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Abstract: The Lee–Carter model could be considered as one of the most important mortality pre-
diction models among stochastic models in the field of mortality. With the recent developments of
machine learning and deep learning, many studies have applied deep learning approaches to time
series mortality rate predictions, but most of them only focus on a comparison between the Long
Short-Term Memory and the traditional models. In this study, three different recurrent neural net-
works, Long Short-Term Memory, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit,
are proposed for the task of mortality rate prediction. Different from the standard country level mor-
tality rate comparison, this study compares the three deep learning models and the classic Lee–Carter
model on nine divisions’ yearly mortality data by gender from 1966 to 2015 in the United States. With
the out-of-sample testing, we found that the Gated Recurrent Unit model showed better average MAE
and RMSE values than the Lee–Carter model on 72.2% (13/18) and 67.7% (12/18) of the database,
respectively, while the same measure for the Long Short-Term Memory model and Bidirectional Long
Short-Term Memory model are 50%/38.9% (MAE/RMSE) and 61.1%/61.1% (MAE/RMSE), respec-
tively. If we consider forecasting accuracy, computing expense, and interpretability, the Lee–Carter
model with ARIMA exhibits the best overall performance, but the recurrent neural networks could
also be good candidates for mortality forecasting for divisions in the United States.

Keywords: mortality prediction; Lee–Carter model; long short-term memory; bidirectional LSTM;
gated recurrent unit

1. Literature Review

Modeling and forecasting future mortality rates are some of the most significant
problems for life insurance, demography, and other social sciences. Many countries have
experienced a rapid increase in life expectancy in recent decades (following the Second
World War), and this increase has augmented the difficulties in modeling and predicting
future mortality. Several stochastic mortality models have been proposed, for example,
the famous Lee–Carter model (LC) by Lee and Carter [1]. Because of its simplicity, inter-
pretability and, of course, convenience, the LC model has become the most frequently used
stochastic model. Many improvements to the LC model have been proposed, including the
Poisson extension of the LC model by Brouhns et al. [2], a functional data method using
penalized regression by Hyndman and Ullah [3], a static PCA extension of the LC model
by Shang [4], and a Two-Factor model for stochastic mortality with parameter uncertainty
by Cairns et al. [5], also known as the Cairns–Blake–Dowd model (CBD model). Other
studies related to the improvement of the Lee–Carter model can be found in the field of
new techniques application, such as a cohort-based extension to the Lee–Carter model by
Renshaw and Haberman [6] and the application of the random forest algorithm to improve
the Lee–Carter mortality forecasting by Deprez et al. [7] and Levantesi and Pizzorusso [8].

Recently, with the development of machine learning, deep learning, and big data,
new opportunities and challenges have been introduced into the actuarial field [9,10]. At
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present, recurrent neural networks stand prominently on the stage of mortality forecasting.
Recurrent neural networks are useful in recognizing unidentifiable patterns from a large
dataset with many features. However, the application of neural networks in the mortality
rate forecasting field have not offered as much insight as we expected. The biggest “prob-
lem” of neural networks is outcome uncertainty and the lack of demographic meaning.
Moreover, instead of being explained by a specific hypothesis, neural networks are driven
by data, which limits references to current works. However, many researchers still seek to
apply neural networks for mortality forecasting. A neural network was proposed to predict
and simulate the log-mortality rate by Hainaut [11]. This study showed that the neural
network could catch more information from known mortality data and then duplicate the
nonlinear trend in the prediction. Perla et al. [12] proposed a comparison study between the
Lee–Carter model and deep learning models with data from Human Mortality Database
(HMD) [13]. Some of the studies focus on applying deep learning models to predict the
time index in the Lee–Carter model. Nigri et al. [14,15] applied the recurrent networks with
Long Short-Term Memory (LSTM) architecture to predict the time index of the Lee–Carter
model and found that neural networks forecasting could provide a high accuracy trend
compared to the ARIMA models in several countries and for both genders. Marino and
Levantesi [16] extended the neural networks approach by Nigri et al. [14] and derived the
related confidence interval representing the Long Short-Term Memory model’s parameter
uncertainty. Richman and Wuthrich [17] compared the forecasting performance of a neural
network extension of the Lee–Carter model and several different Lee–Carter approaches on
all the countries in the HMD [13]. Other relevant applications of machine learning and deep
learning studies in the mortality field can be found in Castellani et al. [18], Hong et al. [19],
Richman and Wuthrich [20], and Gabrielli and Wuthrich [21].

2. Introduction

From the previous works, we noticed that most of the studies on neural networks ap-
plications examine Long Short-Term Memory. The Bidirectional Long Short-Term Memory
and Gated Recurrent Unit could also be applied to time series forecasting tasks. Most of
the studies propose recurrent neural network models as an approach to estimate the time
index in LC model. This paper focuses, instead, on a direct comparison to the mortality
rate prediction results between the Lee–Carter model and deep learning models. Gabor
Petnehazi and Jozsef Gall [22] proposed a comparison study on mortality prediction with
the LSTM model and the Lee–Carter model on countries all around world. We expand this
comparison to three recurrent neural networks, LSTM, Bi-LSTM, GRU, and the Lee–Carter
model. We also noticed that most of the studies explore mortality rates of the different
countries around the world, so we chose to apply our experiments on the nine census
divisions in the United States, which shows extraordinary prediction results of the LC
model with ARIMA.

One problem we identified is in regard of the selection of parameters of the recurrent
neural networks; some studies chosen the same parameters for different models to make a
direct comparison on the forecasting abilities. However, in this study, we chose parameters
with the best forecasting performance and compared their forecasting results.

Therefore, the key contribution of this paper is its novel comparison study of the nine
census divisions’ mortality rate predictions in the US using the Lee–Carter model, the Long
Short-Term Memory model, the Bi-directional Long Short-Term Memory model, and the
Gated Recurrent Unit. We measure the forecasting results by Mean Average Error (MAE)
and Root-Mean-Square Error (RMSE) in an out-of-sample test.

The paper is organized in the following sections: The introduction of three different
recurrent neural networks is presented in Section 3. The Lee–Carter model and Singular
Value Decomposition (SVD) methods are presented in Section 4. Data features and data
preprocessing information are shown in Section 5. Section 6 illustrates the numerical
process of the experiments, and Section 7 offers the conclusion.
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3. Recurrent Neural Networks
3.1. Long Short-Term Memory

The Long Short-Term Memory is an improved version of recurrent neural networks
(RNN); it uses special units in addition to standard units. RNNs store information from the
past by using the output of the previous unit as input. This means that it can cause problems
when facing long-term data. As a result, Hochreiter and Schmidhuber [23] introduced a
special RNN that could store long-term memory as well as discard useless memory. The
special structure makes the Long Short-Term Memory model well suited to classification
problems, regression problems, and especially on time-series tasks. In what follows, we
investigated some mathematical functions in LSTM.

The sigmoid (σ) and the hyperbolic tangent (tanh) are the most frequently nonlinear
activation functions in neural networks, as shown in Equations (1) and (2).

Sigmoid : σ(x) =
1

1 + e−x (1)

Tangent hyperbolic : tanh(x) =
ex − e−x

ex + e−x (2)

The sigmoid (σ) values range between 0 and 1, and it is used to decide if the informa-
tion received should be uploaded and retained or be discarded and forgotten. Because any
number that multiplies with 0 will be equal to 0, values may disappear or be considered
as “forgotten”. Any number that multiplies with 1 will remain the same, so it is “kept” or
retained.

The activation function tangent hyperbolic (tanh) ranges between −1 and 1, and it is
used to regulate the values flowing through the neural network.

A common LSTM unit has a 3-gate mechanism as will be discussed in the following
section.

Forget gate

The forget gate controls the degree of information loss from the previous cell state; in
another words, it decides what information is dropped or kept. The previous information
passes through the sigmoid function, and the numbers coming out of the forget gate are
between 0 and 1. Values closer to 0 are more likely to be forgotten, and values closer to
1 are more likely to be kept. We denoted the forget gate as ft. Weight metrices for the
forget gate are identified as Wf and Uf, and the hidden units as ht. The input variable
x = x1, x2, . . . , xT is a time series sequence at time t = 1, 2, . . . , T, from which we could
obtain Equation (3):

ft = σ
(
Wfxt + Ufht−1

)
(3)

Input gate

The input gate controls the degree of new information to store in the current cell. It
uses a sigmoid layer to decide what information would be updated in the current cell state
and then uses a tanh layer to create new vector for the cell state. We denoted the input gate
as it, the weight matrices for input gate as Wi and Ui, and the hidden units as ht. Thus, we
have Equation (4):

it = σ(Wixt + Uiht−1) (4)

Cell State

After the previous works, the old cell state is updated with the information collected
from the gates. This step is achieved by multiplying the old cell state with the weight
matrix generated by the forget gate and filter the original information to decide the kept
and dropped parts. Then, the results are multiplied in the input gate to obtain the new
information, which is added to the cell state. We used Ct to represent the current cell state,
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C̃t represents the candidate cell state, Wc and Uc represent the weight matrices for cell
statement, and the hidden units are ht. The symbol � is the Hadamard product. Here, we
also provide a quick introduction of Hadamard product; for two matrices A and B with the
same dimension, the Hadamard product is:

(A� B)ij = AijBij (5)

In the example of 3× 3 matrix A and B, we have:a11 a12 a13
a21 a22 a23
a31 a32 a33

�
b11 b12 b13

b21 b22 b23
b31 b32 b33

 =

a11b11 a12b12 a13b13
a21b21 a22b22 a23b23
a31b31 a32b32 a33b33

 (6)

Hence, we have Equations (7) and (8) for cell state:

C̃t = tanh(Ucxt + Wcht−1) (7)

Ct = ft � Ct−1 + it � C̃t (8)

Output gate

The output gate calculates the new output value of the current cell. The sigmoid layer
is used again to generate the weight matrix and we used this matrix to decide what would
be the output of the cell state. Then, the weight matrix is multiplied with the input results to
output the part of the cell state. We denoted the output gate as ot, and the weight matrices
for output gate as Wo and Uo, and we generated Equations (9) and (10):

ot = σ(Uoxt + Woht−1) (9)

ht = ot � tanh(Ct) (10)

The Us and the Ws are the weight matrices that help in applying the model to different
length of input data. A key point of the weight matrices is that they do not change over time.
The same weight matrices are used in every time steps. The weight matrices Wf, Wi, Wo, Wc
have the same dimension (input dimension× output dimension) and the weight matrices
Uf, Ui, Uo, Uc have the same dimension (output dimension× output dimension). These
matrices are learned using a variant of the gradient descent algorithm. Moreover, we can
calculate the network parameters for a single layer with the following equation:

parameters = 4× output dimension
×(output dimension + input dimension + 1)

(11)

In the end, a single LSTM unit structure is shown in Figure 1.

3.2. Bi-directional Long Short-Term Memory

A new Long Short-Term Memory model, named Bi-directional Long Short-Term
Memory (Bi-LSTM), was proposed by Schuster and Paliwa [24]. It is an extension of LSTM,
with the main difference between Bi-LSTM and LSTM being that, instead of one forward
direction hidden layer, the Bi-LSTM model uses two similar hidden layers with opposite
directions. In the one forward direction, Bi-LSTM learns in increasing order of sequence
input and, in the backward direction, it learns the information decreasing order of the
sequence input. This means that both past and future information is utilized. However,
compared to LSTM, the Bi-LSTM model requires more to finish the training, so it presents a
considerable challenge to practice.

Bi-LSTM performs well in natural language-processing problems, such as sentence
classification and translation. It could also be applied in handwritten recognition problem,
sequence problems, and similar fields.
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A Bi-LSTM unit is the same as the LSTM unit, but the architecture is different. To show
the difference, the architectures of the LSTM and Bi-LSTM are shown in Figure 2. We can
see that both past and future information from the dataset is used.
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3.3. Gated Recurrent Unit

The last type of recurrent neural network is the Gated Recurrent Unit (GRU), intro-
duced by Kyunghyun Cho et al. [25]. It is similar to LSTM, but it has fewer parameters,
gates, and equations. Generally speaking, it is really difficult to tell which network is the
best model for the case. Other comparison studies between LSTM and GRU can be found
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in Chung et al. [26]. The GRU model merges the forget gate and input gate of LSTM models
into a single updated gate. A Gated Recurrent Unit works according to Equations (12)–(15).

zt = σ(Wzxt + Uzht−1) (12)

rt = σ(Wrxt + Urht−1) (13)

h̃t = tanh(Whxt + Uh(rt � ht−1)) (14)

ht = zt � h̃t + (1− zt)� ht−1 (15)

zt denotes the update gate and rt denotes the reset gate; Ws and Us are the weight
matrices; ht is the output information to the next unit; h̃t is the current cell state; xt denotes
the input vector; and the Hadamard product is �. The single gated recurrent unit structure
is shown in Figure 3.
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4. Lee–Carter Model

In this section, we discuss some important concepts regarding the Lee–Carter model
by [1]. The Lee–Carter model is a demographic model that is widely used in mortality
prediction and life expectancy forecasting for different countries. The Lee–Carter model
implies a linear relationship between the central mortality rate of an age group mx,t and
age interval x and year t. Equation (16) describes the model:

mx,t = exp(αx + βxκt) (16)

It can be rewritten as Equation (17):

ln(mx,t) = αx + βxκt (17)

where αx represents the specific average log-mortality rate, βx means the deviation in
mortality due to age profile κt variations, and κt is the time index to the year t. Another is
that the Lee–Carter model is subject to the constraints on the parameters, so we have (18).

∑xp
x=x1

β̂x = 1 and ∑tn
t=t1

κ̂t = 0 (18)

In practice, Singular Value Decomposition (SVD), Maximum Likelihood estimation
(MLE), and Least Square (LS) are the three classical methods to estimate the parameters
of the Lee–Carter model. In this paper, we applied the Singular Value Decomposition
(SVD) approach to the Lee–Carter model and use the ARIMA process to estimate the time
index kt.
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The first step calculates the parameter αx, which is just the average values of raw
ln(mx,t) (observation) over time, shown in Equation (19).

α̂x =
1
t ∑tn

t=t1
ln(mx,t) (19)

The estimation of βx and κt is obtained by the singular value deposition of the matrix
of ln(mx,t)− αx. Here, we present a quick introduction of the singular value decomposition:
first, we denote a matrix ln(mx,t)− αx = A. Supposing that matrix A is a n×m matrix,
then A could be computed as:

An×m = Un×nDn×pV′p×p (20)

where the U and V are orthogonal, V’ represents the V transposed, and D has the same
dimensions as A and has singular value. We calculated the β̂x according to the following
Equations (21) and (22):

β̂x =
Ux,1

∑ Ux,1
(21)

κ̂t = Vt,1D1,1 ∑xp
x=x1

Ux,1 (22)

All the SVD process can be achieved in R with the function SVD. For the forecasting of
the time index κt, we chose to use the traditional time series model ARIMA model with
drift, which is discussed in an upcoming section.

5. Data

This study focused on mortality rates for the nine census divisions in the US: New
England, Middle Atlantic, East North Central, West North Central, South Atlantic, East
South Central, West South Central, Mountain, and Pacific. The data for the numerical
experiment were collected from usa.mortality.org (the United States mortality database).
This study was obtained on the life tables for nine census divisions in the US. This database
provides the central mortality rates for 24 age groups (from 0 to 110+) by gender. These
datasets were split into training and test sets with the rules of 80% training and 20% test.
Due to the time series data, we could not randomly split the data set, so we picked the
historical data as the training set and predicted the future mortality rates based on that.
The total years and the corresponding testing set years of the data are shown in Table 1 and
the average mortality rates by age groups and gender are shown in Table 2.

Table 1. Total and testing set years by regions.

Census Division Total Years Testing Set Years

New England 1966–2015 2006–2015

Middle Atlantic 1966–2015 2006–2015

East North Central 1966–2015 2006–2015

West North Central 1966–2015 2006–2015

South Atlantic 1966–2015 2006–2015

East South Central 1966–2015 2006–2015

West South Central 1966–2015 2006–2015

Mountain 1966–2015 2006–2015

Pacific 1966–2015 2006–2015
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Table 2. Average mortality rates by age groups and gender.

Age Group Male Female

0 0.0103184 0.008126

1–4 0.0003978 0.0003192

5–9 0.000224 0.0001586

10–14 0.00024 0.0001582

15–19 0.0008736 0.0003356

20–24 0.0012676 0.0004144

25–29 0.0012794 0.0004938

30–34 0.0014682 0.0006756

35–39 0.0019484 0.0010024

40–44 0.0028846 0.0015864

45–49 0.004514 0.0025628

50–54 0.0071644 0.0039904

55–59 0.011396 0.0061842

60–64 0.0179772 0.0097272

65–69 0.0277216 0.0151632

70–74 0.0425512 0.0242644

75–79 0.065019 0.0394208

80–84 0.100258 0.065534

85–89 0.1565726 0.111995

90–94 0.2401684 0.1854848

95–99 0.3470992 0.289526

100–104 0.4723096 0.4209162

105–109 0.601285 0.5649978

110+ 0.7013268 0.680411

6. Numerical Process

After predicting the parameters αx, βx, and κ̂t in the Lee–Carter model with the
Singular Value Decomposition (SVD) method, we used the AutoRegressive Integrated
Moving Average model (ARIMA) to predict the future κ̂t. The process of finding the
best ARIMA model to univariate time series was achieved on the R vision 4.2.1 with
the auto ARIMA in the forecast package. This technique is based on the Hyndman–
Khandakar algorithm by Hyndman and Khandakar [27]. The idea is using a unit root test
to test the stationarity of the time series and choose the degree of differencing d, and then
select the best degree of auto-regressive p and moving average order q by the 2 criterion
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The best
ARIMA (p,d,q) with drift for males and females are shown in the following Tables 3 and 4,
respectively.

We tried to find out the parameters with the best performance in neural networks
(at least in some ranges). However, we did not use any systematic process to search
for the most reasonable parameters. In the end, a simple neural networks architecture
was used, which contains a hidden layer and a dense layer with a single unit. In the
model compilation part, we proposed the optimizer Adam and the loss function is mean
square error (MSE). The recurrent neural networks predictions were run in Python with the
TensorFlow package and the neurons, batch size, epochs, and the dropout percent for neural
networks for females and males by divisions are shown in Tables 5 and 6, respectively.
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Table 3. Best ARIMA(p,d,q) for females.

Census Division Best ARIMA(p,d,q)

New England ARIMA(1,1,1)

Middle Atlantic ARIMA(2,1,0)

East North Central ARIMA(0,1,0)

West North Central ARIMA(1,1,2)

South Atlantic ARIMA(0,1,0)

East South Central ARIMA(2,2,1)

West South Central ARIMA(0,1,1)

Mountain ARIMA(1,2,1)

Pacific ARIMA(0,1,0)

Table 4. Best ARIMA(p,d,q) for males.

Census Division Best ARIMA(p,d,q)

New England ARIMA(0,1,0)

Middle Atlantic ARIMA(0,1,0)

East North Central ARIMA(0,1,0)

West North Central ARIMA(1,1,0)

South Atlantic ARIMA(0,1,0)

East South Central ARIMA(0,1,0)

West South Central ARIMA(0,1,0)

Mountain ARIMA(0,1,0)

Pacific ARIMA(0,1,0)

To measure the prediction performance, we selected two error criteria for the out-of-
sample test, mean absolute error (MAE), and root-mean-square error (RMSE). The equations
of the MAE and RMSE are presented as Equations (23) and (24). The total amount of data
in the test data are denoted by n, ˆmx,t represents the predicted mortality rate, and mx,t is
the actual mortality rate.

MAE =
1
n ∑n

t=1|m̂x,t −mx,t| (23)

RMSE =

√
1
n ∑n

t=1(m̂x,t −mx,t)
2 (24)

Ten consecutive results were collected by each recurrent neural network and the
average MAE and RMSE are shown in Table 7 by gender and divisions.

Considering the average MAE and RMSE by genders, every recurrent neural network
approach offers a comparable performance to the LC model. Among them, the GRU
model shows the best performance on both genders. The GRU model showed a better
MAE value and RMSE value than the LC model at 72.2% (13/18) and 67.7% (12/18) of the
database, respectively, and the LSTM and Bi-LSTM provided 50%/38.9% (MAE/RMSE)
and 61.1%/61.1% (MAE/RMSE), respectively. It is surprising that LSTM did not have the
good performance we expected before the experiment.

We also compared the averaged performance by genders between the models. A
summary of the averaged MAE and RMSE values is shown in Table 8.
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Table 5. The number of neurons, batch size, epochs, and dropout percent for the female database by
divisions.

Census Division Neurons Batch Size Epochs Dropout

New England
LSTM 128 32 50 20%

Bi-LSTM 128 32 50 20%
GRU 128 32 50 20%

Middle Atlantic
LSTM 64 32 100 30%

Bi-LSTM 64 32 100 30%
GRU 64 64 300 30%

East North Central
LSTM 64 16 150 10%

Bi-LSTM 64 16 150 10%
GRU 64 16 150 10%

West North Central
LSTM 128 32 50 20%

Bi-LSTM 128 32 50 20%
GRU 128 32 50 20%

South Atlantic
LSTM 128 16 150 10%

Bi-LSTM 128 16 150 10%
GRU 128 16 300 20%

East South Central
LSTM 128 32 300 10%

Bi-LSTM 128 32 300 30%
GRU 128 32 300 10%

West South Central
LSTM 128 64 300 10%

Bi-LSTM 64 64 300 10%
GRU 128 16 300 10%

Mountain
LSTM 128 32 50 20%

Bi-LSTM 128 32 50 20%
GRU 128 32 50 20%

Pacific
LSTM 128 32 100 20%

Bi-LSTM 128 32 100 20%
GRU 128 32 100 20%

We can see that the deep learning models have better performance on the female
dataset. Simultaneously, the MAE and RMSE analysis showed that the LSTM and Bi-LSTM
models are not effective on the male case prediction. Considering the average MAE and
RMSE measurements, GRU offered the best prediction performance with 0.003946/0.008871
(MAE/RMSE). Examples of life expectancy predicted values are shown in Figures 4–7,
which considered both genders; the Mountain division confirmed this gender difference in
the prediction performance. The first 40 years were the training set and the last 10 years
were the test set. Here, we picked the age groups of 40–44 and 90–94, which, respectively,
represent the middle age and elderly groups.

The results show that the deep learning models are capable of displaying more details
of the dataset with a nonlinear trend. The LC model sometimes underrates or overrates
the future mortality rate (in most cases, it underpredicts; see Bergeron-Boucher et al. [28]
and Booth et al. [29]). When we consider data with rapid changes (see the example of the
90–94 age group/male), the mortality rates remained stable for a period (year 20–year 40),
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and no model successfully predicted the sudden decrease in the coming 10 years. The
uncertainty of the future is still a challenge for the time series tasks.

Table 6. The number of neurons, batch size, epochs, and dropout percent for the male database by
divisions.

Census Division Neurons Batch Size Epochs Dropout

New England
LSTM 32 16 300 10%

Bi-LSTM 32 16 300 10%
GRU 128 32 150 20%

Middle Atlantic
LSTM 128 32 60 30%

Bi-LSTM 64 32 60 30%
GRU 64 16 100 30%

East North Central
LSTM 128 64 50 10%

Bi-LSTM 128 64 50 10%
GRU 128 64 50 10%

West North Central
LSTM 64 16 150 30%

Bi-LSTM 128 32 150 30%
GRU 64 32 150 30%

South Atlantic
LSTM 64 32 300 10%

Bi-LSTM 64 32 300 10%
GRU 64 32 300 10%

East South Central
LSTM 128 16 50 30%

Bi-LSTM 128 32 50 30%
GRU 64 32 300 30%

West South Central
LSTM 64 16 30 10%

Bi-LSTM 32 16 30 10%
GRU 64 16 100 30%

Mountain
LSTM 128 32 100 20%

Bi-LSTM 128 32 100 20%
GRU 128 32 100 20%

Pacific
LSTM 32 32 300 30%

Bi-LSTM 32 16 50 30%
GRU 64 32 300 30%

We also considered the prediction in a single year; this is shown with the example of the
New England division case. We chose the year 2015 with the predictions of mortality rate
and log-mortality rate, as shown in Figures 8–13, by genders. Figures 8 and 9 compare all
the models in terms of mortality rate and log-mortality rate in one plot, and the remaining
figures compare the log-mortality (y-axis) of LC, LSTM, Bi-LSTM, and GRU to the real data
for all the age groups (x-axis), respectively.
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Table 7. MAE and RMSE for the LC, LSTM, Bi-LSTM, and GRU by gender and divisions.

Census Division Female Male

New England MAE RMSE MAE RMSE
LC 0.003580 0.0085774 0.0038145 0.007061

LSTM 0.003333 0.0077581 0.003602 0.007446
Bi-LSTM 0.003559 0.0084523 0.004280 0.008178

GRU 0.003222 0.007591 0.004250 0.009505

Middle Atlantic MAE RMSE MAE RMSE
LC 0.002296 0.0055494 0.003419 0.0064182

LSTM 0.005479 0.012104 0.0036423 0.0070882
Bi-LSTM 0.004609 0.0107834 0.0045392 0.0093438

GRU 0.004957 0.0115375 0.0024576 0.0048186

East North Central MAE RMSE MAE RMSE
LC 0.004458 0.0106013 0.0042796 0.0081338

LSTM 0.002742 0.0054024 0.0050855 0.0117587
Bi-LSTM 0.002667 0.0056034 0.0056478 0.0103892

GRU 0.003531 0.0080238 0.0045146 0.0104677

West North Central MAE RMSE MAE RMSE
LC 0.006313 0.0147076 0.0058709 0.0123197

LSTM 0.004541 0.0104502 0.0050320 0.0095187
Bi-LSTM 0.004225 0.0100399 0.0038613 0.0073576

GRU 0.004378 0.0104372 0.0029962 0.0055895

South Atlantic MAE RMSE MAE RMSE
LC 0.004249 0.0100673 0.0043421 0.007902

LSTM 0.004162 0.0096163 0.0065645 0.0129754
Bi-LSTM 0.003537 0.0079331 0.0041443 0.0077775

GRU 0.004525 0.0103644 0.0042279 0.0087472

East South Central MAE RMSE MAE RMSE
LC 0.005919 0.0137948 0.006056 0.0121139

LSTM 0.006389 0.0154277 0.0062494 0.0135819
Bi-LSTM 0.006630 0.0161339 0.0043764 0.0091593

GRU 0.006237 0.0150568 0.003344 0.0074549

West South Central MAE RMSE MAE RMSE
LC 0.003881 0.0094994 0.004401 0.008112

LSTM 0.002977 0.0067081 0.008326 0.0186121
Bi-LSTM 0.002770 0.0061035 0.0088042 0.0187601

GRU 0.003814 0.0089701 0.0031701 0.0062397

Mountain MAE RMSE MAE RMSE
LC 0.005875 0.0136075 0.0058631 0.0116347

LSTM 0.005474 0.0129507 0.0055829 0.0130083
Bi-LSTM 0.005256 0.0124847 0.0037339 0.0076257

GRU 0.005158 0.0123561 0.0048700 0.0112312

Pacific MAE RMSE MAE RMSE
LC 0.00303 0.0063291 0.0038562 0.0073431

LSTM 0.00337 0.0069403 0.0045788 0.0090681
Bi-LSTM 0.002647 0.0054352 0.0055415 0.0105694

GRU 0.002453 0.0056640 0.0029244 0.0056143
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Table 8. The averaged MAE and RMSE values for the models by genders.

Model MAE
Female

MAE
Male

RMSE
Female

RMSE
Male

Averaged
MAE

Averaged
RMSE

LC 0.0044 0.04656 0.010304 0.009004 0.004528 0.009654

LSTM 0.004274 0.005407 0.009706 0.011451 0.004841 0.010579

Bi-LSTM 0.003989 0.004992 0.009219 0.009907 0.00449 0.009563

GRU 0.004253 0.003639 0.010000 0.007741 0.003946 0.008871
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We noticed an excessively parabolic trend at the bottom of the log-mortality rate
bathtub curve with the deep learning models, especially on male population, such as LSTM
(male) and GRU (male).

7. Conclusions and Discussion

In the present paper, we proposed three popular RNN models, the LSTM model,
Bi-LSTM model, and GRU model, for forecasting mortality rates. The experiment was
performed on nine census divisions of the US according to gender. The results of the
proposed comparative study show that GRU model obtained the best overall prediction
values in the models.

By examining the comparison between the neural networks and the LC model, could
we say that the neural networks perform better than the LC model?

On the one hand, the Bi-LSTM and GRU models had a better performance in terms
of MAE and RMSE. On trend prediction, compared to the linear model, better prediction
curves were displayed by the neural networks. Due to their unique architectures, more
details could be caught, memorized, and replicated in the trend prediction.

On the other hand, even the GRU model could not show a high accuracy level in
the mortality rate trend prediction. In other words, the deep learning models do not
significantly improve the accuracy of mortality rate prediction when compared to the LC
model. Regarding the algorithm itself, neural networks do not have the simplicity and
interpretability of the LC model. The deep learning models are driven by data, and their
random outcomes lack demographic meaning.

Moreover, according to the experiment, we noticed that the neural networks have
better prediction performance on the female population than on the male population in the
United States.

This experiment could serve as a reference for other works with the following as some
potential improvements worthy of consideration. Firstly, some existing studies showed
that the LC model has a worse performance for long-term mortality rate prediction than
the short-term prediction results. This is a problem of the fitting period selection; many
studies prefer to choose a shorter period to avoid data volatility. For example, Hyndman
and Booth [30] used 1950 as the starting year to avoid the difficulties of the war years and
the 1918 Spanish influenza pandemic. Other related studies are by Tuljapurkar et al. [31]
and Lee and Miller [32]. The selected time period in our study was 1966–2015 or 50 years.
The annual mortality rate training set was not be considered long term demographically,
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especially avoiding the excess mortality rates by two world wars and the COVID-19
pandemic. That is one of the reasons that the LC model showed an incredible forecasting.
Second, some of the existing research implied that achieving the prediction of log-mortality
rates might demonstrate a better performance than on the mortality rate itself (the objective
of the LC model). Third, according to the structure of the LC model, parameters αx and
βx are determined by data; they are the constant coefficients in the LC model, so the
comparison of the prediction resembles more an indirect comparison of the best ARIMA
models and neural networks.

Specifically, the uncertainty in the recurrent neural networks could be considered the
most considerable challenge in the applications. The recurrent neural networks can provide
predictions without any indication of variability. Some researchers aim to solve this problem
through the construction of a confidence interval, such as Keren et al. [33], who proposed
empirical calibration and temperature scaling for acquiring calibrated predictions intervals
for neural network regressors. Khosravi et al. [34] wrote a comprehensive review for the
prediction intervals. Several techniques are mentioned, such as bootstraps and Bayesian
methods, but they have high computing expenses; these studies can be found in the
works of Efron and Tibshirani [35], Dietterich [36], Heskes [37], and Gábor Petneházi [38].
According to these studies, there does not exist a reliable method to handle this problem
on time series tasks to date. However, we can consider the results of the recurrent neural
networks as good candidates for predicting mortality trends in the future.

Regarding future works, we believe that mortality rate trend prediction can be im-
proved by combining other stochastic mortality models with more deep learning models or
by testing the neural networks on different data. One popular study replaces the ARIMA
model with the deep learning models and builds a LC-RNN model. As we mentioned,
most of the studies focus on LSTM, but other deep learning models should be applied to
the field of mortality prediction.
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