research
question. The first group consisted of models designed for handling tabular data, such as
linear regression, random forest, and neural networks. Further, we considered the models
that use image data as input. Predicting prices from images alone was unlikely to produce
optimal price estimations. By combining the two types of inputs—tabular information and
images—we expected to see improvements in overall price predictions.
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3.1. Performance Metrics

There are three relevant metrics for the regression tasks. The first two metrics, namely
mean squared error (MSE) and R2, are related, since minimizing MSE is equivalent to
maximizing R2. MSE allows us to obtain RMSE (

√
MSE), which helps interpret the models’

monetary improvement with the large rental prices considered. R2 was chosen, as it is
often easy to interpret and independent of the scale of the data, beneficial to understanding
the performance of our log-transformed rental prices. Since the errors are squared in
MSE before being averaged, this metric gives a relatively high weight to significant errors.
A third, possibly more relevant, measure for typical real estate is the mean absolute error
(MAE). As the name suggests, it shows the absolute differences between the prediction and
outcome, and equal weight is given to all the individual differences. Observing this metric
instead of RMSE gives less importance to the more significant prediction errors, and as in
the real estate market, we have many outliers, making MAE also meaningful to interpret.
We must consider that rental prices above CHF 7400 have already been disregarded (see
Section 2.4). However, what defines an ‘unusually’ expensive rent would still be open to
debate; therefore, we observed the performance of both MAE and RMSE.

3.2. Classical Machine Learning Models

Various machine learning models were attempted to understand the relative per-
formance gains for neural networks trained on the tabular features, most notably linear
models, random forests [20] and two gradient boosting methods, namely (stochastic) gradi-
ent boosting machines (GBM) [21] and eXtreme gradient boosting (XGBoost) [22]. The aim
was to strike a balance between interpretability and predictive power. On the one hand, we
considered a simple, explainable approach such as linear regression. On the other hand,
we examined three non-parametric models—random forest, GBM, and XGBoost—known
for capturing non-linear relationships. Throughout this paper, we jointly refer to these four
models as ML models. Moreover, it must be noted that in a neural network, the entire
architecture must be built before training. In contrast, the random forest model is arguably
less challenging to develop due to fewer required hyperparameters for obtaining highly
accurate results. Finally, both GBM and XGBoost algorithms are based on the principle of
gradient boosting. The latter, however, uses the regularization technique, which allows for
reducing over-fitting [23] . The interested reader is referred to [24] for a detailed overview
of the advantages and drawbacks of classical ML algorithms.

Our analysis was carried out using the statistical programming language R [25] and
adapting R package {caret} [26]. In the case of random forest, GBM, and XGBoost, our
experiments attempted various values for the number of randomly sampled variables.
After running the trials in parallel on central processing units using the {randomForest}
package in R as a backend engine [27], the final model configuration consisted of three
variables randomly sampled at each split (mtry = 3) and 500 trees to grow at each iteration
(ntree = 500), and RMSE was the metric chosen for finding the optimal model. The final
random forest model selected longitude, living space, and latitude as the most influential
variables. We also used the same metric of RMSE to tune GBM and XGBoost models.
The [28,29] implementations were used to tune GBM and XGBoost, respectively. The
hyperparameters found to be optimal for these two models are summarized in Table 3.
Interestingly, for XGBoost, the optimal subsample ratio of columns taken randomly to
construct a tree coincides with the equivalent optimal parameter for the random forest.
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Table 3. Final hyperparameter configurations of GBM and XGBoost models.

Model Hyperparameter Value

GBM

Number of trees 200
Minimum number of observations in terminal nodes 10
Column sampling rate 1
Learning rate 0.15
Maximum tree depth 7

XGBoost

Maximum number of boosting iterations 150
Maximum tree depth 15
Learning rate 0.15
Lagrangian multiplier γ 0
Subsample ratio of columns when constructing each tree 0.75
Minimum sum of instance weight needed in a child 1
Subsample ratio of the training instance 1

3.3. Artificial Neural Networks

Recent advancements in artificial neural networks (ANNs) show that they can be
adapted to all kinds of data [30]. They have shown promising performances in dealing with
structured information [31] and drastic improvements for unstructured data such as image
recognition [32] and natural language processing [33]. One nice feature of deep learning is
the addition and removal of tensor streams or input branches. Theoretically, each branch
can have a completely different architecture tailor-made for that specific data type. This
allows for building end-to-end models incorporating multi-modal data under a single
supervised goal. In all experiments involving NNs, MSE was set as the loss function to
minimize, equivalent to minimizing RMSE. Further, we used R packages such as {keras} [34]
with {tensorflow} [35] backend to train our deep learning models.

Other approaches include the use of traditional computer vision algorithms such as
SURF [36] to generate image features. These generated features can then be added to
the tabular dataset and used by classical ML algorithms. The substantial benefit of such
a technique is reduced computational time compared to that of ANNs. However, this
advantage might come with the price of lower model performance [15].

3.3.1. Multi-Layer Perceptron for Tabular Data

The simplest form of a deep learning model is a multi-layer perceptron (MLP). In such
a network, each neuron is densely connected with the other neurons in the previous layer.
The first building block in predicting rental prices is creating an MLP capable of handling
the four structured features. As mentioned previously, it is challenging to determine an
architecture that could perform close to the random forest. We performed hyperparameters
tuning of our model using a random search method, and the optimal model is depicted
in Figure 6. The tabular model significantly improved when using a hyperbolic tangent
activation function (tanh) in all the dense layers, as also supported by some evidence [37].
The hyperbolic tangent activation function drastically improved the performance when
adding more layers and neurons compared to the rectified linear activation function (ReLU)
or other common activation functions. Moreover, a dropout rate of 0.1 was applied before
the second dense layer to tackle over-fitting.

The scales of tabular features, such as the size of the property and location (longitude
and latitude), are different; hence, feature scaling is a helpful means of ensuring that the
performance of our models is maximized. NNs, in particular, could benefit from this, as
scaling can lead to numerical stability and faster network convergence [38]. In both cases of
NNs and ML models, we standardized the tabular features by centering and scaling all the
variables, which may have helped our models improve performance and converge faster.
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Figure 6. Structure of neural network (MLP) with tabular features.

3.3.2. Feeding Multiple Images to NNs

As a single neural network can only process one image per property, we created a
montage for each property containing the four relevant room types that resulted from stage
3 of image pre-processing. These categories include exterior images, bedroom, kitchen,
and bathroom. Montages allow us to experiment with the position of the room type within
the montage. Studies such as [13,14] believed that using organized or categorized room
types where the position of the room type within the image was fixated is a valuable
approach; in addition, [13] mentioned how they expected that ‘comparing rooms of the
same type will give [. . .] better results than comparing different room categories‘. We could
put this claim to the test by first classifying the room types at the third stage of image
processing and then generating two montages: a first montage that had all the room types
in an organized manner (consistent positions across all properties) and a second montage
where the room types had been shuffled and randomly positioned. Examples of both
montages are shown in Figure 7, where, in the organized version, bathrooms are placed on
the top left, living rooms on the top right, kitchens on the bottom left, and exterior images
on the bottom right. We (and the researchers mentioned above) expected that the orga-
nized montages would outperform the randomly placed ones since we believed it would
be easier for a model to cross-compare rooms of the same category, thereby improving
its performance.
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(a) (b)

Figure 7. Example of organized (a) and random montage (b). The order of the organized montage is
consistent and as follows: bathrooms on the top left, living rooms on the top right, kitchens on the
bottom left, and exterior in the bottom right.

To elucidate the decision of creating montages and stage 3 of image pre-processing,
we highlight how neural networks can take multiple images as inputs. To the best of our
knowledge, there are three main methods for feeding multiple images for a single instance
into a neural network:

(1) Feeding all images one by one and using the same property price as the outcome
for each image. The least challenging approach is arguably passing each image from
the listing one at a time through a neural network while directly setting the price as
the outcome for each image. Such an approach replicates many current observations
with only the image differing. There are two main limitations to this approach.
The first is the possibility of such a model becoming confused and ineffective, as it
is missing the context from the other images, which impacts its ability to build the
bigger picture. For instance, it may be that the bathrooms are the main driver of the
price among all properties. Such a model would not be able to identify that since it is
not comparing a bathroom against bathrooms but a bathroom against every other
kind of room. Conceivably, we could classify the room type and only feed images
from a selected number of categories. Nonetheless, the problem of comparison
against widely different room types remains. The second issue with this approach is
that the number of images of a given listing may impact the overall model prediction,
hence biasing the outcome. For instance, a listing with eight images will have eight
replicated entries, and, as opposed to a listing with one image, it may mislead the
regression model and dilute the results.

(2) Designing n independent NNs for each of the x images whereby all the outputs
fuse (e.g., concatenate) to predict a single price. The second option is to design n
multiple NNs for the images, whereby n is either set as the maximum number of
images found in all listings or fixed at the desired number. The former case is not
feasible, as if x is the number of images for a given listing, and then for the difference
i ∈ Z : x ≤ x + i ≤ n, we would have to duplicate some of the x images or pass i as
blank images (e.g., black or white images). Moreover, fixing the n could also work,
and we could, for example, decide on setting n = 4, assuming that we have four
types of images; however, we would need to feed the same kind of room type into
the branches to make sure the images are directly cross-comparable. In addition,
another issue with designing multiple models is that it may be computationally
inefficient. We also suspect that since training configurations such as the optimizer
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and learning rate are kept constant among all variations of NNs, it may be more
difficult for a model with multiple n branches to converge than a simpler model with
fewer branches; however, this remains merely a hypothesis, and its validation goes
beyond the scope of this thesis. Finally, an advantage of using n models is the ability
to experiment with different branches by temporarily disabling inputs (one or more
room types) to understand better what image/room types have the most significant
impact on the prices.

(3) Create montages that combine n images of the same listing into one image. One
possible way of feeding multiple images into a neural network is combining them
into a montage with the room types. The work that closely resembles our intended
methodology is [8], where the authors used generated montages of wheat plots to
predict numerical outcomes related to plants, such as their plant height. Creating
a montage of room types over the two previous methods is preferred, as an initial
model (not presented in this paper) revealed that this approach outperforms the
technique where the images are fed into the network one at a time. Moreover,
the montage approach has been favored due to the simplicity of this approach
compared to designing n independent models, as well as the possibility of assessing
organized as opposed to randomly designed montages.

3.3.3. Gradient Boosting Machine for Visual Data

Convolutional neural networks (CNNs) have shown remarkable performance on
images and image recognition tasks [39]. CNN architecture is shown to perform better
on image data than MLPs [40], since the former one uses a significantly less number of
parameters. Further, using receptive fields in CNNs allows for identifying the same pattern
at various locations of an image, while MLPs only recognize such patterns at a specific
fixed area of the image. This made CNNs ideal both for identifying irrelevant classes as
well as extracting visual cues from (i) interior and exterior images of properties and (ii)
satellite images.

We found a single architecture to work well for both types of images. This final
architecture of the image model is shown in Figure 8. We briefly explored the use of
transfer learning for our regression task using various models [41–44], but as we did not see
immediate improvements, we decided not to proceed further with this technique. For the
optimizer, throughout all experiments, we set it to AdaMax (an extension to the adaptive
movement estimation optimization algorithm) [45], with a learning rate of 0.0015, as we
found this setting to perform better than other optimizers. Additionally, as we observed
that the model optimizers with images converge slower than the tabular ones, we set a
higher number of epochs for training and decided to use early stopping. The maximum
number of training epochs was set at 350, with the early stopping of 25 epochs.

3.4. Multi-Modal Learning

ANNs can be aggregated into a single larger model to utilize the best features captured
by each branch. This novel approach adds up to the three different kinds of inputs.
Instead of making the prediction using one neuron in the last dense layer, the outputs are
concatenated into one tensor, from which we then make a log price prediction. Figure 9
illustrates the top layers of the multi-modal network. This network automatically finds
the best combination between the tabular features, property images, and satellite images
without the need for human interference, much like a renter who considers all the factors
together before making a decision.
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Figure 8. Structure of convolutional neural network (CNN) with property or satellite images.

Designing the network in such a way allows for experimentation. Simply disabling
one of the input branches can reveal its effect on the overall performance. Additionally, it
seems helpful to note that this network could have been designed differently if our choice
of feeding property montages was instead to add a separate image of each room type as an
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input (see item 2 from Section 3.3.2), consequently resulting in a network with six branches
(four-room types + tabular + satellite) instead of the current three. Such an approach would
have increased the complexity of the task and possibly challenged the convergence of the
model; however, it would have also allowed us to observe the exact room type, which,
in combination with other factors, would improve or worsen the performance.

Figure 9. Structure of the top layers of the multi-modal neural network. There are three inputs,
satellite images (left), tabular features (middle), and property images (right).

3.4.1. Ablation Study

Neural networks are capable of understanding complex relationships, which in turn
helps them become powerful predictive tools, and yet, the inner workings of the model
itself can often be challenging to interpret and, in turn, validate. As a part of our ablation
studies [46], the architecture of the MLP and CNNs was always kept constant and only the
image inputs were modified. For instance, in one scenario, a neural network was trained
on the tabular feature and the organized property montages (NN T+OPI). In contrast,
considering another scenario, a second neural network with the same architecture received
the tabular features and randomly placed property images as the image input instead (NN
T+RPI).

Such an ablation technique can be extended to understand the influence of the property
images by comparing the results from a model estimating properties’ prices using tabular
features and the corresponding real estate images (SRED) against another model with the
same structure. However, instead of training with property images, the latter model is
exposed to cat images combined with the tabular features. We do not expect such a model
to perform better than a model that only uses tabular features, as there is no relationship
between a cat image and a property’s rental price. In short, the cat images can validate the
results from our modeling process. The cat image dataset was introduced by [47], where
the authors studied the detection of cat heads.

3.4.2. Performance Validation

In the ablation study for the first part of our research question, the choice of the hold-
out set may influence the performance of various neural networks and lead to over-fitting,
and to tackle this, we chose to cross-validate the results with ten folds. The SRED dataset
was divided into ten folds, whereby NNs were trained on nine folds while validating the
performance on the 10th fold. We repeated this process for every fold, where one of the
previous training folds was taken as the new validation set while the old validation set
joined the training data. Such an approach allowed us to treat each fold similarly to the
unseen real-world data, and averaging the performance from each fold reassured us that
the results were not dependent and unique to a single chosen fold. To answer the second
part of our research question on comparing the performance of the final NNs with ML
models, we trained all the models on 90% of the SRED listings and evaluated them on the
remaining 10% of the data.
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4. Results and Discussion

The results of 10-fold cross-validation for all the neural networks are depicted in
Table 4. The neural network that includes all three kinds of input (NN T+OPI+SI) reached
the highest performance, exceeding the results of adding tabular data or image inputs
separately to the models. Moreover, the boxplots of each fold in Figure 10 illustrate that
when considering MAE and RMSE as evaluation metrics, the NN T+OPI+SI model globally
performs better than the other NNs. The results showcase that tabular information and
property-related images may contain relevant complementary information. Access to all
input types allows our neural network to understand the context of the predictors and,
in turn, build a more holistic understanding of how prices are estimated. The performance
improvements which organized property montages offer (NN T+OPI) compared to ran-
domly placing the room types (NN T+RPI) further highlight the importance of suitable
pre-processing. Likewise, when using cat images to control the coherence and validity
of these results (NN T+CI), the performance drastically worsens, which we believe to be
caused by difficulty in model convergence, a performance worse than the one produced by
the tabular model alone. The last two findings further support that the results obtained for
NN T+OPI+SI are well grounded and that the correct pre-processing of images is required
for performance improvements. The overall results indicate the power of deep learning
models in complex environments where multiple variables and features may otherwise
go unexplored.

Table 4. Cross-validated performances on 10 folds.

Model
RMSE MAE R2

Mean Median Mean Median Mean Median

NN T * 0.148 0.149 0.109 0.110 0.744 0.741
NN T+OPI † 0.146 0.146 0.107 0.107 0.752 0.757
NN T+RPI ‡ 0.156 0.157 0.116 0.117 0.716 0.708
NN T+CI § 0.168 0.170 0.126 0.127 0.668 0.668
NN T+SI †† 0.144 0.143 0.106 0.105 0.756 0.754
NN T+OPI+SI ‡‡ 0.137 0.137 0.101 0.101 0.779 0.776

Remarks: The best results are highlighted in bold. * Tabular features. † Tabular features and organized property
images (interior and exterior). ‡ Tabular features and randomly placed property images (interior and exterior).
§ Tabular features and cat images. †† Tabular features and satellite images. ‡‡ Tabular features and organized
property and satellite images.

Table 5 demonstrates the results from comparing all the models on a single test set.
These results reveal that the performance of linear regression is significantly worse than
other models, yet it might still be used for commercial applications. On the contrary, when
comparing the performance of neural networks against the ML models, NN T with only
tabular features performs worse than all the ML models trained solely on tabular data.
However, with the addition of property and satellite images, neural networks outperform
all ML techniques when considering RMSE and R2 as primary metrics. The only model
that outperforms NN T+OPI+SI in terms of MAE is XGB T.

Given the superior performance of random forest on the structure features, it can
also be applied directly to the images; however, treating such a high-dimensional image
directly with random forests may not be optimal [48]. Additionally, in a multi-modal
setting, assigning the same importance to the structured features as the high number of
pixels was challenging. As an alternative approach, neural networks could have served as
feature extractors whereby their output became input to random forest [18,49]. Nonetheless,
we believe that attaining high performance in this technique can be more complex and may
require more feature engineering.
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Figure 10. Distribution of 10-fold cross-validated results.

Table 5. Single test set performances of NNs and ML models.

Model
RMSE MAE R2

Train Test Train Test Train Test

LR T a 0.228 0.221 0.163 0.159 0.391 0.422
RF T b 0.065 0.144 0.047 0.105 0.955 0.753
GBM T c 0.100 0.139 0.076 0.103 0.884 0.770
XGB T d 0.026 0.137 0.017 0.099 0.993 0.775
NN T e 0.136 0.149 0.102 0.113 0.789 0.736
NN T+OPI+SI f 0.044 0.136 0.034 0.101 0.985 0.783

Remarks: The best results are highlighted in bold. a Linear regression with tabular features. b Random forest
with tabular features. c gradient boosting machines with tabular features. d eXtreme gradient boosting with
tabular features. e Neural network with tabular features. f Neural network with tabular features and property
and satellite images.

The superiority of multi-input networks in evaluation metrics is significant, yet it is
also essential to consider the objective of the modeling task. Some applications require
a high degree of interpretation and understanding of the contribution of the explanatory
variables. Hence why linear regressions, despite their inferior performance in general, are
still more frequently used than sophisticated machine learning models. Neural networks
are more complex and generally less interpretable than many machine learning models.
Despite dedicated methods such as regression activation maps [50], which can create
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heatmaps for neural networks and visualize the pixel derivations by convolutional layers,
the complex relationship between multiple inputs remains largely unknown.

Conversely to a neural network, a random forest has some degree of interpretability
through its variable importance capability. Although variable importance—a permutation-
based technique—is often useful to interpret, extreme care is needed when employing
it. There is some degree of multi-collinearity between variables, such as living space,
rooms, and the number of bathrooms, which could produce misleading explanations when
interpreting the role of the tabular variables. The importance of interpretation in the domain
where such technologies are needed may be consequential in the commercial adoption of
neural networks. The magnitude of improvement may not justify the additional complexity
introduced by black-box approaches.

5. Conclusions

This paper explores the role of multi-modal learning in real estate rental estimations.
The primary objective is to assess whether models that better utilize existing non-structured
information, such as a property’s advertised photos and satellite images, can outperform
hedonic pricing models. The results of our experiments on our novel dataset SRED reveal
that visual data improve rental estimations and that, in particular, neural networks out-
perform ML models built only on tabular information. As a further contribution, we show
that the performance of our model improves with the addition of each new source of visual
information.

Regarding the choice of architecture for our final neural network, our architecture is
only one of the many possible architectures. We are not concerned with the magnitude
of improvement brought forward by the use of images. Instead, we aim to show that
neural networks can derive intricate patterns and realize their value, similarly to humans.
We believe that more optimal architectures could give rise to more drastic improvements;
however, our results prove that contextual improvements through property-related images
are possible primarily due to advancements in deep learning.

Finally, we propose a few ideas for future work on how to explore the value of multi-
modal learning in a real estate contexts:

• Additional input data, such as the advertisement description—another form of un-
structured data—may benefit rental estimations. Two examples of applications may
be in the forms of the information extraction (IE) of relevant features, where those
features exist in an unstructured form, or providing all the descriptions as a new
branch to NN T+OPI+SI without any intermediate feature extraction.

• Instead of one montage of property images with the chosen room types, it is possible
to create a branch for each room type, allowing for ablation studies whereby branches
are added to or removed from the model.

• It would be beneficial to perform a similar study on the sales prices and observe
similarities and differences with the rental estimations. Such an experiment can be
carried out either with the sales data gathered by us (not presented in this paper) or
through an external dataset.

• Our dataset is based on the Swiss real estate market. However, further investigation is
needed to know whether our findings can extend to other countries and markets.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN artificial neural network
AVM automated valuations model
AdaMax extension to the adaptive movement estimation optimization algorithm
CNN convolutional neural network
GBM gradient boosting machines
GBM T gradient boosting machines with tabular features
IE information extraction
LR T linear regression with tabular features
MAE mean absolute error

ML
classical machine learning models used throughout this paper: linear regression,
random forest, gradient boosting machines, and eXtreme gradient boosting

MLP multi-layer perceptron
MSE mean squared error
NN neural network
NN T neural network with tabular features
NN T+CI neural network with tabular features and cat images

NN T+OPI
neural network with tabular features and organized property images (interior and
exterior)

NN T+OPI+SI neural network with tabular features and organized property and satellite images

NN T+RPI
neural network with tabular features and randomly placed property images
(interior and exterior)

NN T+SI neural network with tabular features and satellite images
RF T random forest with tabular features
RMSE root mean squared error
ReLU rectified linear unit (activation function)
SAR spatial auto-regressions
SRED Swiss Real Estate Dataset
SURF speeded up robust features
SVM support-vector machine
tanh hyperbolic tangent (activation function)
XGB eXtreme gradient boosting

XGB T
eXtreme gradient boosting with tabular features
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