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Abstract: The Time-Period-Based Most Frequent Path (TPMFP) problem has been a hot topic in traffic
studies for many years. The TPMFP problem involves finding the most frequent path between two
locations by observing the travelling behaviors of drivers in a specific time period. However, the
previous researchers over-simplify the road network, which results in the ignorance of transfer costs at
intersections. To address this problem more elegantly, we built up an urban topology model consisting
of Intersection Vertices and Connection Vertices. Specifically, we split the Intersection Vertices to
eliminate the influence of transfer cost on finding TPMFP and generate Trajectory–Topology from
GPS records data. In addition, we further leveraged the Footmark Graph method to find the TPMFP.
Finally, we conducted extensive experiments using a real-world dataset containing over eight million
GPS records. Compared to the current state-of-the-art method, our proposed approach can find
more reasonable MFP in approximately 10% of cases during off-peak hours and 40% of cases during
peak hours.

Keywords: path finding; urban topology modeling; big trajectory data

1. Introduction

The Time-Period-Based Most Frequent Path (TPMFP) problem has been a hot topic in
traffic studies for many years. Generally speaking, TPMFP is the most commonly traversed
path in a directed network during a specific period. The study of the most frequent path
(MFP) is motivated by the increasing need to analyze and understand complex networks.
With the emergence of large-scale datasets in various domains, such as social networks [1],
transportation systems [2], and web browsing behavior [3], there is a growing demand for
efficient algorithms to extract meaningful information from these networks. MFP provides
a powerful tool for identifying the most commonly traversed paths in a directed network,
which can have important implications for network optimization, anomaly detection, and
targeted interventions. As a result, MFP has become a popular research topic in fields such
as data mining and network analysis.

In traffic research, the frequent path refers to the path frequently passed by the moving
object. It can be a complete and actual road or a collection of several sections that are
not completely connected. Since the shortest or fastest path is not always the best, the
purpose of studying popular routes is to find the most popular route between two places by
studying the behavior of other drivers. In the map service and vehicle navigation system,
TPMFP provides users with additional path options besides the shortest/fastest path. For
example, when people travel in an unfamiliar city, they tend to take the most common
route to avoid getting lost and encountering unexpected congestion. In these cases, TPMFP
is better than the shortest/fastest path.

The typical approach used in related research is to use statistical methods that model
the frequency distribution of paths and estimate the most probable ones. For example, a
straightforward method for finding MFP in the road network is to count the trajectories
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going through the path and select the path with the highest support [2]. Figure 1 gives an
illustrative example, showing three V1 −V5 paths with non-zero support, and the paths
traversed by G1, G2, G3 whose supports are 8, 6 and 4, respectively. Thus, the most frequent
path is G1 (V1 → V2 → V4 → V5), which has the most support. However, this method only
makes a comparison of path frequencies, ignoring the frequency on road sections. Under
this judgment, we cannot infer that the most frequent path from V2 to V5 is V2 → V4 → V5 ,
because path V2 → V3 → V5 has more supports in total. In other words, the path with the
highest support is not always suffix-optimal.
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Figure 1. An illustrative example of the most frequent path.

Ref. [4] proposed a new method for addressing this issue, which used an ascending
frequency sequence to define the path frequency and considered the size of the smallest
element in the sequence to determine the path frequency. A Footmark Graph was created
to calculate the frequency of roads according to trajectory data. In the example of Figure 1,
the frequencies of roads in path V1 → V2 → V4 → V5 were 14, 8 and 8, respectively, so
the path frequency was (8, 8, 14), while the frequency of path V1 → V2 → V3 → V5 was
(10, 10, 14). Therefore, the latter path was more frequent.

Intuitively, in this case, 57% of the drivers from V1 to V5 choose route V1 → V2 → V4 → V5 ,
which seemed to be a better choice for most drivers. There has yet to be further discussion on
this phenomenon in [4]. Ref. [5] used a threshold θ to make the method that finds the most
frequent path more reasonable. According to the improved method, an ascending frequency
sequence was more frequent than another only if the D-value of their smallest elements was
bigger than θ.

However, this method does not analyze the underlying causes of this phenomenon.
We supposed that the road network had been over-simplified in past research, so that
the drivers’ tendencies to shift in different directions at the intersection had been ignored.
Figure 2 gives an example. Due to the Suffix-optimal principle, V1 → V2 → V4 → V6 is the
MFP of V1 → V6 . However, the reason why the five drivers (the red line) did not choose
MFP is probably that the transfer cost of path V1 → V2 → V4 at V2 was far greater than
that of V1 → V2 → V5 , leading to the drivers from V1 preferring to go straight at V2 rather
than turning left. This phenomenon is widespread in the actual road network when road
V3 → V2 → V4 is a main road with large traffic flow [6–8].
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the blue path, and five vehicles pass through the red path.

Trajectory big data represent an important data source for studying TPMFP problems,
coming from the real-time positioning data reported by the floating car [9]. High-quality
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trajectory data are crucial to the research based on trajectory data [10–12]. Map matching is
the key step in obtaining trajectory data from floating car data. Map matching is the process
of aligning the observed position sequence with the road network. Because the urban
space is continuous, the expression domain of trajectory points is infinite [13]. Therefore,
it is necessary to discretize the urban road network before map matching. The common
method in past research has been to match the trajectory points to the road sections [14].
However, due to the low topological degree of urban space, the map-matching process
is time-consuming [15,16], and the expression form of the trajectory is complex. Another
simple method is to model the urban road network as a directed graph (V, E), where V
is the collection of all intersections, and then match all global positioning system (GPS)
records to the intersection points and represent the trajectory as the connection of the
intersections [17]. This method brings a high degree of simplification to the road network.
As a result, the obtained trajectory data lose helpful information to a certain degree.

A precise topology model could help reduce computational complexity and keep
most helpful information in such studies. For example, ref. [18] presents a clustering point
process (CPP)-based network topology structure. The feature points, such as endpoints,
bends, and crossroads in a road system, are connected by lines to characterize the network
structure. This topology model can support the generation of the road extraction model
and the operation of the extraction algorithm. Ref. [19] extracted the road topology from
the street layout of Shanghai city, and made a modification to make the road network
topology analogous to the real-world road network. The resulting road topology was
imported to Simulation of Urban Mobility (SUMO) to characterize different aspects of
vehicular mobility.

In this paper, we studied the problem of TPMFP in trajectory data and a topology
model of the urban road network. We extracted all meaningful trips from the original
GPS data, and matched the GPS points with the topology model. The resulting series
of connected vertices is called Trajectory–Topology. In order to study the impact of in-
tersections’ transfer costs on frequent paths, we divided the intersections into multiple
virtual connection vertices connected to each other. With the help of the precise urban
topology model, we represented the trip paths as a series of adjacent connection vertices
and re-studied the TPMFP problem using the Footmark method. The main contributions of
this paper are as follows:

• We designed a precise urban topology model (Topo Map) to express trajectory data.
The original GPS data are converted into Trajectory–Topology;

• We studied the impact of intersections’ transfer costs on frequent paths by finding
TPMFP from the Trajectory–Topology and Topo Map, verifying the validity of the
suffix-optimal principle in the TPMFP problem;

• We conducted extensive experiments using a real dataset containing over eight million
GPS records to evaluate the performance of our method. The results showed that our
approaches found more reasonable frequent paths than state-of-the-art baselines.

2. Preliminary
2.1. Data Description

Our GPS records data set was provided by Hangzhou Transportation Satellite Posi-
tioning Application Co., Ltd., Hangzhou, China. The data set had 8,507,317 GPS records on
8 January 2021, covering 31,235 electric and hybrid taxis driving in Hangzhou. Three types
of information, space information, time information and vehicle status information, were
shown in the data set. Each GPS record consisted of 6 fields, as described in Table 1.

The road network file we used to build the urban topology model was the road
network of the core area of Hangzhou, including Shangcheng District, Xiacheng District,
Jianggan District, Gongshu District, West Lake District and Binjiang District. These six
districts are the core business district of modern Hangzhou, with a dense road network and
large traffic flow, which is convenient for obtaining rich data. Figure 3 gives an overview of
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the GPS records data we used for research. The sampling points were spread all over our
research area.

Table 1. List of GPS records data fields.

Field Description

Vin Unique identification of a vehicle
Longitude The longitude of GPS record
Latitude The latitude of GPS record

Collect Time The time when GPS record was recorded
Speed The speed of vehicle

Vehicle State The state of the vehicle (for hire or not)
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In order to build a precise urban topology model, we discretized the urban space into
a topological graph composed of several vertices with semantic elements connected to
each other. Firstly, we extracted all the intersections of the road network by extracting the
intersections of road center lines. The vertices we obtained were defined as Intersection
Vertices. Secondly, with the help of the Gaode open website, one of China’s greatest
digital map providers, 2785 points of interest (POI) in the core area of Hangzhou were
collected. We projected those POI onto the road network and defined the projection points
as the Connection Vertices. Finally, the Connection Vertices and Intersection Vertices were
connected according to their connection relationship in the road network. In this way, an
urban topology model was established. Our topology model had 4211 Intersection Vertices
and 2758 Connection Vertices, connected by 9055 edges. We called this model Topo Map.
Figure 4 shows a part of the Topo Map.

2.2. Problem Statement

The Time-Period-Based Most Frequent Path problem is a time-period-based map query
problem. Given a time period T, a source Vs and a destination Vd, TPMFP searches the MFP
from Vs to Vd during T.

Before giving the formal definition of TPMFP, some essential related definitions are
given below.

Definition 1. (Feature vertices) Feature vertices are a set V = {I, C}, where I is the set of
Intersection Vertices, and C is the set of Connection Vertices.

Definition 2. (Topo Map) A Topo Map is a directed graph G = (V, E) where V is the set of feature
vertices, and E represents an adjacency matrix according to the roads.
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Definition 3. (Path) Given G, an x1 − xk path is a nonempty graph P =
(
Vp, Ep

)
of the form

Vp = {x1, x2, . . . xk} and Ep = {(x1, x2), (x2, x3) . . . (xk−1, xk)} such that P is a sub-graph of G
and the xi are all distinct.

Definition 4. (Trajectory–Topology) Given G, a Trajectory–Topology Y is a feature vertices sequence
(x1, t1), (x2, t2), . . . (xk, tk) formed by an individual passing through the feature vertices in turn
from time t1 to tk, where ti represents the time that the location of the individual is matched to
feature vertex xi.

Definition 5. (Footmark) Given Ω = (G, Vd, Y, T), Vd represents the destination vertex in Top
Map and T is the time period. For each topological trajectory Yi in Y, if there exists a non-empty
sub-trajectory Y′i = ((x1, t1), (x2, t2), . . . (xk, tk)) of Yi such that:

• [t1, tk] ⊆ T.
• xk = Vd.

Then, for each xi−1 − xi Path in sub-trajectory Y′i , the edge (xi−1, xi) ⊆ G receives a
count of Footmark.

Definition 6. (Edge Frequency) Given Ω = (G, Vd, Y, T), the Edge Frequency f (u, v) of
(u, v) ⊆ G is the number of the Footmarks in (u, v).

Definition 7. (Footmark Graph) Given Ω = (G, Vd, Y, T), a Footmark Graph G f is a sub-graph
of G ; for each (u, v) ⊆ G f , there is f (u, v) > 0.

Definition 8. (Path Frequency) Given G f , the Path Frequency F(P) of an xs − xd Path is a
sequence sorted from smallest to largest, whose elements are the Edge Frequency of the edges in the
Path.

Definition 9. (More-Frequent-Than) Given two Path Frequencies F(P1) and F(P2), Path P1 is
more frequent than Path P2only if any of the following statements holds, denoted as F(P1) ≥ F(P2):

• F(P1) is pre f ix o f F(P2).
• The lexicographic order is F(P1) is bigger than F(P2).
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Definition 10. (MFP) Given G f and a Vs −Vd Path P∗ ⊆ G f , P∗ is the MFP with respect to G f
only if for any Vs −Vd Path P ⊆ G f , there is F(P∗) ≥ F(P).

Finally, the TPMFP problem can be stated as: given Ω = (G, Vs, Vd, Y, T), we need
to find the MFP from Vs to Vd.

3. Trajectory–Topology Generation
3.1. Improved Interactive-Voting-Based Map Matching Method

The original GPS data were a series of non-uniform sampling points. Thus, before
analyzing trajectory data, the GPS points had to be matched to the road network to reveal
the hidden semantic information. In our work, an improved Interactive-Voting-Based Map
Matching (IVMM) [20] method was taken into account to match the GPS points to the Topo
Map.

IVMM is a global algorithm that employs a voting-based approach to reflect the mutual
influence of the sampling points. This algorithm applies to scenarios with low-sampling-
rate data. Ref. [20] proved that the correct matching percentage could reach 70% when
the sampling interval of GPS records was 4.5 min. The characteristic of low-sampling-rate
GPS records data was that two adjacent points in a time sequence may be separated by
several road sections. In our dataset, the average sampling interval of GPS data was 30 s,
which belonged to the dense-sampling-rate data [21–23]. However, it should be noted that
the density of vertices in the Topo Map was higher than that of the road network, which
consists of intersections and road sections. As a result, two points that are not far apart in
the road network may be separated by several feature vertices in our topology model. This
condition is similar to matching low-sampling-rate data to the road network. Hence, we
used IVMM to generate Trajectory–Topology. Parts of the algorithm have been modified to
adapt to the topology model. The matching process can be divided into four steps. Firstly,
a candidate set was built up for each sampling point. Let pi be a sampling point, and CPi
denotes the candidate set of pi. Set CPi contains all the vertices in the Topo Map within a
radius r (a fixed number) of pi with respect to Euclidian distance, as shown in Figure 5.
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Second were position and topology analysis in conduct. We assume that the distribu-
tion of the measurement error of the sampling points satisfies the Gaussian distribution
N
(
µ, σ2) [24]. Thus, the error rate of a candidate vertex CPj

i with respect to pi is formulated
as:

ε
(

CPj
i

)
= exp

−
(

xj
i − µ

)2

2σ2

 (1)
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where xj
i is the Euclidian distance from CPj

i to pi. Then, we defined V
(

CPj
i−1 → CPk

i

)
as

the transition probability from the candidate vertex CPj
i−1 to CPk

i :

V
(

CPj
i−1 → CPk

i

)
=

Eu_dist(pi, pi−1)

Topo_dist
(

CPj
i−1, CPk

i

) (2)

where Eu_dist(pi, pi−1) is the Euclidian distance from pi−1 to pi, and Topo_dist
(

CPj
i−1, CPk

i

)
is the shortest path length from CPj

i−1 to CPk
i in the Topo Map. It is worth mentioning that

the shortest path length of two vertices in the Topo Map could be pre-computed by Floyd’s
Algorithm [25] so as to reduce the calculation cost when matching. Notice that there are
fewer than 7000 vertices in the Topo Map, and the running time of Floyd’s algorithm was
acceptable. After the calculation of transition probability, the spatial analysis function was
formulated as follows:

Fs

(
CPj

i−1 → CPk
i

)
= ε

(
CPk

i

)
×V

(
CPj

i−1 → CPk
i

)
(3)

Thirdly, Mutual Influence Modeling was conducted. Define M = diag
{

M(2), M(3), . . .,

M(n)
}

, while M(i) is the spatial analysis function matrix of CPi−1 and CPi. We used the
negative exponential function as the distance weight function:

w(j)
i = exp

(
−Eu_dist(pi, pi−1)

2

β2

)
(4)

where β is a fixed value. Next, the Distance Weight Matrix Wi was defined as
Wi = diag

{
W(j)

i

}
, j 6= i. Matrix Wi gives weights for the effect of all other points to

pi associated with their distances to pi. After that, the Weighted Score Matrix was formu-
lated as:

φi = Wi M (5)

Matrix φi gives the similarity of all the candidate feature vertices with the actual
vertices sequence on the Topo Map, taking the influence of the distance into consideration.

Finally, for all candidate vertices of each sampling point, it is assumed that they are
the correct matching vertices of the corresponding sampling points, then the dynamic
programming algorithm is used to find an optimal path through the candidate points
and count the votes for all candidate points passing through by the optimal path once.
Finally, the candidate vertices with the highest cumulative votes in each candidate set are
connected to form a Trajectory–Topology. The algorithm in pseudo-code is presented as
follows (Algorithm 1):

Algorithm 1: Interactive Voting

Input: M, candidate set CP:
Output: The vote counts for each candidate vertex
1: for 1→ i to n do
2: Compute φi and Wi
3: Pre_Path = FindPreNode(CP, φi)
4: Next_Path = FindNextNode(CP, φi)
5: for 1→ k to len(CPi) do
6: Vote for each vertex in Pre_Path and Next_Path

Given the candidate set and φi, the FindPreNode and FindNextNode processes are
called to find the optimal path that ends and starts with each vertex in CPi. The two
processes are called only once for each candidate set, assuming that the average number of
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elements in the candidate set is k, the time complexity of each process is O
(
nk2), while the

time complexity of voting is O(nk). Notice that the calculation process of each sampling
point is independent. Thus, the time complexity of Algorithm 1 can be optimized to O

(
nk2)

by using parallel computing.
The vertices we derived after voting were connected by the sequence of the sampling

points and were defined as Trajectory–Topology in our work. Figure 6 shows an example
of Trajectory–Topology. The red lines are the original sampling points’ segments, while the
blue lines are the corresponding Trajectory–Topology. The non-uniform sampling points
are effectively represented as a feature vertices sequence.
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3.2. Trajectory–Topology Smoothing

The work described in Section 3.1 can match the original sampling points to the
corresponding feature vertices in the Topo Map. However, in practical applications, it is
necessary to know not only which feature vertex corresponds to a sampling point in the
map, but also the feature vertices and edges in the Topo Map that the Trajectory–Topology
passes through. Therefore, the matched vertices were usually connected in turn in the Topo
Map. In other words, Trajectory–Topology Smoothing is used to find a path that exists in the
topology map, and the path passes through all nodes of the original Trajectory–Topology.

Figure 7 shows an example of a Trajectory–Topology that has not been smoothed.
It can be inferred that the vehicle passed an intersection and turned. However, due to
the sampling rate, the intersection is non-existent in both the original sampling points
and the corresponding Trajectory–Topology. As a result, the Intersection Vertex would
be ignored when building up the Footmark Graph. On the other hand, the Connection
Vertices are densely distributed on some road sections. Thus, two adjacent points of a
Trajectory–Topology may be separated by several Connection Vertices, which results in a
large amount of information loss.
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In our work, we used the Shortest Path to smooth the Trajectory–Topology. For each
vertex in a Trajectory–Topology, if it was not directly connected to its last vertex in the Topo
Map, the Shortest-Path that consisted of serval vertices between the two vertices would be
calculated and added to the Smoothed Trajectory–Topology, denoted as SY. Owing to the
30 s sampling rate of our data, using the Shortest-Path was an effective way to complete
the path between two vertices. The algorithm in pseudo-code is presented as follows
(Algorithm 2):

Algorithm 2: Trajectory–Topology Smoothing

Input: Trajectory–Topology Y:
Output: Smoothed Trajectory–Topology SY
1: SY = List
2: Add the first vertex of Y to SY
3: 1→ m
4: for 1→ i to n do
5: if Y2.vertex is directly connected to SYm.vertex
6: Add Y2 to SY
7: else
8: Path = FindShortestPath(SYm.vertex, Y2.vertex)
9: for vertex in Path
10: Add vertex to SY
11: m + 1→ m
12: return SY

In Section 3.1, the shortest path length of each pair of vertices was calculated. Accord-
ing to the calculated length, we used Breadth First Search to find the specific path between
two vertices. In particular, the FindShortestPath process extends outward from the source
vertex and discards paths whose current distance exceeds the shortest path length until
the target point is found. If the shortest path consists of m vertices on average, the time
complexity of the process is O(m) in most cases. It may reach O

(
m2) when Intersection

Vertices are densely distributed. The time complexity of Algorithm 2 is O(mn) on average.
Figure 8 gives an example of Trajectory–Topology Smoothing. The blue lines are the

Smoothed Trajectory–Topology, while the red lines are the original ones. The original
broken line formed by connecting vertices far away from each other is transformed into a
smooth line formed by connecting adjacent vertices. Hence, all information on the path
through which Trajectory–Topology passes could be derived.
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4. Intersection Vertices Split

An Intersection Vertex usually means vehicles have a waiting cost when passing
through. In the Figure 2 example, we assumed that the transfer cost at Intersection Vertex
V2 of Path V1 → V2 → V4 was the main reason that drivers from V1 did not choose this path.
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In this section, we re-model the Intersection Vertices by splitting them into several Virtual
Connection Vertices and re-establish the connection with their adjacent vertices, to eliminate
the influence of transfer cost in intersections when searching the most frequent path.

Figure 9 demonstrates how the Intersection Vertices Split is conducted. Firstly, the
adjacent Connection Vertices (denoted as Ci) of an Intersection Vertex (I) are collected.
Secondly, the Intersection is split into the same number of its adjacent vertices, denoted as
Virtual Connection Vertices (VC). For example, in Figure 9, there are four adjacent vertices
of I1, so the number of corresponding VC is four. Finally, the four VC are connected to
each other and make a connection with their adjacent vertices, in a replacement of the
original Intersection.
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Figure 10 illustrates why the Intersection Vertices Split can eliminate the influence
of transfer cost in intersections, given Trajectory–Topology Y whose vertices sequence is
C1 → I1 → C3 → I2 after Trajectory–Topology Smoothing. Without the Intersection Ver-
tices Split, the I1 → C3 edge and C3 → I2 will receive a Footmark, respectively, when build-
ing up the Footmark Graph whose destination Vertex is I2. That results in the rise in the Path
Frequency of Path C4 → I1 → C3 → I2 when comparing with Path C4 → I1 → C2 → I2 .
After splitting I1, the Path C4 → I1 → C3 → I2 becomes C4 → VC4 → VC3 → C3 → I2 ,
denoted as P1. The number of vehicles from C1 will not increase the Edge Frequency of
VC4 → VC3 , which represents the willingness of drivers from C4 to change the direction
to C3 at Intersection I1. According to the topological relationship, the Edge Frequency of
VC4 → VC3 is less than or equal to that of VC3 → C3 . As a result, the smallest element
of F(P1) does not increase. It can be inferred that given a C4 → I2 Path P∗, while F(P∗) is
strictly larger than F(P1), no matter how many vehicles pass the route C1 → I1 → C3 → I2 ,
F(P∗) is still strictly larger than F(P1) after the Intersection Vertices Split. This method
eliminates the influence of vehicles in the other direction on the driver’s direction selection
at a specific Intersection Vertex when finding the MFP.
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Figure 10. The form of Trajectory–Topology after the Intersection Vertices Split (red lines).

5. Method of Searching TPMFP

Given (G f , Vs, Vd), the task of Searching TPMFP is to find a Vs − Vd Path with the
highest Path Frequency. In our work, we used a dynamic programming algorithm to find
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the MFP between two given vertices. Let F∗(Vs) be the frequency of the Vs −Vd MFP. Then,
the corresponding state transition equation is:

F∗(Vs) = max{ f (Vs, v) + F∗(v)} (6)

where v is the adjacent vertex of Vs. According to the state transition equation, the MFP
problem is similar to the shortest path problem of a single source point, which can be solved
by Dijkstra′s Algorithm [26].

We used a binary heap to optimize the calculation process. Algorithm 3 calculates
the Vs −Vd MFP in time O

(∣∣∣E f

∣∣∣ log
∣∣∣Vf

∣∣∣), where
∣∣∣E f

∣∣∣ and
∣∣∣Vf

∣∣∣ are the numbers of edges
and vertices in G f . Considering that the Topo Map is a Sparse graph, this method could
produce non-negligible optimization in time complexity.

Algorithm 3: MFP

Input: Vs, G f , Vd
Output: Vs −Vd MFP
1: Nodes = Heap
2: Add Vd to Nodes
3: None→ F∗(V) for V in G f
4: while Nodes is not none do:
5: pop up the node with highest F∗ value in Nodes→ v
6: if v has been marked: continue
7: mark v
8: for each node u adjacent to v and u has not been marked do
9: if f (u, v) + F∗(v) ≥ F∗(u) then
10: u.next = v
11: F∗(u) = f (u, v) + F∗(v)
12: Add u to Nodes
13: create P∗ by following the next vertex from Vs to Vd
14: return P∗

6. Experiment

In this section, we used the dataset described in Section 2.1 to conduct the experiments.

6.1. Data Processing

Since taxis have the characteristics of searching and carrying passengers, a complete
taxi trajectory usually cannot accurately reflect the driver’s route choice between two given
points [27–29]. Therefore, we extracted 16,142 trips from the data according to the Vehicle
State field, which represented whether there was a passenger in the taxi. We used IVMM to
generate Trajectory–Topologies and conduct Smoothing. The derived Trajectory–Topologies
are shown in Figure 11a. We counted the top 100 hottest vertices in the Topo Map, as shown
in Figure 11b, where the red marker represents an Intersection Vertex and the green marker
represents a Connection Vertex. It can be seen that a large proportion of the markers were
distributed on two main roads. Most of the hottest vertices were Intersections because they
undertake traffic flow in different directions.

6.2. Results

In order to evaluate the effectiveness, we compared the results of TPMFP with Intersec-
tion Vertices Split (MFP(s)), TPMFP without Split (MFP) and the shortest path (STP). First,
the smoothed Trajectory–Topologies and the state-of-the-art method proposed in [4] were
used to find the TPMFP without Split. Then, the Trajectory–Topologies were re-smoothed
after splitting the Intersections to find the TPMFP with Split, using the method proposed in
Section 5. Finally, the STP was calculated using the shortest path algorithm.
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The question that we were curious about is whether the MFP was different after
Intersection Vertices Split. We chose two vertices on both sides of the east–west road,
shown in Figure 11b, and studied the MFP(s) and MFP in rush hours (17:00–19:00) and
off-peak hours (11:00–13:00). We used Dijkstra’s Algorithm to find the STP and mark it on
the figure. According to Figure 12a, a different Vs −Vd MFP (the blue lines) was found after
splitting. The MFP and MFP(s) diverged when they reached intersection I1 with a large
flow in the east–west direction in the rush hours. This phenomenon can be explained by the
difference in traffic capacity in different directions of the intersection [30,31]. Main roads
usually have greater right-of-way, so the drivers from the east tended to go straight while
driving to Vd in the Figure 12 example. These trajectories contribute to the frequency of the
edges in MFP. As a result, the MFP chose to turn left at I1 according to the suffix-optimal
principle [11]. However, the MFP(s) showed that drivers from Vs prefer going straight at I1
to avoid busy sections, which seems to be a more reasonable choice because the waiting
time at the left turn direction at I1 is possibly long [32].
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In Figure 12b, the MFP and MFP(s) became identical. That can be explained by the
drivers’ preference to choose the main road with better road conditions when there is no
congestion [33,34]. Notice that the STP was neither MFP nor MFP(s). It can be inferred that
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drivers are more willing to reduce the number of turns when the distance of two paths
is close.

To further verify our hypothesis, we chose the hottest Intersection Vertex as the
destination and the other Intersections as the source. There were 2785 Intersection Vertices
in the Topo Map, and we derived 2474 MFP and MFP(s) in off-peak hours and 2531 in
rush hours since there may have been no trajectories between two vertices in a specific
time period. According to Figure 13a, only about 10% of the MFP(s) were different from
MFP in off-peak hours. However, that number rose to about 40% when it came to the
rush-hours, as shown in Figure 13b. MFP(s) was not equal to MFP, meaning that the
transfer cost at intersections caused MFP to choose an incorrect path, as in the example
provided in Figure 12. This result further validates our assumption that the transfer cost
at intersections influences the finding of the MFP. The direction selection at intersections
of an MFP may be misled by the traffic flow on the road in the other direction, especially
during rush hours. The fundamental reason for this phenomenon is that the oversimplified
road network model makes researchers ignore the waiting cost of vertices. The comparison
results demonstrate that our method can find more reasonable MFP during rush hours.
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7. Conclusions

In this paper, we studied the problem of finding the time-period-based most frequent
path based on Trajectory–Topology and the Footmark Graph Method. We questioned the
principle of suffix-optimal when finding MFP, and built up a precise urban topology model
to validate our assumption. We generated Trajectory–Topology from origin GPS records
data and smoothed the trajectories before building up the Footmark Graph. Furthermore,
we split the Intersection Vertices into several Virtual Connection Vertices to eliminate the
influence of transfer costs at intersections on MFP. The results show that our method can
find more reasonable MFP than state-of-the-art baselines.

Future research could be improved in two aspects. Firstly, more efficient algorithms
should be studied to find the most frequent path for large-scale datasets, to reduce time
and space complexity. Additionally, when there are a lot of scarce data in the dataset, path
analysis will be affected. Therefore, how to deal with sparse data to obtain effective most
frequent paths is a problem that needs to be studied.
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