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Abstract: Background: Blood is responsible for delivering nutrients to various organs, which store
important health information about the human body. Therefore, the diagnosis of blood can indirectly
help doctors judge a person’s physical state. Recently, researchers have applied deep learning (DL)
to the automatic analysis of blood cells. However, there are still some deficiencies in these models.
Methods: To cope with these issues, we propose a novel network for the multi-classification of blood
cells, which is called DLBCNet. A new specifical model for blood cells (BCGAN) is designed to
generate synthetic images. The pre-trained ResNet50 is implemented as the backbone model, which
serves as the feature extractor. The extracted features are fed to the proposed ETRN to improve the
multi-classification performance of blood cells. Results: The average accuracy, average sensitivity,
average precision, average specificity, and average f1-score of the proposed model are 95.05%, 93.25%,
97.75%, 93.72%, and 95.38%, accordingly. Conclusions: The performance of the proposed model
surpasses other state-of-the-art methods in reported classification results.

Keywords: blood cells; randomized neural network; ResNet50; generative adversarial networks

1. Introduction

The blood flowing in blood vessels is composed of blood cells and plasma. Blood is
red because of red blood cells in the blood. Hemoglobin is a special protein that transports
oxygen within red blood cells. It is a protein that makes the blood red and consists of globin
and heme. Besides red blood cells, there are also white blood cells and platelets. Although
they occupy a small share of blood, their functions are very important. These three kinds
of blood cells account for 45% of the blood volume, and the remaining 55% of the volume
is plasma.

Blood is distributed throughout the body and delivers nutrients to various organs.
Naturally, it also stores important health information about the human body. The blood
composition will change when there is a problem in our body. Therefore, the diagnosis of
blood can indirectly help doctors judge a person’s physical state, which is the routine blood
test we often hear of. The routine blood test mainly includes diagnosing red blood cells,
white blood cells, and so on. Its significance is to find many early signs of systemic diseases,
diagnose whether there is anemia or blood system disease, and reflect the hematopoietic
function of bone marrow. Mainstream blood diagnosis is now used to detect white blood cell
abnormalities. White blood cell analysis is an essential examination method for pathological
blood samples and is an important indicator for detecting and observing diseases. White
blood cell recognition is one of the important components of blood testing. By identifying
the total number, relative ratio, and morphology of various white blood cells in the blood,
we can determine whether there is a disease, the type of disease, and the severity of the
disease. So, examining white blood cells is very important to understanding the body’s
condition and diagnosing diseases.
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With the unprecedented development of deep learning (DL), scholars have recently
applied DL to the automatic analysis of blood cells. Over the past decade, DL methods have
been put forward for diagnosing blood cells. Tran et al. [1] introduced a hybrid method to
segment blood cells. The proposed method was created with pre-trained VGG-16. The end
pooling layer of VGG-16 was replaced with semantic segmentation. The overall accuracy
of the proposed method could achieve 89.45% accuracy. Habibzadeh et al. [2] put forward
a computer-aided diagnosis (CAD) model to automatically classify blood cells. ResNet
and Inception were used for feature extractions. Three technologies were proposed to pre-
process images: color distortion, image flipping mirroring, and bounding box distortion.
This system yielded 99.46% and 99.84% accuracy with ResNet 101 and ResNet V1 152.
Tiwari et al. [3] built a novel model to classify blood cells automatically. There were two
convolution layers, two pooling layers, and two fully connected layers. The self-built
network achieved 78% accuracy for four categories of classification.

Alzubaidi et al. [4] proposed three self-made DL models to classify red blood cells.
These three self-made models were composed of parallel and traditional convolution layers.
There were some differences among these three models, such as different numbers of
traditional and parallel convolution layers, different filters, and so on. The proposed
models yielded 99.54% accuracy and 99.54% accuracy with SVM. Yildirim and Çinar [5]
used four different four convolution neural networks (CNNs) with two filters to classify
blood cells into four categories. Four CNNs were selected to extract features, which were
ResNet50, DenseNet201, AlexNet, and GoogleNet. The median and Gaussian filters were
used in this paper. DenseNet201 with a Gauss filter achieved 83.44% accuracy. Delgado-
Ortet et al. [6] designed a new clinical decision support system to segment red blood cell
images and detect malaria. This system included three steps: the segmentation, cropping,
and masking of red blood cells and the classification of malaria. For the segmentation and
classification, they designed two novel CNN models. One contained 7 fully convolutional
layers, and another one was composed of 13 layers. The segmentation method obtained
93.72% accuracy, and the classification method achieved 87.04% specificity.

Jiang et al. [7] designed a DL model to detect blood cells based on the YOLO. They
added the spatial and channel attention mechanisms in the YOLO and named this new
network the attention-YOLO. The weighted feature vector replaced the original vector.
Khouani et al. [8] proposed a DL model to classify blood cells. Firstly, they pre-processed
the input to achieve better performance. Then, they tried five different convolution neural
networks: Inception V3, VGG16, VGG19, ResNet50, and ResNet101. ResNet50 with the
Adam optimizer could obtain the best performance. The proposed deep learning model
obtained 95.73% precision and 0.9706 F-score. Patil et al. [9] introduced a hybrid deep
learning model to classify white blood cells, which combined the canonical correlation
analysis (CCA) and CNN-LSTM to achieve better performance. When Xception was
selected as the backbone model, this system could achieve 95.89% accuracy.

H Mohamed et al. [10] put forward a combined model to classify white blood cells.
Some pre-trained CNN models were implemented to extract features, and the traditional
machine learning models were selected as the classifier. They tested ten pre-trained CNN
models and six traditional machine-learning models. Finally, the MobileNet224 with
logistic regression achieved 97.03% accuracy. Rahaman et al. [11] compared two models for
detecting and counting blood cells, which were the YOLOv5m and YOLOv5s. Finally, the
YOLOv5m and YOLOv5s achieved 0.799 precision and 0.797 precision. Sharma et al. [12]
classified blood cells into four types based on DenseNet121. The normalization and data
augmentation were implemented to improve the classification performance. This proposed
model could achieve 98.84% accuracy, 98.85% sensitivity, and 99.61% specificity.

Aliyu et al. [13] introduced an effective model to classify red blood cells. Two phases
were included in this model: firstly, the region of interest (ROI) in blood cells was identified,
and secondly, AlexNet was selected for classification. The precision, specificity, sensitivity,
and accuracy were 90%, 98.82%, 77%, and 95.92%, respectively. Kassim et al. [14] designed
a hybrid pipeline to detect red blood cells. U-Net and Faster R-CNN were the vital
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parts of this hybrid pipeline. The detection accuracy by the proposed model was 97%.
Muthumanjula and Bhoopalan [15] built a novel DL network to detect white blood cells.
Firstly, the CMYK-moment approach was implemented to identify ROI. Then, CNN was
utilized to achieve features. This novel deep learning network yielded 96.41% accuracy.

Shahin et al. [16] put forward a new method (WBCsNet) to identify white blood cells.
Several CNN models were utilized to extract features. The SVM was used as the classifier.
The proposed WBCsNet achieved 96.1% accuracy. Ekiz et al. [17] selected two models to
detect white blood cells. First, CNNs were applied to extract features. Second, the extracted
features were used as the input to SVM for classification. The Con-SVM model could
achieve 85.96% accuracy. Ammar et al. [18] applied seven different combinations of CNN
models with other traditional classifiers to classify blood cells, including KNN, SVM, and
AdaboostM1. Finally, the CNN-AdaboostM1 yielded 88% accuracy.

Singh et al. [19] designed a self-made CNN model which included two convolutional
layers, two pooling layers, and two fully connected layers. They tested this self-made
CNN with different epochs. When the epoch was chosen as 100, this self-made CNN could
obtain 86% accuracy. Liang et al. [20] combined CNN models with other networks for the
multi-classification of white blood cells. The pre-trained CNN models were chosen to be
the feature extractors. Then, recurrent neural networks were implemented as the classifiers.
In the experiments, the Xception-LSTM could achieve 90.79% accuracy.

From the above analysis, a sea of DL models could yield certain blood cell diagnosis
performances [21–23]. However, there are still some deficiencies in these models. Some
of them would use handcrafted features [24–27], but these features could not be the ideal
maps for blood cell diagnosis. Meanwhile, DL models could take a lot of time to complete
the experiments because of the massive layers and parameters. Furthermore, the over-
fitting problem is another major concern when these DL models are trained on medical
image datasets, which only contain a small number of images. This paper demonstrates a
novel DL model (DLBCNet) for the multi-classification of blood cells. We use pre-trained
ResNet50 as the backbone to extract ideal features. There are two ways to deal with the
overfitting problem in this paper. First, we propose a new model (BCGAN) to generate
synthetic images to create a larger dataset. Second, the proposed ETRN not only has a
simpler structure but also achieves better performance than common DL models. The main
contributions of our work are given as follows:

• The pre-trained ResNet50 is implemented to extract ideal features by comparing it
with other CNN models;

• The proposed BCGAN is used to generate synthetic images to alleviate the overfit-
ting problem;

• We propose ETRN to enhance the robustness with the ensemble strategy of combining
three individual networks;

• We propose a novel DL model to classify blood cells, which is named DLBCNet.

The structure of this paper is presented as follows. Section 2 talks about the materials.
The methodology is shown in Section 3. The experiment and results are given in Section 4.
Section 5 concludes this paper.

2. Materials

The dataset is available on this website (https://www.kaggle.com/datasets/
paultimothymooney/blood-cells (accessed on 2 January 2023)). This public blood cell
dataset comprises 12,500 augmented images of blood cells. There are four different blood
cell classes: neutrophil, eosinophil, monocyte, and lymphocyte. Each blood cell class
can have approximately 3000 images. The images of these four classes of blood cells are
presented in Figure 1.

Neutrophils are white blood cells with the highest proportion in peripheral blood,
accounting for more than half of white blood cells [28]. They are important components of
innate immunity and important effector cells of immune defense. Eosinophils are a kind of
white blood cell. Although the number of eosinophils in the blood accounts for less than

https://www.kaggle.com/datasets/
paultimothymooney/blood-cells
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5%, they greatly kill bacteria and parasites [29]. Monocytes account for about 3%~8% of the
number of white blood cells. They are the largest blood cells in the blood and an important
part of the body’s defense system [30]. Lymphocyte is a kind of white blood cell, which
is the smallest white blood cell [31]. It is an important cellular component of the immune
response function of the body and the main executor of almost all immune functions of the
lymphatic system.
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3. Methodology
3.1. Feature Learning

Table 1 enumerates the acronyms and provides full explanations. The DL models
have achieved remarkable success in various fields, such as natural language processing
(NLP), image segmentation, etc. Modern, powerful computing capability makes it possible
to have deeper DL networks. These deeper networks often lead to better performance.
In recent decades, many epoch-making CNNs have been designed, such as AlexNet [32],
ResNet [33], MobileNet [34], and so on.

Table 1. Acronyms and full explanations.

Acronym Full Explanation

DL Deep learning
NLP Natural language processing

CNNs Convolutional neural networks
FC Fully connected
BN Batch normalization

GANs Generative adversarial networks
RNNs Randomized neural networks
ELM Extreme learning machine
RVFL Random vector functional link
SNN Schmidt neural network
SVM Support vector machine
Std Standard deviation

ROC Receiver operating characteristic
AUC Area under the curve
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For image recognition, feature extraction is an important process. Because the volumes
of the images are usually too large with excessive information, it is difficult to extract the
discrimination rate features. The distribution of features in latent space directly determines
the complexity of image classification. With the continuous progress of computer science,
CNN models have been the leading solution to the problem of image feature extraction.

It is time-consuming to train CNN models from scratch. Therefore, transfer learning
is a feasible method for extracting image features. These pre-trained CNN models are
transferred for feature extraction of cell images because they have strong image repre-
sentation learning ability. ResNet50 is implemented as the backbone model in this paper.
The residual connection in ResNet50 is one of the most important inventions in the recent
decade of computer science, and can directly connect two non-adjacent layers to complete
identity mapping. The framework of the residual connection is given in Figure 2.
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Given X as the feature maps from the previous layer, the learned feature is set as L(X).
T(X) is obtained through the residual connection as follows:

T(X) = L(X)− X. (1)

The learned feature with the conversion of the above formula is expressed as follows:

L(X) = L(X) + X. (2)

The ResNet50 pre-trained on the ImageNet dataset is modified due to differences in
the dataset. The pre-trained ResNet50 is applicable to distinguish 1000 categories of images.
Nevertheless, the public blood cell dataset in this paper has only four categories in total:
neutrophil, eosinophil, monocyte, and lymphocyte. The modifications to the pre-trained
ResNet50 are presented in Figure 3.
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The last three layers of the pre-trained ResNet50 are removed, and six layers are added,
which are ‘FC128’, ‘ReLU’, ‘BN’, ‘FC4’, ‘Softmax’, and ‘Classification’. The parameters in
the pre-trained ResNet are frozen except those in the last three layers. Some buffer layers,
which are ‘FC128’, ‘ReLU’, and ‘BN’, are inserted between ‘Pool5’ and ‘FC4’ because there
are 1000 and 4 output nodes in the ImageNet dataset and the blood cell dataset, accordingly.
The buffer layers can smooth the reduction procedures of the dimensions. The modified
ResNet50 is fine-tuned by the blood cells dataset.

3.2. Proposed BCGAN

CNN models proved promising when implemented in image recognition and yielded
excellent results in big datasets, such as ImageNet [35], CoPhIR [36], and so on. However,
the overfitting problem [37] is often encountered when CNN models are applied to small
image datasets. The samples of medical datasets are rarely compared with some datasets,
such as the ImageNet dataset. It is very time-consuming to create labeled medical datasets.

When researchers employ supervised machine learning models in medical image
recognition, the limited labeled dataset can especially restrain the performance. Meanwhile,
many studies [38–41] prove that CNN models can achieve better performance with more
data. To deal with these problems, we propose a new generative adversarial network for
blood cells (BCGAN) to cope with the limited dataset issue, as shown in Figure 4.
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The proposed BCGAN is inspired by generative adversarial networks (GANs) [42].
Two components form the proposed BCGAN, which are the generator G and discrimina-
tor D. The generator G obtains the random noise and generates synthetic images. The
discriminator D is used to identify whether the image is real or fake. The generator G
and discriminator D compete with each other. Generator G generates synthetic images
similar to the real image as much as possible so that discriminator D cannot distinguish the
generated images as fake. Discriminator D tries to improve the accuracy of identifying the
real images and the generated images as much as possible. The proposed BCGAN generates
synthetic blood cell images when the discriminator is unable to find the differences between
generated images and real images.

Given the data x, pdata is denoted as the probability distribution, and the noise is
presented as pz(z). The loss function F(D, G) is calculated as follows:

minGmaxDF(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log (1− D(G(z )))], (3)
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where the discriminator D tries to maximize D(x) from generated data x ∼ pdata(x), and
the generator G is trained to maximize D(G(z )). During the training of the BCGAN, the
generator G improves its ability to generate more realistic images, and the discriminator
D enhances the ability to differentiate the real images and generated images. Therefore,
the entire training process of BCGAN can be considered as a minimax game between the
generator G and the discriminator D.

In the proposed BCGAN, the convolutional layers are used to extract features. The
LeakyReLu is implemented to add nonlinearity. Max pooling is a common strategy to
downsample the extracted features. Batch normalization (BN) is chosen to alleviate the
gradient disappearance. The overfitting problem can be alleviated by adding the dropout.
The BCGAN is specially designed for blood cell images. The pseudocode of the proposed
BCGAN is introduced in Algorithm 1. The main contributions of the BCGAN are as follows:

• Five filters are added to increase the ability of the generator to capture more high-
level features;

• Additional dropout layers can be helpful in avoiding the overfitting problem;
• The checkboard patterns can be alleviated by the larger kernel size;
• Batch normalization (BN) is inserted into the generator and discriminator to deal with

the overfitting problem.

Algorithm 1 Generative adversarial network for blood cell (BCGAN).
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We use BCGAN to generate 3000 synthetic images for each class. These synthetic
images are mixed with original images to create a new dataset (named mixed-BCGAN
dataset). At the same time, we use GANs [42] to generate 3000 synthetic images for each
class, which are combined with original images to produce the mixed-GAN dataset.

The comparison of these three datasets is shown in Table 2. The training sets of
the mixed-GAN and mixed-BCGAN datasets contain 3000 synthetic images and about
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2175 original images for each class. The testing sets of the mixed-GAN and mixed-BCGAN
datasets are composed of 933 original images per class. The original dataset’s training set
and testing set cover about 2178 and 933 original images per class, respectively.

Table 2. The comparison of the original dataset with the mixed dataset.

Dataset Class
Training Set Testing Set

Original Images Synthetic Images Original Images

Original

Eosinophil 2184 0 936
Lymphocyte 2172 0 931

Monocyte 2169 0 929
Neutrophil 2186 0 937

Mixed-GAN

Eosinophil 2184 3000 936
Lymphocyte 2172 3000 931

Monocyte 2169 3000 929
Neutrophil 2186 3000 937

Mixed-BCGAN

Eosinophil 2184 3000 936
Lymphocyte 2172 3000 931

Monocyte 2169 3000 929
Neutrophil 2186 3000 937

3.3. Proposed ETRN

For the classification of blood cells, three randomized neural networks (RNNs) are
implemented to replace the last five layers of the backbone model: extreme learning ma-
chine (ELM) [43], random vector functional link (RVFL) [44], and Schmidt neural network
(SNN) [45]. These three RNNs merely include three layers: the input layer, hidden layer,
and output layer. The training of RNNs can be faster than traditional CNN models ben-
efiting from the simple structure. Compared with the back-propagation neural network,
because the weights and bias in RNNs were randomly initialized and fixed in training and
the outputs can be calculated by pseudo-inverse, it is unnecessary to update the parameters
based on back-propagation, which can shorten the training time. On the other hand, these
three RNNs used to replace the last five layers can improve the classification performance.

Ensembles of neural networks are usually recognized to be more robust and accurate
compared with individual networks, even though these individual networks can obtain
promising results. RNNs are regarded as unstable networks whose performance greatly varies
with small perturbations because of the randomized weights and bias. In this situation, we
propose a novel network named ETRN to improve classification performance. The structure
of the proposed ETRN is given in Figure 5. The pseudocode of the proposed ETRN is shown
in Algorithm 2. In the ETRN, three RNNs are trained and then combined with majority voting.
The strategy of the ensemble of three RNNs based on majority voting is given below:

L(c) =
{

Ra, if ∃Ra == Rb, a, b ∈ {e, v, s}
Re, otherwise

, (4)

where c is the image in the dataset, L(c) is represented as the ensemble output, and Re, Rv,
and Rs are denoted as the predictions from ELM, RVFL, and SNN, accordingly.

Algorithm 2 The pseudocode of the proposed ETRN.
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5. Calculate the predictions of images of RVFL. 

end 



Big Data Cogn. Comput. 2023, 7, 75 9 of 20

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 21 
 

 
Input:  

A training set (𝒙𝒊, 𝒚𝒊),  
 
 

 

Individual network training 
ELM training 

1. Randomly generate parameters (𝒘𝒋, 𝑏 ). 

2. Calculate 𝐇𝐄𝐋𝐌(𝒊): 
𝐇𝐄𝐋𝐌(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. 

3. Determine 𝐩𝐄𝐋𝐌: 𝐩𝐄𝐋𝐌 = 𝐇𝐄𝐋𝐌𝐘. 
4. Calculate the predictions of images of ELM. 

end 
RVFL training 

1. Randomly generate parameters (𝒘𝒋, 𝑏 ). 

2. Calculate 𝐇𝐑𝐕𝐅𝐋(𝒊): 
𝐇𝐑𝐕𝐅𝐋(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. 

3. Contact the input and the output of the hidden layer: 𝐌𝐑𝐕𝐅𝐋(𝒊) = concat(𝐗, 𝐇). 
4. Determine 𝐩𝐑𝐕𝐅𝐋: 𝐩𝐑𝐕𝐅𝐋 = 𝐇𝐑𝐕𝐅𝐋𝐘. 
5. Calculate the predictions of images of RVFL. 

end 
SNN training 

1. Randomly generate parameters (𝒘𝒋, 𝑏 ). 

2. Calculate 𝐇𝐒𝐍𝐍(𝒊): 
𝐇𝐒𝐍𝐍(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. 

3. Determine (𝐩𝐒𝐍𝐍, 𝒆𝐒𝐍𝐍): (𝐩𝐒𝐍𝐍, 𝒆𝐒𝐍𝐍) = 𝐇𝐒𝐍𝐍𝐘. 
4. Calculate the predictions of images of SNN. 

end 
end 

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 21 
 

Ensemble training 
Calculate the results based on three RNNs: 𝐿(𝑐) = 𝑹 , if ∃𝑹 == 𝑹 , 𝑎, 𝑏 ∈ 𝑒, 𝑣, 𝑠𝑹 , otherwise  

end 

 
Figure 5. The structure of ETRN. 

The calculations of ELM can be summarized in three steps. Given 𝑁 samples with i-
th samples as (𝒙𝒊, 𝒚𝒊): 𝒙𝒊 = (𝑥 , … , 𝑥 ) ∈ R , 𝑖 = 1, … , 𝑁, (5) 

𝒚𝒊 = (𝑂 , … , 𝑂 ) ∈ R , 𝑖 = 1, … , 𝑁, (6) 

The randomized weights and bias are fixed during the training process, and the out-
puts of the hidden layer are computed below: 

𝐇𝐄𝐋𝐌(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. (7) 

where 𝒘𝒋 is the weight between the input and the j-th hidden node, 𝑏  is the bias of the 
j-th hidden node, 𝑔() is the activation function, and 𝑍 is denoted as the number of hid-
den nodes. 

The output weight is calculated as follows: 𝐩𝐄𝐋𝐌 = 𝐇𝐄𝐋𝐌𝐘. (8) 

where 𝐇𝐄𝐋𝐌  is the pseudo-inverse matrix of 𝐇𝐄𝐋𝐌  and 𝐘 = (𝒚𝟏, … 𝒚𝑵)   is the ground-
truth label matrix of the dataset. 



Big Data Cogn. Comput. 2023, 7, 75 10 of 20
Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 11 of 22 
 

 
Figure 5. The structure of ETRN. 

The calculations of ELM can be summarized in three steps. Given 𝑁 samples with i-
th samples as (𝒙𝒊, 𝒚𝒊): 𝒙𝒊 = (𝑥 , … , 𝑥 ) ∈ R , 𝑖 = 1, … , 𝑁, (5) 

𝒚𝒊 = (𝑂 , … , 𝑂 ) ∈ R , 𝑖 = 1, … , 𝑁, (6) 

The randomized weights and bias are fixed during the training process, and the out-
puts of the hidden layer are computed below: 

𝐇𝐄𝐋𝐌(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. (7) 

where 𝒘𝒋 is the weight between the input and the j-th hidden node, 𝑏  is the bias of the 
j-th hidden node, 𝑔() is the activation function, and 𝑍 is denoted as the number of hid-
den nodes. 

The output weight is calculated as follows: 𝐩𝐄𝐋𝐌 = 𝐇𝐄𝐋𝐌𝐘. (8) 

where 𝐇𝐄𝐋𝐌  is the pseudo-inverse matrix of 𝐇𝐄𝐋𝐌  and 𝐘 = (𝒚𝟏, … 𝒚𝑵)   is the ground-
truth label matrix of the dataset. 

The structure of RVFL has direct connections between the input and output, as shown 
in Figure 5. Even though the structure is different, the calculation steps are the same. First, 
calculate the hidden layer output as follows: 

𝐇𝐑𝐕𝐅𝐋(𝒊) = 𝑔 𝒘𝒋𝒙𝒊 + 𝑏 , 𝑖 = 1, … , 𝑁. (9) 

Figure 5. The structure of ETRN.

The calculations of ELM can be summarized in three steps. Given N samples with i-th
samples as (x i, yi):

xi = (xi1, . . . , xin)
T ∈ Rn, i = 1, . . . , N, (5)

yi = (Oi1, . . . , Oim)
T ∈ Rm, i = 1, . . . , N, (6)

The randomized weights and bias are fixed during the training process, and the
outputs of the hidden layer are computed below:

HELM(i) =
Z

∑
j=1

g
(
wjxi + bj

)
, i = 1, . . . , N. (7)

where wj is the weight between the input and the j-th hidden node, bj is the bias of the j-th
hidden node, g() is the activation function, and Z is denoted as the number of hidden nodes.

The output weight is calculated as follows:

pELM = H+
ELMY. (8)

where H+
ELM is the pseudo-inverse matrix of HELM and Y = (y1, . . . yN)

T is the ground-truth
label matrix of the dataset.

The structure of RVFL has direct connections between the input and output, as shown
in Figure 5. Even though the structure is different, the calculation steps are the same. First,
calculate the hidden layer output as follows:

HRVFL(i) =
Z

∑
j=1

g
(
wjxi + bj

)
, i = 1, . . . , N. (9)

The input of the output layer is different because there are direct connections
as follows:

MRVFL(i) = concat(X, H). (10)

where X = (x1, . . . xN)
T is the input matrix.
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The output weight of RVFL is calculated as follows:

pRVFL = H+
RVFLY. (11)

The structure of SNN is similar to ELM. The only difference between these two RNNs
is that there is an output bias in the SNN. The framework of SNN is presented in Figure 5.
The output of the hidden layer in SNN can be computed as follows:

HSNN(i) =
Z

∑
j=1

g
(
wjxi + bj

)
, i = 1, . . . , N. (12)

The equation for SNN with output bias is shown below:

(p SNN, eSNN) = H+
SNNY. (13)

3.4. Proposed DLBCNet

We propose a novel DL network to diagnose blood cells (DLBCNet). Collecting a large
number of labeled blood cell images to train DL modes is a challenge due to cost and time
restrictions. We propose a new specifical model for blood cells (BCGAN) to cope with this
challenge. More filters and dropout layers for each layer are added to capture more high-level
features. Additional dropout layers and BN are added to avoid the overfitting problem.

Meanwhile, the checkboard patterns can be alleviated by the biggest kernel size. The
ResNet50 pre-trained on the ImageNet dataset is implemented as the backbone model in this
paper, which is modified and fine-tuned based on blood cells because of the difference between
the ImageNet dataset with the blood cell dataset used in this paper. The modified ResNet50 is
applied as the feature extractor. The last five layers of the modified ResNet50 are substituted
with three RNNs (ELM, RVFL, and SNN). These three RNNs are used for classification. The
sample structure and randomized weights of RNNs can reduce training time.

Nevertheless, the RNN is considered an unstable neural network due to some random-
ized operations. We propose the ETRN by combining three RNNs based on the majority
voting to improve the robustness and the generalization performance. The overview of
the proposed DLBCNet is demonstrated in Figure 6. The pseudocode of the DLBCNet is
illustrated in Algorithm 3.
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Algorithm 3 The pseudocode of the DLBCNet.
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3.5. Evaluation

Five multi-classification measurements are applied to evaluate the proposed DLBCNet,
which are average accuracy, average sensitivity, average precision, average specificity, and
average f1-score for four classes. First, the formulas of accuracy, sensitivity, precision,
specificity, and f1-score per class are defined as follows:

accuracy(∂) = TP(∂)+TN(∂)
TP(∂)+FP(∂)+TN(∂)+FN(∂)

precision(∂) = TP(∂)
TP(∂)+FP(∂)

specificity(∂) = TN(∂)
TN(∂)+FP(∂)

sensitivity(∂) = TP(∂)
TP(∂)+FN(∂)

f1-score(∂) = 2×precision(∂)×sensitivity(∂)
precision(∂)+sensitivity(∂)

, ∂ = 1, . . . , 4, (14)

where ∂ is denoted as the number of classes in this paper. For multi-classification, one class
is defined as the positive class. The other three classes are negative classes. The average
accuracy, average sensitivity, average precision, average specificity, and average f1-score
are calculated below:

average-accuracy = ∑4
∂=1 accuracy(∂)

4

average-precision = ∑4
∂=1 precision(∂)

4

average-specificity = ∑4
∂=1 specificity(∂)

4

average-sensitivity = ∑4
∂=1 sensitivity(∂)

4

average-f1-score = ∑4
∂=1 f1−score(∂)

4

, ∂ = 1, . . . , 4. (15)

The receiver operating characteristic (ROC) curve and the area under the curve (AUC)
are used in this paper to evaluate the proposed model.
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4. Experiment Settings and Results
4.1. Experiment Settings

The hyper-parameter setting of the proposed DLBCNet is presented in Table 3. The
max-epoch is set to 1 to avoid the overfitting problem. The mini-batch size is ten because of
the memory size of our device. The initial learning rate is 10−4 based on experience. The
hidden nodes in the hidden layer are set as 400.

Table 3. The hyper-parameter setting of the proposed DLBCNet.

Hyper-Parameter Value

Mini-batch size 10
Max-epoch 1

Initial learning rate 10−4

Z 400

4.2. The Performance of DLBCNet

Five multi-classification measurements are implemented to evaluate the proposed
DLBCNet. Considering the contingency, we carry out five runs. The classification
performance of the proposed DLBCNet by five runs is presented in Table 4. The average
accuracy, sensitivity, precision, specificity, and f1-score per class by five runs are given in
Table 5. The average accuracy, average sensitivity, average precision, average specificity,
and average f1-score of the proposed model are 95.05%, 93.25%, 97.75%, 93.72%, and
95.38%, accordingly. All the measurements per class of the proposed DLBCNet are
greater than 90%. In particular, our model can achieve promising average accuracy for
each class. The ROC curve is presented in Figure 7. The AUC values for eosinophil,
lymphocyte, monocyte, and neutrophil are 0.8922, 0.9957, 0.9694, and 0.9091. Generally
speaking, it can be concluded that our proposed model is an effective tool for the multi-
classification of blood cells.

Table 4. The performance of the proposed DLBCNet per class (%).

Run Class Accuracy Sensitivity Precision Specificity F1-Score

1

Eosinophil 94.31 91.00 95.41 86.54 93.15
Lymphocyte 98.74 99.76 99.95 99.84 99.85
Monocyte 95.77 87.66 99.97 99.91 93.41

Neutrophil 93.90 93.79 95.41 87.19 94.59

2

Eosinophil 95.76 92.83 96.74 90.46 94.74
Lymphocyte 97.63 100.00 100.00 100.00 100.00
Monocyte 94.33 86.55 99.97 99.91 92.78

Neutrophil 92.05 93.95 94.40 84.83 94.17

3

Eosinophil 96.26 92.28 97.58 92.72 94.86
Lymphocyte 97.42 100.00 99.97 99.92 99.99
Monocyte 94.41 87.66 99.97 99.91 93.41

Neutrophil 91.68 94.51 93.95 83.89 94.23

4

Eosinophil 95.50 91.80 96.74 90.36 94.20
Lymphocyte 97.53 99.60 100.00 100.00 99.81
Monocyte 94.56 87.50 99.97 99.91 93.32

Neutrophil 91.55 93.15 93.98 83.75 93.56

5

Eosinophil 95.68 92.52 96.74 90.42 94.58
Lymphocyte 97.63 100.00 100.00 100.00 100.00
Monocyte 94.35 86.54 100.00 100.00 92.79

Neutrophil 91.96 93.95 94.27 84.53 94.11
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Table 5. The average multi-classification measurements of the proposed DLBCNet by runs (%).

Class Accuracy Sensitivity Precision Specificity F1-Score

Eosinophil 95.50 92.09 96.64 90.16 94.31
Lymphocyte 97.79 99.87 99.98 99.95 99.93

Monocyte 94.68 87.18 99.98 99.93 93.14
Neutrophil 92.23 93.87 94.40 84.84 94.13
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4.3. Comparison of Different Backbone Models

The pre-trained ResNet50 is selected as the backbone model for the proposed DLBCNet.
There are numerous famous pre-trained CNN models, such as AlexNet, VGG, ResNet18,
and MobileNet. The classification performance of different backbones is demonstrated in
Table 6.

Table 6. The classification performance of different backbones (%).

Backbone Class Accuracy Sensitivity Precision Specificity F1-Score

AlexNet

Eosinophil 76.22 45.51 86.45 36.49 45.49
Lymphocyte 84.26 49.94 97.38 51.73 53.01
Monocyte 80.82 37.41 96.97 46.53 43.72

Neutrophil 59.06 75.51 55.20 37.20 38.36

ResNet18

Eosinophil 94.20 88.20 96.20 88.56 92.02
Lymphocyte 97.34 99.47 99.85 99.57 99.66
Monocyte 94.45 87.32 99.81 99.35 93.15

Neutrophil 90.07 90.91 92.77 80.75 91.83

MobileNet

Eosinophil 94.77 89.65 96.47 89.44 92.93
Lymphocyte 97.65 99.73 99.92 99.77 99.83
Monocyte 94.75 88.30 99.78 99.27 93.69

Neutrophil 90.90 91.37 93.50 82.42 92.42

VGG

Eosinophil 73.00 34.03 85.95 40.60 40.82
Lymphocyte 73.34 59.62 75.23 40.93 52.27
Monocyte 83.08 38.43 96.76 60.59 47.39

Neutrophil 70.88 62.77 72.24 53.63 47.26

ResNet50

Eosinophil 95.50 92.09 96.64 90.16 94.31
Lymphocyte 97.79 99.87 99.98 99.95 99.93
Monocyte 94.68 87.18 99.98 99.93 93.14

Neutrophil 92.23 93.87 94.40 84.84 94.13
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The proposed DLBCNet with the pre-trained ResNet50 as the backbone model can
almost yield the best average accuracy, average sensitivity, average precision, average
specificity, and average f1-score compared with other pre-trained models. The residual
connection can improve the classification performance. More layers in ResNet50 can
extract better features than ResNet18. Therefore, the pre-trained ResNet50 is utilized as the
backbone of the proposed DLBCNet.

Using ResNet50 as the backbone model can obtain better results than other backbone
models. The reason is that the residual connection in ResNet50 can improve the classifica-
tion performance. Even though the residual connection is still in ResNet18, deeper layers
can extract better features. In this situation, using ResNet50 as the backbone model has
better performance than ResNet18.

4.4. Effects of the Proposed BCGAN

The proposed BCGAN is applied to generate synthetic images based on blood cell
images to improve the classification performance. We create the mixed-BCGAN dataset
based on these synthetic and original images. Meanwhile, the original GANs are compared
with the proposed BCGAN to prove its superiority.

The comparison of the classification performance for the mixed and original datasets is
demonstrated in Table 7. We test this comparison in five different backbone models to avoid
fortuity. These models can yield better classification performance in the mixed-BCGAN
dataset than in the mixed-GAN and original datasets. In conclusion, the proposed BCGAN
is useful for diagnosing blood cells.

Table 7. The comparison of the classification performance for the mixed and original datasets (%).

Backbone Dataset Class Accuracy Sensitivity Precision Specificity F1-Score

AlexNet

Original

Eosinophil 53.71 41.45 57.81 24.74 48.28
Lymphocyte 72.92 24.06 87.73 43.58 37.76

Monocyte 52.80 37.89 58.10 23.05 45.87
Neutrophil 73.72 5.02 97.25 37.90 9.54

Mixed-GAN

Eosinophil 70.56 30.88 83.84 39.00 45.13
Lymphocyte 74.78 56.93 81.24 54.92 66.95

Monocyte 68.15 49.95 77.60 42.49 60.78
Neutrophil 58.11 20.81 73.53 20.86 32.44

Mixed-
BCGAN

Eosinophil 76.22 45.51 86.45 36.49 45.49
Lymphocyte 84.26 49.94 97.38 51.73 53.01

Monocyte 80.82 37.41 96.97 46.53 43.72
Neutrophil 59.06 75.51 55.20 37.20 38.36

ResNet18

Original

Eosinophil 90.51 76.40 95.23 84.25 84.78
Lymphocyte 93.54 98.23 99.25 97.91 98.74

Monocyte 87.88 74.68 99.14 96.66 85.19
Neutrophil 81.05 87.50 85.24 66.50 86.36

Mixed-GAN

Eosinophil 91.29 82.16 94.35 82.96 87.83
Lymphocyte 98.06 100.00 99.96 99.89 99.98

Monocyte 93.98 83.96 99.75 99.11 91.18
Neutrophil 89.73 91.04 91.63 78.47 91.33

Mixed-
BCGAN

Eosinophil 94.20 88.20 96.20 88.56 92.02
Lymphocyte 97.34 99.47 99.85 99.57 99.66

Monocyte 94.45 87.32 99.81 99.35 93.15
Neutrophil 90.07 90.91 92.77 80.75 91.83
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Table 7. Cont.

Backbone Dataset Class Accuracy Sensitivity Precision Specificity F1-Score

MobileNet

Original

Eosinophil 92.47 82.48 95.82 86.84 88.65
Lymphocyte 95.77 98.60 98.80 96.63 98.70

Monocyte 92.73 83.53 99.68 98.85 90.89
Neutrophil 87.48 89.75 90.41 75.83 90.08

Mixed-GAN

Eosinophil 92.87 82.48 96.35 88.33 88.88
Lymphocyte 96.85 99.79 99.70 99.15 99.74

Monocyte 93.52 85.25 99.96 99.88 92.02
Neutrophil 88.01 91.57 90.31 76.00 90.93

Mixed-
BCGAN

Eosinophil 94.77 89.65 96.47 89.44 92.93
Lymphocyte 97.65 99.73 99.92 99.77 99.83

Monocyte 94.75 88.30 99.78 99.27 93.69
Neutrophil 90.90 91.37 93.50 82.42 92.42

VGG

Original

Eosinophil 65.68 19.66 81.09 25.81 31.65
Lymphocyte 62.60 21.70 71.12 23.46 33.25

Monocyte 74.85 0.00 100.00 0.00 0.00
Neutrophil 43.59 53.15 40.59 23.07 46.03

Mixed-GAN

Eosinophil 60.65 23.18 73.19 22.44 35.21
Lymphocyte 74.34 1.93 97.87 28.57 3.79

Monocyte 46.58 88.05 32.85 30.29 47.84
Neutrophil 74.95 0.21 100.00 100.00 0.43

Mixed-
BCGAN

Eosinophil 73.00 34.03 85.95 40.60 40.82
Lymphocyte 73.34 59.62 75.23 40.93 52.27

Monocyte 83.08 38.43 96.76 60.59 47.39
Neutrophil 70.88 62.77 72.24 53.63 47.26

ResNet50

Original

Eosinophil 92.86 86.11 95.39 87.51 90.52
Lymphocyte 93.85 98.26 99.89 99.52 99.07

Monocyte 87.21 73.63 99.56 98.42 84.65
Neutrophil 82.68 91.25 86.43 71.61 88.77

Mixed-GAN

Eosinophil 93.82 87.71 95.85 87.62 91.60
Lymphocyte 96.39 98.28 99.78 99.35 99.02

Monocyte 92.26 81.92 99.54 98.32 89.87
Neutrophil 89.12 92.64 91.67 78.84 92.15

Mixed-
BCGAN

Eosinophil 95.50 92.09 96.64 90.16 94.31
Lymphocyte 97.79 99.87 99.98 99.95 99.93

Monocyte 94.68 87.18 99.98 99.93 93.14
Neutrophil 92.23 93.87 94.40 84.84 94.13

4.5. Effects of RNNs

Three RNNs are implemented as the classifier to replace the last five layers of the
backbone model, which are ELM, RVFL, and SNN. The training time of RNNs can be
less than traditional CNN models because of the simple structure and fixed randomized
parameters. At the same time, RNNs can achieve promising results.

The effects of RNNs are given in Table 8. The classification results using the last five
layers are not as good as those using three RNNs. It can be clearly concluded that the three
RNNs used to substitute the last five layers can achieve better classification performance.
The RNNs can have positive effects on blood cell classification.

4.6. Effects of ETRN

The performance of RNNs can vary with the randomized weights and biases. We
propose the ETRN by combining three RNNs to improve classification performance. The
effects of the proposed ETRN are shown in Table 9.
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Table 8. The effects of RNNs (%).

Model Class Accuracy Sensitivity Precision Specificity F1-Score

ResNet50

Eosinophil 92.38 88.54 93.66 82.31 91.02
Lymphocyte 97.01 98.49 99.81 99.43 99.14
Monocyte 93.13 82.80 99.73 99.05 90.48

Neutrophil 88.41 86.23 92.14 78.54 89.09

ResNet50-
ELM

Eosinophil 94.30 91.56 95.22 86.47 93.35
Lymphocyte 97.49 99.92 99.84 99.52 99.88
Monocyte 93.39 83.20 99.81 99.33 90.75

Neutrophil 91.35 92.09 94.06 83.74 93.07

ResNet50-
RVFL

Eosinophil 96.42 92.99 97.56 92.70 95.22
Lymphocyte 95.67 99.92 99.84 99.52 99.88
Monocyte 91.11 80.73 99.89 99.61 89.30

Neutrophil 88.62 94.11 91.96 79.60 93.02

ResNet50-
SNN

Eosinophil 94.96 90.29 96.52 89.64 93.30
Lymphocyte 97.16 99.92 99.95 99.84 99.93

Monocyte 93.32 84.71 99.76 99.16 91.62
Neutrophil 90.46 92.99 93.07 81.74 93.03

Table 9. The effects of ETRN (%).

Model Class Accuracy Sensitivity Precision Specificity F1-Score

ResNet50-
ELM

Eosinophil 94.30 91.56 95.22 86.47 93.35
Lymphocyte 97.49 99.92 99.84 99.52 99.88
Monocyte 93.39 83.20 99.81 99.33 90.75

Neutrophil 91.35 92.09 94.06 83.74 93.07

ResNet50-
RVFL

Eosinophil 96.42 92.99 97.56 92.70 95.22
Lymphocyte 95.67 99.92 99.84 99.52 99.88
Monocyte 91.11 80.73 99.89 99.61 89.30

Neutrophil 88.62 94.11 91.96 79.60 93.02

ResNet50-
SNN

Eosinophil 94.96 90.29 96.52 89.64 93.30
Lymphocyte 97.16 99.92 99.95 99.84 99.93
Monocyte 93.32 84.71 99.76 99.16 91.62

Neutrophil 90.46 92.99 93.07 81.74 93.03

DLBCNet

Eosinophil 95.50 92.09 96.64 90.16 94.31
Lymphocyte 97.79 99.87 99.98 99.95 99.93
Monocyte 94.68 87.18 99.98 99.93 93.14

Neutrophil 92.23 93.87 94.40 84.84 94.13

The average accuracy per class of ensemble network (DLBCNet) is generally the
best, except for eosinophil. The accuracy of eosinophil is only 0.9% less than the best
from ResNet50-RVFL. Therefore, the proposed ETRN can improve the multi-classification
performance of blood cells.

4.7. Comparison with State-of-the-Art Methods

The proposed DLBCNet is compared to other state-of-the-art methods on the same
public dataset, including CNN-AdaboostM1 [18] and the Xception-LSTM [20]. The compar-
ison results of the proposed DLBCNet with other state-of-the-art methods are provided in
Table 10.

Our model can yield the best average accuracy, average sensitivity, average precision,
and average f1-score compared with other state-of-the-art methods. The Xception-LSTM
achieved the best average specificity of 98.43%, which is 4.7% higher than our model. The
comparison results suggest that the proposed DLBCNet is an accurate model for classifying
blood cells.
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Table 10. Comparison with other state-of-the-art methods (%).

Method Average-Accuracy Average-Sensitivity Average-Precision Average-Specificity Average-F1-Score

CNN-AdaboostM1 88.00 85.90 - - -
Xception-LSTM 90.79 - 95.83 98.43 95.00

DLBCNet 95.05 93.25 97.75 93.72 95.38

5. Conclusions

The paper put forward a novel network for the classification of blood cells, which is
called DLBCNet. We propose a new specifical model for blood cells (BCGAN) to generate
synthetic images. The ResNet50 pre-trained on the ImageNet dataset is implemented as
the backbone model, which is modified and fine-tuned based on blood cells. The modified
ResNet50 is applied as the feature extractor. The extracted features are fed to the proposed
ETRN, which combines three RNNs to improve the multi-classification performance of
blood cells. The average accuracy, average sensitivity, average precision, average specificity,
and average-f1-score of the proposed model are 95.05%, 93.25%, 97.75%, 93.72%, and
95.38%, accordingly.

In future research, we shall apply the proposed model to other public blood cell
datasets to prove its generality. Additionally, other recent technology will be implemented
in future research, such as MOCO, CLIP, and so on. Moreover, we will try to segment blood
cell images.
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