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Abstract: Accurate and robust human immune system assessment through white blood cell eval-
uation require computer-aided tools with pathologist-level accuracy. This work presents a multi-
attention leukocytes subtype classification method by leveraging fine-grained and spatial locality
attributes of white blood cell. The proposed framework comprises three main components: texture-
aware/attention map generation blocks, attention regularization, and attention-based data augmen-
tation. The developed framework is applicable to general CNN-based architectures and enhances
decision making by paying specific attention to the discriminative regions of a white blood cell.
The performance of the proposed method/model was evaluated through an extensive set of exper-
iments and validation. The obtained results demonstrate the superior performance of the model
achieving 99.69 % accuracy compared to other state-of-the-art approaches. The proposed model is
a good alternative and complementary to existing computer diagnosis tools to assist pathologists
in evaluating white blood cells from blood smear images.

Keywords: attention mechanism; medical image analysis; deep learning; blood cell detection;
convolutional neural networks

1. Introduction

The general health condition of a patient can be learned through a quantitative and
qualitative examination of blood components, such as cell counts. Blood cells are primar-
ily classified into two categories: leukocytes or White Blood Cells (WBCs) and erythro-
cytes or Red Blood Cells (RBCs). WBCs are further divided into four nucleated subtypes,
namely eosinophils, lymphocytes, monocytes, and neutrophils, as shown in Figure 1, [1].
WBC counts and their subtype proportions contain critical information about the status
of infectious diseases and chronic processes, e.g., inflammatory, leukemia, malnutrition,
and white cell proliferative conditions [2].

The traditional WBC analysis includes differentiation of subtypes through micro-
scopic observation of the blood smear and assessment of the morphological characteristics
of the cell nucleus and cytosol. Such techniques is highly dependent on the experience level
of the analyst and, at the same time, it could be labor intensive and time consuming [3].
Additionally, a completely automatic blood cell analyzer has been used to perform WBC
analysis. However, they frequently have high requirements for test samples and are expen-
sive, which prevents them from being widely used at point-of-care settings or in township
hospitals [4].

Therefore, researchers in the community have devised automatic yet faster approaches
for analysis of leukocytes leveraging computer vision techniques [5–9]. Given the recent
advancement of machine learning and computer vision, several approaches have been
proposed for leukocyte classification and segmentation, ranging from more conventional
machine learning models such as support vector machine [10] and Naïve Bayesian [11]
to more advanced deep learning methods [12,13]. Within deep learning methods, Convolu-
tional Neural Networks (CNNs) have shown exemplary performance in medical image
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processing [14,15], while computer-aided approaches allow a faster, economic and repro-
ducible means for WBC classification, automating the computational process to reach
the clinical level of accuracy and reliability in WBC classification is still in development.

(a) Eosinophils (b) Lymphocytes (c) Monocytes (d) Neutrophils

Figure 1. Example of different white blood cell types.

In this study, we demonstrate an advanced white blood cell classification by approach-
ing it as a fine-grained visual classification problem, where the main goal was to iden-
tify the subordinate-level categories of WBC by tackling few challenges as the following.
First, there is a substantial variance in the characteristics associated with cell morphology,
i.e., size, shape, texture, nucleus, etc., [5] of each cell subtype. Second, there is a small
variance between images of different cell types, making it a challenging classification
task. Such subtle differences between different cell types hinder accurate leukocytes
classification. Therefore, it is desirable to capture more discriminative regions of the cell
to access more enriched feature space which, in turn, can improve the classification accuracy.
By imposing extra supervision on instance interpretation during the learning process us-
ing an attention-based data augmentation method, the model is compelled to pay more
attention to the regions of interest in order to accomplish this goal [16,17].

This work presents a data augmentation and regularization framework based on multi-
attention mechanism to force CNN-based models to extract more discriminative features
to enhance leukocyte subtype recognition. The presented framework is specifically de-
signed to produce an enriched feature space by extracting texture-related information and
deep features. Specifically, the proposed model employs attention-based augmentation
and regularization to focus on various regions within the WBC image to learn more dis-
criminative features. The presented framework is applicable to other CNN-based backbone
architectures to achieve better performance. The effectiveness of the proposed method is
assessed through a large number of WBC microscopic image samples, and the classification
performance was compared with other state-of-the-art methodologies.

The proposed model is a good alternative and complementary to existing computer-
aided diagnosis tools to assist pathologists in evaluating white blood cells from blood
smear images. The primary contributions of this work are summarized as follows:

• The WBC classification task is considered as a fine-grained visual classification problem
for which a multi-attention framework for efficient WBC classification has been developed.
The presented method captures texture-aware information from shallow layers and deep
features from deep layers to ensure that the model learns only discriminative features
through attention-based augmentation and regularization mechanisms.

• The presented attention-based mechanism is composed of three main components:
texture-aware/attention map generation blocks, attention regularization and attention-
based data augmentation. The presented multi-attention framework is applicable
to all other existing CNN-based models for WBC classification.

• An extensive set of experiments are conducted to assess the performance of the model
from different perspectives. The obtained results demonstrated the surpassing perfor-
mance of the model, achieving 99.69% classification accuracy, compared to existing
state-of-the-art approaches.
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The rest of the paper is organized as follows. Recent related studies on white blood
cell classification are discussed in Section 2. Section 3 presents the outline of the proposed
attention-based WBC classification approach. Model evaluation settings, including im-
plementation specifics, evaluation metrics, and the employed WBC dataset are described
in Section 4. The obtained WBC subtype detection results are presented and discussed
in Section 5, with their implications in comparison with existing methods and results
from other studies. Finally, concluding remarks are drawn in Section 6.

2. Related Work

Various deep learning models have been developed and used to perform WBC classifi-
cation of automatic detection of leukocytes [18,19]. For example, Togacar et al., presented
a WBC subclass separation framework based on the AlexNet model [20]. Wang et al.,
proposed to learn spectral and spatial features from microscopy hyperspectral images
using deep convolution networks [21]. A CNN model with loss enhancement with regular-
ization was presented that reduced the processing time [22]. Further, Jiang et al., employed
residual convolution structure with batch normalization to improve activation function
for enhancing feature extraction in the WBC classification [23]. Furthermore, Yao et al., in-
troduced weighted optimized deformable CNN for WBC classification [6] while Khan et al.,
proposed multi-layer convolutional features with an extreme-learning machine for a similar
WBC identification task [24].

In addition, using hybrid approaches such as an ensemble of several models have
been studied. For example, Çınar and Tuncer [7] employed two feature extraction models,
namely AlexNet and GoogleNet, for white blood cell feature extraction and classification
using support vector machine model. Özyurt [25] used several well-known pre-trained
models as a feature extractor and used Extreme Learning Machines (ELM) classifiers
to classify the fused features. Patil et al., [26] proposed the extraction of overlapping
and multiple nuclei patches using a combination of CNN and recurrent neural networks.
Baghel et al., [27] presented a two-stage classification approach to perform mononuclear
and polymorphonuclears identification and associated subtypes based on a CNN model.

Table 1 summarizes the literature in chronological order to provide a better under-
standing of the current status of the WBC classification methods along with the model
architectures employed. As can be seen from the table, most previous methods highly
relied on CNN-based architectures, such as AlexNet, MobileNet, etc., due to their efficiency
in analyzing images, while these approaches have shown good performance in the WBC
classification [8,24,28], extracting the features associated with distinct regions of the cell is
still difficult to achieve. There exist subtle discrepancies among different cell types, which
tend to be retained in textural information of shallow features. On the other hand, different
regions of WBC images have different textural patterns, which should be maintained as im-
portant discriminative information throughout the pooling operation. Hence, identification
and intensification of such a small difference between cell types and the associated features
are critically important to achieving more accurate and reliable classification with greater
efficiency (shorter processing time). This requires the model to focus more on the distinctive
regions within the cell. To address this limitation, we proposed an attention-based data
augmentation and regularization approach which was implemented and validated for WBC
classification. In addition, recent studies [29] show that deep layers of network capture
high-level semantic information but messy details, while it is the opposite for shallow
layers. In our experiments, we noticed that incorporating texture features besides the deep
features improves the overall model performance.
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Table 1. Summary of WBC classification methods in chronological order.

Year Authors Model Description

2017 Razzak [30] CNN combined with ELM
2017 Yu et al. [31] Ensemble of CNN’s
2018 Jiang et al. [23] Residual convolution architecture
2018 Liang et al. [32] Combination of Xception-LSTM
2019 Hegde et al. [33] AlexNet and CNN model
2019 Huang et al. [34] MFCNN CNN with hyperspectral imaging
2019 Togacar et al. [20] AlexNet with QDA
2020 Abou et al. [35] CNN model
2020 Banik et al. [36] CNN with feature fusion
2020 Basnet et al. [22] DCNN model with modified loss
2020 Baydilli et al. [37] capsule networks
2020 Kutlu et al. [28] Regional CNN with a Resnet50
2020 Özyurt [25] Ensemble of CNN models with ELM classifier.
2021 Baghel et al. [27] CNN model
2021 Çinar et al. [7] Ensemble of CNN models and SVM
2021 Khan et al. [24] AlexNet model and ELM
2021 Yao et al. [6] Deformable convolutional neural networks.
2022 Cheuque et al. [8] Faster R-CNN with MobileNet model
2022 Girdhar et al. [9] CNN model

3. Methodology

This section provides a detailed description of the above-mentioned attention-based
white blood cell classification framework, while attention-based approaches can improve
the performance of the backbone models in various vision tasks, a dual-attention mecha-
nism was employed to enhance the accuracy and efficiency of WBC classification. The mo-
tivation behind using the attention mechanism for WBC classification is that all parts
of the WBC image may not carry distinguishing information, rather they are mutual
across different cell types. Therefore, it is important to mimic cognitive attention and
utilize the most relevant parts of the input WBC image. The attention mechanism enables
the traditional deep learning networks to have the flexibility to utilize different regions
of the input image in the run-time using a weighted combination of all the encoded input
images. The most relevant regions scored the highest weights. The presented framework is
applicable to CNN-based backbone models and is composed of three main components:
an attention generation module, an attention regulation module, and an attention-based
data augmentation module. The general pipeline of the presented attention-based white
blood cell detection approach is illustrated in Figure 2. While attention-based data augmen-
tation methods can improve the performance of the model by enhancing discriminative
feature space, it could also lead to performance degradation if multiple attention maps
focus on a single region and ignore other discriminative regions. Therefore, each attention
map was made sure to be non-overlapping and cover only a specific region from all input
blood smear images. The generalizability of the proposed approach and its impact on im-
proving the classification accuracy and efficiency (computational time) were demonstrated,
which supports its validity and applicability for use in the WBC classification.
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Figure 2. Overall framework of the proposed attention-based white blood cell classification ap-
proach. It is composed of three main components, including texture-aware residual block, attention
generation, and attention-based data augmentation through element-wise multiplication and nor-
malized average pooling. The presented framework is generalizable to different backbone models.
The attention-based data augmentation mechanism helps the model not only focus on more robust
features but also forces the model to pay attention to different parts of the input image to obtain more
discriminative features from texture-aware shallow features.

3.1. Attention Generation

For every given input WBC image I, the feature map from the nth layer of the backbone
model f b(·) can be represented as F = f b

n(I) ∈ RCn×Hn×Wn , where the number of channels,
height, and width of the feature map are represented by Cn, Hn, and Wn, respectively.
Then, the extracted feature maps from particular layers are used to generate attention maps
(A) from mutually exclusive regions of the input image using attention generator block
f g(·) as described in Equations (1) and (2).

A = f g(F) =
M⋃

k=1

Ak , F = f b
n(I) (1)

f g(·) = Linear(Norm(Conv1D(·))) (2)

where Ak ∈ RHn×Wn represents one attention map corresponding to kth discriminative
region of the input image from a predefined attention layer La of the model, that is selected
for attention map generation. As aforementioned, it is important to preserve textural
information of shallow features to capture subtle discrepancies among different cell types.
To maintain and intensify those subtle differences, a feature-level residual block along
with densely connected convolution layers are utilized to obtain feature maps as depicted
in Figure 3. Shallow layer n = Lt is specifically selected to extract feature maps that
represent textural information of different cell types. The obtained texture-aware feature
map contains critical discriminative information about subtle differences in cell-types that
could boost the performance of the backbone model.
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Figure 3. Texture-aware residual block helps preserve and enhance the texture information of shallow
feature maps at layer Lt through average pooling, feature-level residuals, and densely connected
convolution layers.

Having generated attention maps from attention layer fLa(I) and texture-aware feature
maps from shallow layer fLt(I), two sets of attention-based representative feature could be
obtained, i.e., texture-aware feature matrix T and global feature matrix G. Texture-aware
feature matrix and global feature matrix could be calculated through element-wise multi-
plication of attention maps with texture-aware feature maps from the shallow layer and
network’s last layer feature map, respectively. The process of element-wise multiplication
of texture-aware feature maps from shallow layer fLt(I) with specific attention map and
normalized average pooling g(·) is shown in Figure 4. The obtained discriminative features
are concatenated and fed into the classifier.
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Figure 4. Texture-aware discriminative feature extraction through attention analysis and normalized
average pooling. Discriminative features are pooled using localized feature maps, which are the product
of element-wise multiplication of texture-aware feature maps with unique attention maps.



Big Data Cogn. Comput. 2022, 6, 122 7 of 15

3.2. Attention Regularization

In the attention-based data augmentation process, if all attention maps focus on the same
regions and ignore exploring different regions of the image, the network may fail to capture
the necessary information. Furthermore, it is expected that each attention map always refers
to the same semantic region, rather than random parts of the input image. Inspired by [38]
and to keep attention maps non-overlapping and forcing them to focus on specific regions
of the input image, an attention-based loss function LAL is utilized, as shown in Equation (3).

LAL =
B

∑
i=1

M

∑
j=1

max
(∥∥∥Vi

j − ct
j

∥∥∥2

2
−min(yi), 0

)
+

∑
i,j∈(M,M),i 6=j

max
(

mout −
∥∥∥ct

i − ct
j

∥∥∥2

2
, 0
) (3)

where V ∈ RM×N is a semantic feature vector obtained through element-wise multiplication
of pooled feature map, yi indicates class label, M denotes the number of attentions, min
indicates feature and feature center’s margin, mout is the margin between feature centers,
and c is the feature center. Feature centers are updated in each iteration using Equation (4).

ct = ct−1 − α

(
ct−1 − 1

B

B

∑
i=1

Vi

)
(4)

where α denotes the feature center update rate at each iteration and B represents the batch

size. The first component of Equation (3), i.e., ∑B
i=1 ∑M

j=1 max
(∥∥∥Vi

j − ct
j

∥∥∥2

2
−min(yi), 0

)
is responsible for reducing intra-class loss through pulling V closer to feature center c,

whereas the inter-class loss i.e., ∑i,j∈(M,M),i 6=j max
(

mout −
∥∥∥ct

i − ct
j

∥∥∥2

2
, 0
)

, is responsible

for increasing the distance between feature centers. Ultimately, the final loss function is
a combination of attention-based loss function LAL and the traditional cross-entropy loss
LCE as written in Equation (5).

L = LCE + LAL (5)

3.3. Attention-Based Data Augmentation

While random data augmentation techniques generate high background noise, the ob-
tained attention maps from different layers of the model can be helpful for better data aug-
mentation. The attention-based data augmentation mechanism makes sure that the model
gets exposed to additional variations of the original input within the training process.
This helps the model to not only learn the original representation of a given input but also
learn additional variations of the input through the augmentation process [39,40]. For each
sample from the training WBC image set, a unique attention map Ak is randomly selected
and normalized as kth augmentation map, A∗k , as shown in (6).

A∗k =
Ak −min(Ak)

max(Ak)−min(Ak)
(6)

The augmentation map is utilized as a regulation weight between the degraded image
Id, which is generated through Gaussian blur, and the original image as
I′ = Id × A∗k +

(
1− A∗k

)
× I. The augmentation map can be employed from two dif-

ferent perspectives to help train the model. First, it can pay more attention to regions
with high attention scores through input image cropping, which forces the model to learn
more robust features from the most discriminative parts of the image. Second, it can
be utilized to allow the model to produce different attention maps focusing on different
regions by discarding regions with higher attention scores. Figure 5 shows some examples
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of attention-based cropping and dropping methods for a sample input image from different
white blood cell classes.

Eosinophils Lymphocytes Monocytes Neutrophils
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Figure 5. The obtained attention maps could be utilized to force the model to focus on different
regions of the input image for more discriminative feature extraction. First, it is forced to pay more
attention to regions with high attention scores through input image cropping. Second, the model is
encouraged to explore different regions of the image by dropping regions with high attention scores.

4. Evaluation Settings

In this section, general evaluation settings, e.g., white blood cell datasets, preprocessing
steps, implementation specifics, and evaluation metrics are described in detail.

4.1. Dataset

This study uses a publicly available dataset consisting of four different cell categories,
i.e., Lymphocytes, Monocytes, Eosinophil, and Neutrophils [41]. The dataset contains
12,444 images of white blood cells with approximately equal distribution across each class
Table 2. Different experiments are carried out with different number of blood smear images
in train and test sets. This experiment will demonstrate how well the model performs
even through training on smaller training sets. Train and test sets are randomly selected
from each cell type separately to ensure the data distribution is intact.

Table 2. Statistical specifics of WBC dataset utilized in this study. Three different experiments with
different train/test split ratios are designed to evaluate the generalizability of the proposed method.

Cell Type Distribution (%)
Exp. 1 (60/40) Exp. 2 (70/30) Exp. 3 (80/20)

Train Test Train Test Train Test

Eosinophil 25.10 1872 1248 2184 936 2496 624
Lymphocytes 24.93 1862 1240 2174 930 2482 620

Monocytes 24.84 1855 1236 2164 927 2473 618
Neutrophils 25.10 1874 1249 2187 936 2499 624

Total 100 7463 4973 8707 3729 9950 2486
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4.2. Baseline Architectures

The presented attention-based white blood cell identification approach is applicable
to different baseline models. In the following, three state-of-the-art deep learning networks
used in this study are explained, and refer interested readers to the original references.
In this study, these three models are utilized as baseline models.

ResNet Structure. A type of deep convolutional neural network called Residual
Networks (ResNets) [42] that skip convolutional layer blocks while utilizing shortcut
connections. The downsampling procedure in this architecture occurs at the convolutional
layers with a stride of 2, followed by batch normalization and a ReLU activation function.
The architecture consists of 101 layers in total, including a fully connected layer with
softmax activation at the end of the network [42].

Xception Structure. Xception is a convolutional neural network with residual con-
nections based on separable convolutions. This model has 71 deep layers. The feature
extraction base of the network in the Xception architecture is composed of 36 convolutional
layers. With the exception of the first and last modules, the 36 convolutional layers are
structured into 14 modules which contain linear residual connections arround them [43].

EfficientNet Structure. EfficientNet is a convolutional neural network design and
scaling technique that uses a compound coefficient to consistently scale all depth, width,
and resolution dimensions. The goal, which may be expressed as an optimization prob-
lem, is to maximize the model accuracy for any given resource constraints. Model scal-
ing attempts to increase the network length (Li), width (Ci), and/or resolution (Hi, Wi)
without altering the baseline network’s predefined Fi. This is in contrast to standard Con-
vNet designs, which primarily focus on identifying the ideal layer architecture Fi [44].
The EfficientNets family of models are created using neural architecture search [45] to de-
velop a new baseline network, and scaling it up. The 8 models in the EfficientNet model
range from B0 to B7, with each model number denoting a version with additional parame-
ters and greater accuracy. Transfer learning is a technique used by the EfficientNet design
to speed up the process. As a result, it offers higher accuracy than other competitor models.
This is a result of the ingenious depth, width, and resolution scaling used [46].

4.3. Implementation Specifics

All baseline models along with associated attention-analysis are implemented using
the PyTorch machine learning library and trained using Stochastic Gradient Descent SGD
optimizer [47] with a learning rate of 5 × 10−4. a momentum value of 0.9, and 10−4

weight decay. The model training is performed for 15 epochs using a mini-batch size of 64
to minimize the predefined loss function. A Lambda Quad deep learning workstation
is used to implement, train and test the models. The machine is equipped with Ubuntu
20.04.3 LTS operating system, Intel Core™ i7-6850K CPU, 64 GB DDR4 RAM, and 4 NVIDIA
GeForce GTX 1080 Ti Graphics Processing Units (GPUs).

4.4. Evaluation Metrics

The confusion matrix and associated evaluation metrics were computed to evaluate
the performance of the proposed approach. A confusion matrix is composed of True
Positive (TP), True Negative (TN), False Negative (FN), and False Positive (FP) values.
Performance of the model is evaluated against different evaluation metrics, including
accuracy rate, recall, and F1-score.

5. Results & Discussion

The performance of the proposed attention-based white blood cell classification ap-
proach is investigated through an extensive set of experiments. The obtained results are
presented and discussed as follows. The presented attention-based method for WBC classi-
fication is implemented on three different well-established CNN models. These models
were then trained and tested using three different train/test split set sizes. The obtained
results from these analyses are shown in Figure 6 which indicate a satisfactory WBC
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classification accuracy above 99% even with the smallest training set (60/40 ratio) across
all backbone models. For example, the detection rate has dropped only less than 1%
when the training set is cut down from 80/20 to 60/40 in the Xception backbone model.
and the classification performance of the proposed method using the aforementioned back-
bone architectures for three different train/test ratios at each epoch is illustrated in Figure 7.
As can be observed all three backbone architectures achieve a high classification accuracy af-
ter only 15 epochs. For example, a configuration of the model with EfficientNet architecture
offers state-of-the-art classification performance, i.e., 99.69%, only after 15 epochs in Exp. 3.
To provide additional insight into the class-specific performance of the proposed approach,
confusion matrix of different configurations of the presented WBC detection model are
illustrated in Figure 8. Each confusion matrix demonstrates the classification performance
of the model on the test set. It can be seen that while Lymphocytes and Monocytes have
been classified more accurately, most of the mislabeled samples belong to Eosinophils
and Neutrophils.
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Figure 6. Performance comparison between different architectures used in the presented attention-
based white blood cell detection, with varying train/test split sizes. Here, Exp. 1, Exp. 2, and Exp. 3
represent 60/40, 70/30, and 80/20 split sizes for train/test sets, respectively.
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Figure 7. Performance of the proposed attention-based WBC detection approach while using afore-
mentioned backbone architectures and three different ratios of train/test splits for the test set.
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Figure 8. Confusion matrix of the presented WBC classification model using different backbone
configurations. Note that E: Eosinophils, L: Lymphocytes, M: Monocytes, and N: Neutrophils.

5.1. Attention-Based Data Augmentation

To investigate the impact of the proposed attention-based data augmentation frame-
work on the overall performance of the backbone models are compared with and with-
out attention-based data augmentation Figure 9. To be in line with the literature and
for comparability purposes, the rest of the experiments are conducted with a train/test
set of 80/20 split rations. It was seen that the presented attention-based framework evi-
dently improve the performance of the WBC classification. For instance, the WBC clas-
sification model using EfficientNet architecture is able to achieve a classification accu-
racy of 99.69% using the proposed attention-based data augmentation mechanism. It
should be noted that integration of the presented attention-based data augmentation ap-
proach with each of the backbone models results in the improvement of their performance,
showing its generalizability to potentially enhance the classification performance in other
applications Table 3.

 90

 92

 94

 96

 98

 100

ResNet XceptionNet EfficientNet

A
c
c
u

ra
c
y
 r

a
te

 (
%

)

WO/Attention
W/Attention

Figure 9. Performance of the presented attention-based white blood cell detection method compared
with not using attention.
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Table 3. Comparison of classification performance from three CNN backbones. The best performance
was achieved using EfficientNet as the backbone with 99.69 % accuracy.

Backbone Metrics
Class Specific Performance (%)

Ave.
Eosinophils Lymphocytes Monocytes Neutrophils

Xception
ACC 98.71 99.43 99.11 98.71 98.99
Recall 96.80 98.87 98.70 97.59 97.99

F1 score 97.42 98.87 98.22 97.44 97.99

ResNet
ACC 99.03 99.30 99.35 98.91 99.15
Recall 97.76 98.38 98.86 98.23 98.31

F1 score 98.07 98.62 98.70 97.84 98.31

EfficientNet
ACC 99.51 99.95 99.75 99.55 99.69
Recall 98.72 100.00 99.51 99.35 99.40

F1 score 99.03 99.91 99.51 99.12 99.39

5.2. Comparison with Other SOTA Approaches

The performance of the proposed WBC classification method was compared with ex-
isting SOTA approaches. Table 4 summarizes the comparison of the obtained results in this
work with that of other studies. It can be concluded that all configurations of the presented
attention-based WBC detection approach presented in this study outperform other previous
SOTA approaches used for WBC classification. In particular, the presented method was
able to achieve superior detection rates even with a smaller number of training samples and
fewer training epochs compared to other studies in the literature [9,26,48]. For example,
a configuration of the presented approach using EfficientNet backbone architecture could
achieve 98.59% and 99.69% accuracy rates after only 15 epochs of training with 60% and 80%
of the samples, respectively. These results demonstrate that the proposed method offers not
only better accuracy but also time and computational efficiency compared to other SOTAs
considered in WBC classification.

Table 4. A quantitative comparison of the performance of the presented WBC classification approach
with that of existing SOTA methods. NI: Not Indicated.

Authors Accuracy (%) Recall (%) F1 Score (%)

Abou et al. [35] 96.8 NI NI
Baghel et al. [27] 98.9 97.7 97.6
Baydilli et al. [37] 96.9 92.5 92.3
Banik et al. [36] 97.9 98.6 97.0
Basnet et al. [22] 98.9 97.8 97.7
Çinar et al. [7] 99.7 99 99.0

Hegde et al. [33] 98.7 99 99
Huang et al. [34] 97.7 NI NI
Jiang et al. [23] 83.0 NI NI
Khan et al. [24] 99.1 99.0 99
Kutlu et al. [28] 97 99.0 98
Liang et al. [32] 95.4 96.9 94

Özyurt [25] 96.03 NI NI
Patil et al. [26] 95.9 95.8 95.8

Razzak [30] 98.8 95.9 96.4
Togacar et al. [20] 97.8 95.7 95.6
Wang et al. [21] 97.7 NI NI

Yao et al. [6] 95.7 95.7 95.7
Yu et al. [31] 90.5 92.4 86.6

Cheuque et al. [8] 98.4 98.4 98.4
Authors Accuracy (%) Recall (%) F1 Score (%)

Xception (Ours) 98.99 97.99 97.99
ResNet (Ours) 99.15 98.31 98.31

EfficientNet (Ours) 99.69 99.40 99.39

5.3. Limitation and Future Work

Over recent years, the use of deep learning has increasingly shown significant potential
to improve healthcare. We are now able to perform many tasks that were once the sole
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domain of humans. Theoretical advantages to this include accurate and early detection
of anomalies, increased diagnostic and therapeutic efficacy, and a reduction in medi-
cal error while also decreasing administrative workload and costs. This study focused
on the differential count of WBCs as it is one of the most common laboratory tests used.
Future work will enhance the framework to include other cells found within the peripheral
bloodstream, such as progenitor cells, immature/neoplastic/dysplastic cells; key cells that
also act as important indicators of many pathological conditions. The presented work
has further implications for other areas of cell and molecular biology where the detec-
tion and classification of different types and conditions are needed through microscopy.
The presented framework has demonstrated a surpassing classification accuracy rate after only
15 training epochs, even with a relatively small number of training samples, its performance
and transferability to other datasets need further exploration. In future work, the authors would
like to train the model on a WBC dataset and test its transferability on other datasets with
different distributions. In addition, the presented framework in this study is evaluated against
CNN-based backbone architectures. The extension of the proposed framework to other deep
learning architectures needs to be investigated in future work.

6. Conclusions

This work investigates the white blood cell type classification task and provides
an attention-based approach to improve the classification rate and efficiency of the clas-
sifier. More specifically, the proposed approach is composed of Attention regularization,
texture-aware/attention map generating blocks, and attention-based data augmentation.
The proposed approach helps the model to explore various regions of a given WBC image
to discover more distinguishing visual representations. Through this process the model
learns even tiny differences across different WBC types, leading to higher accuracy rate.
The generalizability of the presented method to other CNN-based architectures have been
demonstrated through three well-established networks. An extensive set of experiments
are carried out to evaluate the performance of the model. The obtained results demonstrate
that it could achieve state-of-the-art classification performance 99.69% after only 15 epochs,
surpassing its existing counterparts. The transferability of the proposed method to other
WBC datasets will be investigated in the future study.
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