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Abstract: Technological advances in high throughput platforms for biological systems enable the
cost-efficient production of massive amounts of data, leading life science to the Big Data era. The avail-
ability of Big Data provides new opportunities and challenges for data analysis. Cloud Computing is
ideal for digging with Big Data in omics sciences because it makes data analysis, sharing, access, and
storage effective and able to scale when the amount of data increases. However, Cloud Computing
presents several issues regarding the security and privacy of data that are particularly important
when analyzing patients’ data, such as in personalized medicine. The objective of the present study
is to highlight the challenges, security issues, and impediments that restrict the widespread adoption
of Cloud Computing in healthcare corporations.

Keywords: cloud computing; big data; omics data; healthcare; artificial intelligence; cryptography;
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1. Introduction

The investigation of all living organisms and complex diseases, e.g., yeast, human,
cancer, and Alzheimer’s has highlighted the need for a new holistic vision to shed light
on the multiple interactions among several biological players, such as genes, enzymes,
and small molecules. In the reductionist approach [1], a single mutation or weakness is
responsible for diseases and phenotype aberrancies. In contrast, the holistic approach [2]
asserts that conditions and phenotype aberrancies are due to the intricate interactions
network among several biological players.

The appearance of omics sciences [3] provides the approaches to consolidate the holistic
idea mandatory for studying living organisms at all structural and functional levels, including
humans. Omics includes the domains ending in -omics, such as proteomics, epigenomics,
metabolomics, and microbiomics. In particular, the rapid advances in High-Throughput (HT)
and Molecular Biology (MB) technologies make omics sciences a central part of medical
research. The continuous technological advances in HT and MB have made it possible to
comprehensively analyze a simple living organism’s genome, e.g., a single bacteria, and a
complex organism, e.g., humans, in a few hours or a few days [4,5]. The highest quality of HT
and MB produces massive data per single experiment, transforming biology and genomics
into data-driven sciences [6]. Only the practical analysis of this enormous amount of data will
allow us to understand the complex aberrancies starting from the genome.

The transition of life sciences toward data-driven science provides researchers with
new opportunities, making it possible to yield vast amounts of omics data in a cost-
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and time-efficient manner. Simultaneously, acquiring, storing, distributing, analyzing,
and interpreting these data is challenging [7]. The high data heterogeneity in terms of
type and source requires technical improvements in many Information Technology (IT)
domains, raising various privacy, security, storage, sharing, processing, and computing
power issues. Hence, it is essential to develop specific algorithms and software tools for
analyzing the different available types of omics data, such as protein sequences, single
nucleotide polymorphisms (SNPs), and gene expressions, necessary for understanding the
expression of genes and their regulation and the mutations in DNA underlying genetic
diseases. A further contribution is the development of graphic interfaces that effectively
display information from various data sources.

To meet these challenges, Cloud Computing and High-Performance Computing (HPC)
architectures can significantly improve the speed of omics data investigation, analysis,
reliability, and reproducibility.

Architectures based on multiprocessors, even multi-core, Graphics Processing Units
(GPUs), and hybrids architectures, e.g., holding both GPUs and CPUs, make HPC architec-
tures ideal for handling computations requiring significant amounts of computing power
and memory. The strength of HPC systems is the extreme computational power obtained
through parallel or distributed computing.

Parallel programming enables us to write code in order to take advantage of the multi-
ple computational cores of modern CPUs. Parallel programming decomposes programs,
e.g., the process, as several independent bunches, e.g., the threads allowing parallel and
concurrent execution. Partitioning programs into smaller threads allows the exploitation of
multiple cores within modern CPUs. Multiple cores on a single machine share memory.
Hence, threads can be executed simultaneously using shared memory to synchronize and
communicate with each other. A popular environment for threads is Java thread, while
CUDA is a popular environment for exploiting the computational properties of Graphics
Processing Units (GPU). Distributed computing uses network protocols such as TCP/IP,
allowing applications to send and receive data to each other over the network by pro-
viding the services and protocols for exchanging data. Hence, a distributed application
is built upon several layers. At the lower level, the network connects devices, allowing
communication among them. At the higher level, services are defined on the network
protocols. Finally, distributed applications run on top of these layers to perform tasks across
the network. A popular library for distributed computing is Message Passing Interface
(MPI) [8], which is available for many programming languages and architectures. Hence,
parallel and distributed computing allows for solving complex problems in a short time by
employing many computing resources simultaneously that would otherwise require a lot
of time if performed sequentially.

Thus, programmers must explicitly develop parallel programs, e.g., in a global en-
vironment using a multi-threading paradigm or in a distributed environment through
the Message-Passing Interface (MPI) standard [8], to exploit the computational power
delivered from HPC systems. In addition, to ensure that HPC systems run at optimal
performance, a suitable technical support service is required. All these constraints intro-
duce additional expenses, e.g., purchase, maintenance, and development, making the HPC
systems ideal for large IT research centers and limiting the spread in biological, medical,
and genomics research centers. The limiting element for the significant employment of
HPC is nowadays primarily computational. On the other hand, Cloud Computing [9,10]
brings a new paradigm from the analogy with existing infrastructures, such as electricity or
water. Consequently, the achievement of the results is guaranteed independently of where
data or instruction sequences are stored or executed. When opening a tap or turning on a
lamp, one does not wonder where the water or electricity comes from; the important thing
is that these are made available. Similarly, when some commands or services need to be
executed in the Cloud system, it does not matter who takes care of it; the overall system
will have to deliver the correct results based on the user requests. Thus, Cloud Computing
provides an on-demand system through the Internet. Therefore, it eliminates purchase,
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maintenance, and development costs, making high-performance computation available
even for small research centers. Cloud Computing is available in three fundamental models,
such as IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and SaaS (Software
as a Service).

Cloud Computing could be the ideal tool for dealing with many steps of the bioin-
formatics analysis pipeline, from pre-processing, selection, aggregation, and analysis,
including exploration and visualization.

To take full advantage of the considerable benefits of Cloud Computing, healthcare
corporations must face several management, technology, security, and legal issues that
affect its rapid adoption in healthcare. For example, storing confidential health information
in third-party remote data storage raises serious problems related to the patient’s sensitive
information because patient data could be lost or misused.

Thus, the present study aims to highlight the challenges, security issues, and impedi-
ments that limit the adoption of cloud computing in healthcare corporations.

The rest of the manuscript is arranged as follows: Section 2 describes the principal
service and deployment models of Cloud Computing, highlighting the main difference
between them. Section 3 introduces some well-known Cloud services suitable for handling
Big omics Data. Section 4 describes challenges, security issues, and impediments that are
limiting the spread of Cloud Computing in healthcare corporations. Section 5 discusses
some of the possible challenges and issues to address underlying the low adoption of Cloud
services in healthcare. Section 6 provides some guidelines to follow, when dealing with
Cloud Computing in healthcare. Finally, Section 7 concludes the manuscript.

2. Cloud Computing

Cloud infrastructures comprise the front end and back end. The front end refers
to the end users’ devices (e.g., pc, tablets, or smartphones), an Internet connection, and
a web browser or similar application indispensable to accessing the Cloud Computing
environment. Two different types of users can benefit from the front end: (i) the user
of the final Cloud service; (ii) the developer and owner of the provided Cloud service.
Through the front end, the provider ensures the final users that data on its hosts are always
available through Internet connections. Simultaneously, developers can always have access
to enhance and maintain their services by interacting with the Cloud system through
terminals-scripts, RESTfull services [11], and even using traditional browsers. The back
end includes the data center resources providing security, storage capacity, and computing
power necessary to keep all the Cloud ecosystems available to the users.

2.1. Service Models of Cloud Computing

Cloud Computing includes different standardized service models, among which are
the following:

• Software as a Service (SaaS) [12] allows the use of the provider’s applications running
on remote architectures. The applications are obtainable through client applications,
such as a web browser or an Application Program Interface (API). Users cannot
control or manage the beneath Cloud infrastructure components such as network,
servers, operating systems, storage, or individual application capabilities, excluding
determinate user-specific application configuration settings.

• Platform as a Service (PaaS) [13] enables users to develop in the Cloud environment
the users’ applications created using libraries, services, and APIs compatible with the
Cloud provider. Users cannot directly manage or control the infrastructure beneath
the Cloud, including network, servers, operating systems, or storage, but retain
the deployed applications and particular configuration settings for the application-
hosting domain.

• Infrastructure as a Service (IaaS) [14] facilitates the user in provision processing, stor-
age, networks, and other essential computing resources where the user can deploy
and run the software, including operating systems and apps. Users cannot manage or
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control the beneath-Cloud infrastructure, whereas having control of the operating sys-
tems, storage, deployed applications, and limited control on some select networking
components, e.g., host firewalls or bridges.

Over the years, in addition to the essential service models, new Cloud service models
have been added, including the following:

• Business Process as a Service (BPaaS) [15] exploits the Cloud to automate and drive
down the costs of business processes carried out by organizations.

• Data as a Service (DaaS) [16] offers Cloud-based Big Data cleaning, filtering, and en-
richment schemes to produce data sets suitable for predictive or prescriptive analyses.

• Connectivity as a Service (CaaS) [17] provides Voice-Over-IP (VOIP), video-conferencing,
and Instant Messaging (IM) functions as Cloud-based subscription services for commer-
cial institutions.

• Identity as a Service (IDaaS) [18] provides Cloud-based centralized authentication and
Single-Sign-On (SSO) services on heterogeneous or federated Cloud schemes.

A critical aspect of each Cloud services model is the Multi-Tenancy (MT). MT is the
Cloud platforms’ power to satisfy multiple user requests concurrently, providing the highest
separation between run time environment and data. MT is achieved by virtualizing the
applications’ run time environment and/or operating system, allowing users’ applications
to run on different Virtual Machines (VM). MT differs from multi-user operations, where
multiple users share the same application. Still, the user applications and run time data,
also known as user context, are only logically separated, e.g., held in different files or
directories on the same physical storage.

2.2. Deployment Models of Cloud Computing

Deployment models have been developed alongside cloud service models to support
users’ business workloads. Today, business applications and processes rely on a complex
ecosystem of hardware and services, each with its prerequisites in terms of privacy, avail-
ability, and scalability. Over the last decade, Cloud Computing has been embraced to
improve business processes, and its models have been extended to meet the challenges in
various scientific areas, including healthcare.

The Cloud Computing deployment models include the following:

• Public Cloud infrastructure is ideal for organizations needing quick access to com-
puting resources without significant capital expenditure. Public Cloud infrastructure
allows organizations to purchase virtualized computing services through the Internet.
Since Public Cloud services are furnished as pay-per-use, no initial investments are
required because new resources can be purchased when needed. Public Cloud services
are ideal for healthcare organizations that cannot afford an investment in particular
hardware and maintenance.

• Private Cloud infrastructure is intended for exclusive use by a single organization.
The Private Cloud lets organizations complete control over how data are shared and
stored, an optimal solution if security is the primary concern, e.g., in the healthcare
domain, ensuring compliance with any ethical regulations and protecting the subject’s
sensitive data. Additionally, the Private Cloud provides on-demand data availability,
guaranteeing trustworthiness and support for mission-critical tasks.

• Hybrid Cloud infrastructure combines Public and Private Cloud infrastructures by
allowing data and applications to be moved between them. Cloud infrastructures
are unique entities linked by standardized or proprietary technologies, enabling the
portability of data and applications. Hence, Hybrid Cloud provides a unique inte-
grated environment combining locally Private and Public Cloud services. Healthcare
organizations using Hybrid Cloud could enhance the standard of security. In this
regard, data and services that do not affect sensitive information can be available
through the Public Cloud. In contrast, sensitive information held in the Private Cloud
are under the institution’s absolute control.
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• Multicloud infrastructure handles several Cloud services by different providers, in-
cluding organizations’ Private Cloud resources and private computational assets,
to accomplish various requirements and demands in a single heterogeneous Cloud
environment. Multicloud gives more flexibility regarding service and computational
capabilities, improving performance and increasing resource availability and redun-
dancy, letting organizations and final users to use all available resources efficiently.

• Federated Cloud infrastructure is a heterogeneous Cloud environment connecting di-
verse providers through a partnership mechanism, e.g., a standard policy to share, access,
and control infrastructure and services. Federated Cloud commonly combines multiple
Private and Public Clouds. Federation members remain independent in resource sharing
and access control, comprising federated identity management. Thus, the Federated
Cloud increases reliability and, simultaneously, the scaling up of resources.

• Intercloud is a general model of Cloud infrastructures that incorporates heteroge-
neous Clouds from various providers and typically includes non-cloud resources.
Intercloud models may use the Federated Cloud standard as the basis for creating or
implementing more specific but customized control and management functions.

To sum up, the Public Cloud is suitable for use cases in which it is necessary to
scale up quickly, execute short-term jobs, and mitigate the request for computational
resources. The Private Cloud is ideal for use cases in which it is mandatory to protect
sensitive information, including patents, meet data compliance requirements, ensuring
high availability. The Federated Cloud infrastructure enables application scalability and
workload optimization requirements through a federation paradigm between Public and
Private Clouds. Hybrid Cloud is ideal for combining Public and Private Cloud services
on-site in a unique integrated architecture. Multicloud is ideal for using multiple Cloud
services, even from different providers. Multicloud can also incorporate physical and
virtual infrastructures in a single heterogeneous Cloud environment. Intercloud is ideal for
implementing more specific but customized common control and management functions
for creating a virtual Private Cloud with restricted access based on federated access.

Table 1 shows the advantages and disadvantage of Deployment models.

Table 1. The table summarises the advantages and disadvantages of Cloud Deployment Models.
In the table DM are the initials of Deployment Models; CP refers to Computational Power; S indicates
the Security; AS introduces the Applications Scalability; AP denotes the Applications Portability;
ToJ refers to Type of Job; HS refers to Heterogeneous Service; C refers to the Costs; EU indicates the
Exclusive Use; T is the Trustness; sj, cj, and gj are the initials of short, critical, and general job, finally,
the
√

indicate feature availability, while × indicates absence of the feature.

DM CP S AS AP ToJ HS C EU T

Public
√

×
√

× sj × × × ×
Private

√ √ √
× cj ×

√ √ √

Federate ×
√ √

× cj
√ √ √ √

Hybrid × × ×
√

gj
√ √

× ×
Multicloud

√
×

√
× gj

√ √
× ×

Intercloud ×
√

× × gj
√ √ √ √

3. Background

Healthcare organizations generate a vast range of data and information. Thanks to the
progress of HT omics technologies, there has been an exponential growth of omics data,
e.g., gene expressions, sequences alignment, and protein sequences, rendering classical
computational approaches ineffective for handling these massive amounts of heterogeneous
data. Consequently, omics sciences turned into Big Data science. Big Data in health and
medical areas need infrastructures to improve data storage and management. Data shar-
ing and security are critical in health and medical care since researchers need easy and
extensive access to data for scientific analysis and sharing results. Cloud Computing
solutions for healthcare organizations can contribute to making data analysis, sharing,
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access, and storage effective through Cloud services able to scale when the amount of
data increases. Thus, Cloud Computing services are a cost-effective solution for storing,
accessing, analyzing, sharing, and protecting healthcare data and information.

The following is a list of well-known Cloud services models suitable for handling Big
omics Data.

• Cloud BioLinux [19] provides a platform for developing bioinformatics infrastructures
on the Cloud. Cloud BioLinux is a publicly accessible Virtual Machine (VM) to
create on-demand frameworks for high-performance bioinformatics computing using
Cloud architectures. Cloud BioLinux preconfigured command line and graphical
software applications are available through the Amazon EC2 Cloud. Cloud BioLinux is
distributed under the MIT Licence, including different Cloud BioLinux VMs, whereas
source code and user guides are available at http://www.cloudbiolinux.org (accessed
on 21 March 2023).

• Cloud4SNP [20] is a Cloud-based framework for the parallel preprocessing and statistical
analysis of pharmacogenomics SNP DMET microarray data sets. Cloud4SNP extends
the DMET-Analyzer [21] engine to be implemented as a Cloud Computing service
through the Data Mining Cloud Framework [22]. Data Mining Cloud Framework is a
software framework for creating and implementing knowledge discovery workflows on
the Cloud [23]. Cloud4SNP performs massive statistical tests of SNPs relevance in case-
control studies using the well-known Fisher test. Cloud4SNP exploits data parallelism
and employs an optimized filtering technique to bypass the execution of ineffective
Fisher tests by removing rows, e.g., probes with similar SNPs distributions.

• CloudBurst [24] is a parallel read-mapping algorithm optimized for mapping Next-
Generation Sequence (NGS) data from several organisms, including homo sapiens,
SNPs discovery, genotyping, and personal genomics. CloudBurst runs the short
Read-Mapping Program (RMAP) linearly since running time decreases linearly with
the number of reads mapped, reaching a linear speedup increasing the number of
processors. These results are obtained by implementing Hadoop MapReduce [25]
to parallelize execution using multiple computing nodes. In this way, CloudBurst
improves performance by decreasing the running time to minutes for mapping mil-
lions of short reads to the human genome. CloudBurst is available as an open-source
Java project for Amazon EC2 at https://sourceforge.net/projects/cloudburst-bio/
(accessed on 21 March 2023).

• CloudMan [26] is a Cloud manager that directs all of the steps required to create and
control a complete data analysis environment on a Cloud infrastructure using a web
browser. CloudMan provides an NGS analysis technique integrated with the Galaxy
applications. CloudMan comes with a graphical interface to enable an easy access to
Cloud Computing services. CloudMan is currently available for Amazon Web Services
(AWS) Cloud infrastructure as part of the Galaxy Cloud [27] and CloudBioLinux [28].

• Crossbow [29] is a scalable, portable, and automatic Cloud service for identifying SNPs
from high-coverage short-read resequencing data. Crossbow implements the MapReduce
framework [25] distributed from Apache Hadoop. Alignment and variant calling in
Crossbow are performed using the Bowtie [29] and SOAPsnp [30] software tools.

• Eoulsan [31] is a Cloud service implementing the Hadoop MapReduce approach
devoted to HT sequencing RNA-seq data analysis. The Eoulsan differential analysis
of transcript expression workflow comprises six steps: (i) quality control filtering;
(ii) reads mapping; (iii) alignments filtering; (iv) transcript expression calculation.
(v) normalization; (vi) detection of significant differential expression. Eoulsan is
available as standalone, local cluster, or Cloud Computing on Amazon Elastic MapRe-
duce (EMR).

• Eoulsan 2 [32] is the update of Eoulsan initially developed for analyzing RNA-seq
data. Eoulsan 2 introduces the following updates to handling long-read RNA-seq and
scRNA-seq data: (i) enhances the workflow manager; (ii) facilitates the development
of new modules; (iii) expands its applications to long-read RNA-seq and scRNA-seq.

http://www.cloudbiolinux.org
https://sourceforge.net/projects/cloudburst-bio/
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Eoulsan 2 is implemented in Java, available only for Linux systems, and distributed
under the LGPL and CeCILL-C licenses at http://outils.genomique.biologie.ens.fr/
eoulsan/ (accessed on 21 March 2023). The source code and sample workflows are
available on GitHub https://github.com/GenomicParisCentre/eoulsan (accessed on
21 March 2023).

• HealtheDataLab [33] is a Cloud Computing platform for analyzing Electronic Medical
Records (EMRs) data with computing capability for analyzing Big Data. HealtheData-
Lab enables the building of statistical and machine learning models flexibly through
the use of Amazon Web Services (AWS), allows for scalability and high-performance
computing system, and complaints with the Health Insurance Portability and Ac-
countability Act (HIPAA) standard. HealtheDataLab is available upon request made
directly to Cerner Corporation.

• iMage Cloud [34] allows the analysis of medical images integrated with EMRs, en-
abling the sharing of images, EMRs, and merged images via the Internet. iMage
uses Hybrid Cloud to deliver more convenient and secure services, allowing high-
performance image processing and virtual applications to be delivered securely, con-
veniently, and efficiently. iMage provides a graphical user interface with which it is
possible to share images after being combined with EMRs.

• PeakRanger [35] is a software package that resolves closely spaced peaks obtained
from Chromatin Immunoprecipitation (ChIP) coupled with massively parallel short-
read sequencing (seq) ChIP-seq datasets. PeakRanger provides high performance
on extensive data sets by taking advantage of the MapReduce parallel environment.
PeakRanger improves recognition of extremely closely-spaced peaks improving spatial
accuracy in identifying the exact location of binding events and improving the run time
by exploiting the parallel environment provided by a Cloud Computing architecture.
PeakRanger is written in C++ and can be deployed on Linux, macOS, and Windows.

• STORMSeq (Scalable Tools for Open-source Read Mapping) [36] is a software pipeline
for whole-genome and exome sequence data sets. STORMSeq is implemented as AWS
Cloud service. STORMSeq presents an intuitive user interface for dealing with reading
mapping and variant calling using genomic data.

• VAT (Variant Annotation Tool) [37] is a software package to annotate variants from
multiple individual genomes at the transcript level and obtain descriptive statistics
across genes and individuals. VAT visualizes different variants, integrating allele
frequencies and genotype data, simplifying comparative analysis between distinct
groups of individuals. VAT is implemented in C and PHP and it is available as a
command-line tool or as a web application. Moreover, VAT can be run as a virtual
machine in the AWS Cloud environment. VAT documentation and user guide are
available at http://www.vat.gersteinlab.org (accessed on 21 March 2023).

4. Materials and Methods

This section aims to highlight some challenges, security issues, and impediments limiting
the spread of the use of Cloud Computing in healthcare corporations. To identify some of
the main relevant obstacles limiting the high adoption of Cloud methodologies in healthcare
corporations, we searched the online knowledge database PubMed [38], to figure out from the
available scientific literature suitable clues to identify possible advice that could help mitigate
the current difficulties in the large use of Cloud Computing in healthcare corporations.

The first step regarded the keywords definition to use for selecting relevant manuscripts.
The chosen keywords to implement the selection criteria of the manuscript are: cloud computing,
healthcare, security, challenges, applications. Table 2 shows the produced queries obtained
by combining the keywords and the selected range of publication years in which to search
for manuscripts.

In the second step, we defined the inclusion criteria comprising the following: (i) the
manuscripts available on PubMed from the 2009, up to the December 2022 meeting the

http://outils.genomique.biologie.ens.fr/eoulsan/
http://outils.genomique.biologie.ens.fr/eoulsan/
https://github.com/GenomicParisCentre/eoulsan
http://www.vat.gersteinlab.org
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selected keywords; (ii) all the types of abstracts, manuscripts, conference abstracts, reviews,
and letters are eligible if they contain the chosen keywords in the title and are free full text.

Table 2. The table shows the defined queries to identify relevant manuscripts related to Cloud
Computing in healthcare.

QueryID Query Publication Years Range

Q1 cloud computing & healthcare 2009–2022
Q2 cloud computing & healthcare & security 2009–2022
Q3 cloud computing & healthcare & challenges 2009–2022
Q4 cloud computing & healthcare & applications 2009–2022

Table 3 reports the number of identified manuscripts in PubMed that apply to the
queries contained in Table 2. The results of the queries were analyzed using an in-house
Python script, to parse and extract manuscripts’ title keywords, computing for each key-
word its frequency (excluding from the frequency terms counting articles, prepositions,
adverbs etc). Finally, keyword frequency is used to produce the word cloud diagram shown
in Figure 1.

Table 3. The table shows the total number of eligible PubMed manuscripts matching the defined queries.

QueryID TotManuscripts TotFreeFullText

Q1 668 408
Q2 237 151
Q3 184 120
Q4 273 186

Figure 1 presents the results of query Q1 in the form of word cloud diagram.

Figure 1. Figure shows the query Q1 results as word cloud diagram.
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Figure 2 shows the publication growth trend of manuscripts concerning the use of
Cloud Computing in healthcare.
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Figure 2. Figure shows the growth trend of Cloud Computing in healthcare starting from 2008 up
to December 2022. Q1 presents the growth per year of manuscripts dealing with cloud computing
in healthcare. Q2 shows the trends per year of the manuscripts focused on security issues in Cloud
Computing especially within Cloud Computing in healthcare. Q3 shows the growth of manuscripts
focused on the challenges to be faced in Cloud Computing for healthcare. Finally, Q4 provides an
overview of the growth per year of Cloud application for healthcare.

To highlight the difficulties of adopting Cloud Computing in the healthcare sector, we
will analyze the results obtained from the queries represented graphically using piecharts.
Figure 3 shows the results of query Q1.

Q1 contains the following keywords cloud computing and healthcare, resulting in
67 keywords extracted (for readability reasons, the piechart visualize the first 30 keywords)
from the titles of the scientific articles selected using the previously defined criteria con-
cerning the use of Cloud Computing in Healthcare. Analyzing the frequency of keywords
identified by query Q1 shown in Figure 3, it is worth noting that many terms are related
to healthcare, which could lead to misleading conclusions concerning the use of Cloud
Computing in healthcare, considering that keywords such as security and privacy occupy
the 35th and 38th position, respectively.

Query Q2 adds the keyword security to query Q1, extracting from scientific works
compatible with the selection criteria 17 keywords. Adding the keyword security restricts
the selection and search range of the query. In fact, from the result of Q2 shown in Figure 4, it
is possible to notice that the keywords related to security and privacy now leap respectively
into 5th, 6th, and 8th position, highlighting the importance of the concepts of security and
privacy in the various areas of use of the Cloud and, in particular, in the health sector.

Query Q3, composed of keywords cloud computing, healthcare and challenges, locates
20 keywords, as shown in Figure 5.
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Figure 3. Figure shows the keyword frequency produced from query Q1. To improve legibility, the
percentage values have been truncated to the first value after the decimal point.

Figure 4. Figure shows the keyword frequency produced from query Q2. To improve legibility, the
percentage values have been truncated to the first value after the decimal point.
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Figure 5. Figure shows the keyword frequency produced from query Q3. To improve legibility, the
percentage values have been truncated to the first value after the decimal point.

In particular, challenges occupies the 5th position, highlighting that the use of the
Cloud in the healthcare sector must overcome various challenges, particularly related to
the sensitive aspects of the data to be handled. Figure 6 displays the frequency of keywords
extracted from query Q4.

From the analysis of Figure 6 security occupies the 19th position, while privacy
does not appear in the list of frequent keywords, introducing biases in the interpretation
of the results, suggesting that the existing Cloud Computing applications are mainly
aimed at sectors other than healthcare, as less stringent privacy requirements regulate
them. In light of these conclusions, decisions regarding the relevant scientific papers to be
analyzed were made using the intersection of the results produced by the four queries as a
selection criterion.

To limit the manuscripts investigation, we computed the intersection among the results
obtained from the four queries performed in PubMed. Figure 7 shows the intersection
among the manuscripts’ keywords retrieved from each query). The manuscripts intersection
was computed using Venny 2.0 [39] a web application used to draw Venn diagrams.

Analysing Figure 7 it is wort noting that the intersection among the four queries
contains 27 manuscripts. According to the eligibility criteria, 21 manuscripts have been
excluded since they are not explicitly related to Cloud Computing. Finally, only the
6 manuscripts meeting the eligibility criteria have been assessed.
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Figure 6. Figure shows the keywords’ frequency produced from query Q4. To improve legibility, the
percentage values have been truncated to the first value after the decimal point.

Figure 7. Figure shows the intersection among the manuscripts’ keywords retrieved from each query.

5. Discussion

Although Cloud Computing is a consolidated technology in computational and stor-
age resources, with the explicit goals of reducing operating costs and improving results
in many scientific domains, Cloud Computing is slowly gathering steam in healthcare
despite those premises. This impasse may be due to the critical challenges to face, such as
encryption, user identification, storage, access, etc.

Patient clinical information is now collected in Electronic Medical Records (EMRs),
even known as Electronic Health Records (EHRs). Using Cloud tools to analyze and share
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EMRs data can improve the performance of healthy corporations. Cloud services lowered
the cost of care, improved outcomes, and increased customer/patient loyalty and satisfac-
tion while yielding growth and profitability. At the same time, EMRs data must be stored
and handled according to well-defined privacy and security rules [40]. Cloud environ-
ments must face several challenges in data handling, notably the native heterogeneity of
healthcare data and the need to harmonize data sets from different healthcare organizations.
Cloud storage is the ideal solution for storing data from different healthcare organizations.
It can spur multi center data analysis, data summarization, integration, and harmoniza-
tion, contributing to new knowledge, improving clinical trials, and developing new drugs.
The need for suitable integration and harmonization functions hamper the collaboration
between healthcare institutions. Traditional harmonization and integration methods are
ineffective with healthcare data. In [41], authors present HarmonicSS, a PaaS Cloud Com-
puting model encouraging collaboration among multiple organizations, providing several
data harmonization functions based on semantic data models to identify concepts auto-
matically without a human supervisor. In addition, HarmonicSS provides trustworthy AI
models based on the Cloud Federated environment, allowing secure, legal, and ethical
uploads compliant with HL7 standards ideal for the healthcare domain. The ubiquity of
EMRs in recent years through Cloud Computing could lead to the wide use of artificial
intelligence (AI) [42] to analyze these vast amounts of data. AI tools are unhurriedly
supplanting humans in many application domains, such as deciding who should get a loan,
hiring new workers, and supporting doctors in clinical reporting, decisions, and treatments
design. The use of AI in fields where data-driven algorithmic decision-making may affect
human life, e.g., healthcare, raises concerns regarding their reliability [43]. Indeed, since
AI is a data-driven decision-making tool, using unbalanced, poor, or misleading data sets
can increase the probability that these tools could be biased. Improving AI reliability can
increase its adoption in healthcare environments. Thus, the challenge is establishing an
end-to-end Cloud Computing service able to increase the reliability of AI tools. A potential
Cloud Computing service includes the following steps: data acquisition, preprocessing,
and AI model training. A possible strategy for increasing end-to-end reliability consists
of the following: data labeling, which allows one to figure out the quality of data for the
application; results aggregation to simplify the quality assessment; and finally, detection
of unbalanced groups, which enables one to obtain more accurate and expressive knowl-
edge models. Hence, the combination of Cloud Computing and reliable AI tools provides
Cloud services that can help to increase the adoption of Cloud Computing services in
healthcare organizations.

EMR data storage in Cloud repositories throws security problems, such as protecting
patients’ personal information [44]. Cloud providers can protect EMR-sensitive information
by employing noncryptographic techniques such as anonymization and splitting [45].
Data anonymization [46] is a privacy technique to protect a user’s personal information,
hiding sensitive information that could reveal the identity. Data anonymization can be
accomplished by applying various methods, such as removing or hiding identifiers or
attributes. The primary intent of data anonymization is to obscure the person’s identity
in any way. Data splitting divides sensitive data into smaller chunks, distributing those
smaller units to distinct storage locations to protect it from unauthorized access. In this
manner, data anonymization and splitting protect patients’ sensitive information without
compromising Cloud Computing performance since data retrieval is accomplished without
further computations such as decryption. Noncryptographic techniques provide a basic
security level for Cloud environments because intruders can obtain access to complete
sensitive information in case of a breach.

Thus, using cryptography [47] can improve Cloud environment security. Cryptog-
raphy is a fundamental and widely used approach for hiding and securing classified
information. Cryptography transforms the raw data into ciphertext using encryption
algorithms to protect data during network transfer and storage. Today, cryptography is
employed to pursue different targets, such as data confidentiality and integrity. Due to the
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increased data violations in the last few years, some Cloud service providers are moving
toward cryptographic techniques to attain more safety. In [48], Hassan et al. discuss the
relevance of synthesizing, classifying, and identifying different data protection method-
ologies. Although cryptography increases the security and trust of Cloud environments,
it negatively affects Cloud environments’ performance. Users want to retrieve their data
stored in a Cloud database. Searching for encrypted data is a crucial element of cryptog-
raphy because every user who stores sensitive data in a local or Cloud database wants
to retrieve it. Data retrieving is completed by searching sensitive data through queries.
Consequently, the procedure of retrieving data is complicated, since it is not possible to
carry out computation on encrypted data without ever decrypting the content.

Cryptography approaches [49,50] are classified into Asymmetric and Symmetric.
Asymmetric cryptography [51], also known as a public key, is a technique that uses a
couple of keys to encrypt and decrypt information. A key in the pair is public that, as
the name implies, can be distributed without affecting security. At the same time, the
second key in the pair is private and known exclusively to the owner. In this approach,
anyone can use the public key to encrypt messages, but only the paired private key can
decrypt those encrypted messages. Public keys are usually stored in digital certificates,
which allows them to be easily and securely shared. Private keys are not shared and
must be held by users in suitable software systems or hardware, such as USB tokens.
Symmetric cryptography [52], also known as a secret key, is a technique that uses a single
key for encryption and decryption purposes. In symmetric cryptography, the secret key
is private and a secure channel is required to distribute it. This requirement has proved
challenging to maintain, representing the main weaknesses of this cryptographic schema.
Hence, the key length can mitigate this weakness. In fact, the longer the key, the more
secure the communication will be. For instance, to force a key of 128-bit with the computing
power of current computers would take millions of years, a sufficient time to guarantee
a secure outcome of communications. In asymmetric cryptography, on the other hand,
public keys can be distributed on a (possibly) insecure channel, while private keys are
generated locally without requiring to be transmitted. This public distribution allows for
encrypted and authenticated communications between parties who have not previously
met or exchanged information. To summarize, given their different nature, the two types of
encryptions are used in purely different fields. Symmetric encryption is used to encrypt files
and data when it is necessary to transfer large blocks of information, as well as during data
transmission in HTTPS. In contrast, asymmetric cryptography is used in encryption and
authentication procedures such as digital signatures. In this regard, healthcare corporations
can use symmetric cryptography to achieve more security when sharing data through the
network and choose asymmetric cryptography to provide secure authentication procedures
to limit access to the stored sensitive information exclusively to the legitimate owner.

Blockchain technology is well known and used in cryptocurrency, safety, and trust
management, making it suitable even for Cloud Computing services in healthcare. In [53],
Rahmani et al. discussed the issues related to security breaches that occurred in Cloud
platforms. Trust handling is critical for delivering secure and trustworthy service to users.
The traditional trust-handling protocols in Cloud Computing are centralized, resulting in
single-point failure. Hence, Rahmani et al. propose as a solution the use of Blockchain
in Cloud domains, e.g., healthcare, that requires trust and trustworthiness in several
aspects. An essential feature of Blockchain is the decentralization of the trust model
that produces a trust Cloud environment. In [54], Ismail et al. present the limitations of
a healthcare system based on either Cloud or Blockchain, highlighting the importance
of implementing an integrated Blockchain-Cloud (BcC) system for further improve the
Blockchain decentralization and, consequently, the Cloud environment trust.

The Internet of things (IoT) is a paradigm that allows different objects, e.g., intelligent
entities and sensors, to communicate with each other on the Internet network. The IoT
provides several benefits in many domains, from home to private and public corporations
and government institutions. The IoT provides endless opportunities to connect homes,
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wearable devices, smart cities, and how patients interact with healthcare corporations.
Smart devices, sensors, and wearables, even called smart-objects, are changing how per-
sonal care is delivered. Sensors like wearable trackers, e.g., smartwatches and bands,
enable automatic self-monitoring and controlling health conditions such as hypertension
and blood pressure. Patients can monitor their health status and, if necessary, communicate
with their medical doctors to receive expert care directions, improving the quality of their
medical care. In [55], the authors provide a picture of how IoT device use changes health
care delivery. Thus, despite the above benefits, many issues must be considered, especially
data security and privacy, because sensitive patient and hospital information are exchanged
over the Internet.

In [56], Kibiwott et al. argue that if the IoT data are far from the owner’s physical do-
main, privacy and security cannot be ensured. In this regard, Kibiwott et al. propose adopt-
ing attribute-based signcryption (ABSC) to mitigate security issues and protect sensitive
data. ABSC cryptographic properties include fine-grained access control, authentication,
confidentiality, and data owner privacy.

To bypass exchanging sensitive information over the network and preventing in this
way to face data security and privacy issues, it is possible to use Edge Computing. Edge
Computing is a novel programming model aiming to keep the computing step as near to
the data source as possible, enabled by the availability of novel devices such as NVIDIA
Jetson [57,58]. Moreover, the computation close to the data source guarantees a faster
response with low latency, one of the essential requirements in decision-making or mission-
critical processes. In [59], the authors present E-ALPHA (Edge-based Assisted Living
Platform for Home cAre), which supports both Edge and Cloud Computing paradigms to
design innovative Ambient Assisted Living (AAL) services in scenarios of different scales.
E-ALPHA flexibly combines Edge and Cloud, assisting users in the preliminary assess-
ment. In particular, it helps to determine the desired performance of the service. Next, it
assists users in configuring applications or platforms for real deployment. IoT devices
are continuously increasing in many domains, such as scientific, corporate, and domestic,
presenting new challenges in the real-time elaboration of these vast amounts of different
types of data produced. For these reasons, many initiatives investigating the deployment
of architecture-based Edge Computing services and their impact on performance and cost
are arising [60]. Moreover, Edge Computing, Machine Learning and Data Mining can
put forward the analysis of IoT data based on Edge Computing, Machine Learning, and
Deep Learning [61]. In [57], the authors present an approach based on Machine Learning
and Edge Computing to diagnose early-stage cancer, allowing efficient and fast analysis
without compromising the privacy of sensitive information. In [62] authors proposed
EdgeMiningSim, a methodology aimed at IoT domain experts, for creating descriptive or
predictive models to take actions in the IoT field.

In [63], Bertuccio et al. describe ReportFlow as an application to transfer sensitive
data over the Public Cloud, speeding and simplifying the medical report process of EEGs.
ReportFlow exploits the Role-Based Access Control (RBAC) to limit system access only to
authorized users. ReportFlow deals with all cryptographic activities, managing certificates
and checking their validity using OpenSSL, an open-source general-purpose cryptography
library. Public keys and other information are held in specific folders on the Cloud. ReportFlow
encrypts the data through a Triple Data Encryption Symmetric Algorithm (Triple DES or 3DES).
Finally, Mehrtak et al. in [64] investigated several manuscripts to highlight the importance of
accurately determining security challenges and their proper solutions that are fundamental
for both Cloud Computing providers and corporations using Cloud services.

To summarize, the slow adoption of Cloud solutions in healthcare organizations could
be related to the types of data produced by healthcare organizations. Healthcare data
contain sensitive and confidential information about patients, requiring special handling.
Thus, it is mandatory to develop special protocols and methods able to protect healthcare
data that will be transferred through unsecured channels, i.e., through the internet network,
up to the storage, analysis, retrieving etc.
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6. Tips to Effectively Use Cloud Computing in Healthcare

This section provides some tips to facilitate the choice of the ideal Cloud Computing
provider and how an user can deal with Cloud Computing to meet all the law requirements
for healthcare corporations. Customers should choose a Cloud service holding stringent
HIPAA and HITECH Act security requirements. Meet HIPAA and HITECH Act secu-
rity requirements allow to limitate the common vulnerabilities that lead to breaches in
security, implementing natively security protocols such as data encryption, multi-factor
authentication, intrusion detection, and prevention. In this scenario, Cloud services will
be more secure against data breaches, tampering, loss, and damage than on-premise data
centers. Consumers would put data in the Cloud storage to create a central point of sharing,
intending to promote interoperability. Interoperability can be achieved only if the Cloud
provider supplies access to all services to constrained authenticated and authorized entities.
Restricted data access with authentication and qualification reduces inappropriate and for-
bidden data changes. In this manner, data remain intact, secure, and adequately protected.
Further consideration should regard the data transfer from local to Cloud repositories.
Before uploading sensitive data, users must protect data using cryptography approaches
like the HL7 standard and a secure channel like the https. In this way, data remain safe
and adequately protected even during the transfer. Before uploading, data summariza-
tion, aggregation, and harmonization, in conjunction with encryption, promote secure
data analysis, even using advanced AI tools. In this manner, it is possible to prevent AI
tools from misusing sensitive information that can harm privacy by introducing biases in
the outcomes, contributing to increasing AI reliability. Finally, before choosing a Cloud
Computing provider, one must identify the geographic position of Cloud facilities since the
security principles depend on the laws of the State and the corresponding legal jurisdiction
where it will be held. For programmers, Cloud platforms provide a much faster and more
secure method of developing and deploying collaborative, customized, and analytical
workflows for dealing with heterogeneous data. In addition, Cloud platforms provide all
the software tools, libraries, and APIs to design and develop robust services concerning
security threats because the Cloud infrastructure has already been certified. Moreover, the
Cloud also reduces the costs associated with maintaining existing infrastructure. In this
manner, the internal IT resources can be concentrated on specific tasks rather than handling
or maintaining data center hardware.

7. Conclusions

In this paper, we highlighted the importance of identifying Cloud security issues
essential to defend patient privacy, complying with healthcare laws and ensuring that
only authorized persons can access patients’ sensitive data. Thus, the spread use of Cloud
in healthcare could be enhanced by providing trusted Cloud architectures and services
where the privacy and security of all data types is explicitly ensured, rendering information
misuse impossible.
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Abbreviations
The following abbreviations are used in this manuscript:

MC Molecular Biology
HT High-throughput
AWS Amazon Web Services
BPaaS Business Process as a Service
CaaS Connectivity as a Service
ChIP Chromatin immunoprecipitation
ChiPseq Short read sequencing
DaaS Data as a Service
DNA DeoxyriboNucleic Acid
EMR Elastic MapReduce
EMR Hectronic medical record
GPU raphics processing units
HIPAA Health Insurance Portability and Accountability Act
HPC High-Performance Computing
IaaS Infrastructure as a Service
IDaaS Identity as a Service
IT Information Technology
MPI Message-Passing Interface
NGS Next-Generation Sequence
PaaS Platform as a Service
RMAP short read-mapping program
RNA-seq RNA sequence
SaaS Software as a Service
scRNA-seq Single-cell RNA-sequence
SNP Single Nucleotide Polymorphism
STORMSeq Scalable Tools for Open-source Read Mapping
VAT Variant Annotation Tool
VM Virtual machines
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