
Citation: Khan, W.; Kumar, T.; Zhang,

C.; Raj, K.; Roy, A.M.; Luo, B. SQL

and NoSQL Database Software

Architecture Performance Analysis

and Assessments—A Systematic

Literature Review. Big Data Cogn.

Comput. 2023, 7, 97. https://doi.org/

10.3390/bdcc7020097

Academic Editors: Min Chen

and Carson K. Leung

Received: 13 January 2023

Revised: 6 May 2023

Accepted: 8 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Systematic Review

SQL and NoSQL Database Software Architecture Performance
Analysis and Assessments—A Systematic Literature Review
Wisal Khan 1 , Teerath Kumar 2, Cheng Zhang 1,*, Kislay Raj 2 , Arunabha M. Roy 3 and Bin Luo 1,*

1 School of Computer Science and Technology, Anhui University, Hefei 230039, China
2 School of Computing, Dublin City University, SFI for Research Training in Artificial Intelligence,

D02 FX65 Dublin, Ireland
3 Aerospace Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
* Correspondence: cheng.zhang@ahu.edu.cn (C.Z.); luobin@ahu.edu.cn (B.L.)

Abstract: The competent software architecture plays a crucial role in the difficult task of big data
processing for SQL and NoSQL databases. SQL databases were created to organize data and allow
for horizontal expansion. NoSQL databases, on the other hand, support horizontal scalability and
can efficiently process large amounts of unstructured data. Organizational needs determine which
paradigm is appropriate, yet selecting the best option is not always easy. Differences in database
design are what set SQL and NoSQL databases apart. Each NoSQL database type also consistently
employs a mixed-model approach. Therefore, it is challenging for cloud users to transfer their
data among different cloud storage services (CSPs). There are several different paradigms being
monitored by the various cloud platforms (IaaS, PaaS, SaaS, and DBaaS). The purpose of this SLR is
to examine the articles that address cloud data portability and interoperability, as well as the software
architectures of SQL and NoSQL databases. Numerous studies comparing the capabilities of SQL and
NoSQL of databases, particularly Oracle RDBMS and NoSQL Document Database (MongoDB), in
terms of scale, performance, availability, consistency, and sharding, were presented as part of the state
of the art. Research indicates that NoSQL databases, with their specifically tailored structures, may
be the best option for big data analytics, while SQL databases are best suited for online transaction
processing (OLTP) purposes.

Keywords: big data; SQL and NoSQL databases; MapReduce; aggregation; ACID; BASE; DBaaS

1. Introduction

The architecture of a particular software application addresses non-functional charac-
teristics, such as dependability, usability, scalability, performance, interoperability, portabil-
ity, adaptability, and data sharding. There are always trade-offs among the set of quality
attributes, and a software architect faces the difficult task of balancing them. Big data
systems [1] are intrinsically distributed. Data availability and consistency difficulties are
produced by data sharding and replication within vast data systems. Due to the increasing
expansion of data applications, database technologies have experienced substantial varia-
tions. Over the course of more than a decade, NoSQL databases have grown exponentially,
although classic database automation has persisted. Traditional mock-up forces a rigid
schema structure, which leads to scaling obscurity and inhibits data modification across
clusters. In contrast, NoSQL databases support simple prototypes. Principal properties of
NoSQL database designs include:

• Schema-less structure
• Permitting data representations to grow effectively and dynamically
• Scaling horizontally, by data replication collections and sharding, over massive clusters.

In recent years, numerous organizations have accumulated vast volumes of data,
which relational databases cannot process efficiently. In the past four decades, there has

Big Data Cogn. Comput. 2023, 7, 97. https://doi.org/10.3390/bdcc7020097 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7020097
https://doi.org/10.3390/bdcc7020097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-4900-5286
https://orcid.org/0000-0003-0089-6866
https://orcid.org/0000-0003-4790-726X
https://orcid.org/0000-0001-5948-5055
https://doi.org/10.3390/bdcc7020097
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7020097?type=check_update&version=3

Big Data Cogn. Comput. 2023, 7, 97 2 of 44

been a huge rise in the use of relational databases. They adhere to the ACID (availability,
consistency, isolation, and durability) attribute and are designed for structured data. While
“Big Data” comprises tools and technology that manage massive amounts of data at any
scale, these tools and technologies are scalable. Big data comprises the 5Vs (volume,
velocity, variety, veracity, and value) and a massive amount of unstructured data with a
diverse nature. Numerous frameworks, including Hadoop/MapReduce, Spark, Flink, and
Samza, are utilized for large data processing [1].

The subject of SQL query performance and optimization for enterprise, production,
parallel databases, and big data [2] has received increased attention in recent years. Ineffec-
tive and non-optimized queries may consume system and server resources, resulting in
database locking and data loss issues. Information mining entails extracting the facts and
logical correlation structure from the original data set, as opposed to the information itself.
Query optimization refers to selecting the optimal query execution strategy with minimal
cost and system resource consumption. The data mining algorithms conduct in-depth and
extensive database queries to extract patterns and knowledge from comprehensive data [3].
Alternative methodologies, such as XML and object databases, have never achieved the
same level of popularity as RDBMS technology.

Over the past decade, science and online vendors have questioned the “one-size-fits-
all” nature of data shop technology. This line of thinking resulted in the development
of a new alternative database system known as NoSQL, which stands for “Not only
SQL.” NoSQL describes web developers’ usage of non-relational databases [4]. In 1998,
the term NoSQL [5] was used for the first time, and the non-relational databases confer-
ence in San Francisco drew greater attention to it. Figure 1 describes the key aspects of
NoSQL databases.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 2 of 45

• Scaling horizontally, by data replication collections and sharding, over massive clus-
ters.
In recent years, numerous organizations have accumulated vast volumes of data,

which relational databases cannot process efficiently. In the past four decades, there has
been a huge rise in the use of relational databases. They adhere to the ACID (availability,
consistency, isolation, and durability) attribute and are designed for structured data.
While “Big Data” comprises tools and technology that manage massive amounts of data
at any scale, these tools and technologies are scalable. Big data comprises the 5Vs (volume,
velocity, variety, veracity, and value) and a massive amount of unstructured data with a
diverse nature. Numerous frameworks, including Hadoop/MapReduce, Spark, Flink, and
Samza, are utilized for large data processing [1].

The subject of SQL query performance and optimization for enterprise, production,
parallel databases, and big data [2] has received increased attention in recent years. Inef-
fective and non-optimized queries may consume system and server resources, resulting
in database locking and data loss issues. Information mining entails extracting the facts
and logical correlation structure from the original data set, as opposed to the information
itself. Query optimization refers to selecting the optimal query execution strategy with
minimal cost and system resource consumption. The data mining algorithms conduct in-
depth and extensive database queries to extract patterns and knowledge from compre-
hensive data [3]. Alternative methodologies, such as XML and object databases, have
never achieved the same level of popularity as RDBMS technology.

Over the past decade, science and online vendors have questioned the “one-size-fits-
all” nature of data shop technology. This line of thinking resulted in the development of
a new alternative database system known as NoSQL, which stands for “Not only SQL.”
NoSQL describes web developers’ usage of non-relational databases [4]. In 1998, the term
NoSQL [5] was used for the first time, and the non-relational databases conference in San
Francisco drew greater attention to it. Figure 1 describes the key aspects of NoSQL data-
bases.

Figure 1. NoSQL—The essential features.

Eric Brewer presented the CAP (consistency, availability, and partition tolerance) the-
ory [6,7]. The main characteristics of CAP theory are given in Table 1.

Table 1. CAP Theory.

Consistency Availability Partition Tolerance

• Consistency means that the data
in the database remain consistent
after the execution of an
operation.

• For example, after an update
operation, all clients see the same
data.

• Availability means that the
system will not have
downtime (100% service
uptime guaranteed).

• Every node (if not failed)
always executes the query.

• Partition tolerance means that
the system continues to
function even when the
communication among
servers is unreliable.

• The servers may be
partitioned into multiple
groups that cannot

Figure 1. NoSQL—The essential features.

Eric Brewer presented the CAP (consistency, availability, and partition tolerance)
theory [6,7]. The main characteristics of CAP theory are given in Table 1.

Table 1. CAP Theory.

Consistency Availability Partition Tolerance

• Consistency means that the data in the
database remain consistent after the
execution of an operation.

• For example, after an update operation,
all clients see the same data.

• Availability means that the system
will not have downtime
(100% service uptime guaranteed).

• Every node (if not failed) always
executes the query.

• Partition tolerance means that the
system continues to function even
when the communication among
servers is unreliable.

• The servers may be partitioned
into multiple groups that cannot
communicate with one another.

Theoretically, it is impossible to fulfil all three requirements. Therefore, CAP supplies
the essential need for a distributed system to follow two of the three elements. Hence, all
the current NoSQL databases support the various combinations of C, A, and P of the CAP
theory, as described in Figure 2.

Big Data Cogn. Comput. 2023, 7, 97 3 of 44

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 3 of 45

communicate with one
another.

Theoretically, it is impossible to fulfil all three requirements. Therefore, CAP supplies
the essential need for a distributed system to follow two of the three elements. Hence, all
the current NoSQL databases support the various combinations of C, A, and P of the CAP
theory, as described in Figure 2.

Figure 2. CAP Combinations.

The following are the advantages of NoSQL databases:
• Volume: Data at rest—Terabytes to exabytes of existing data to process.
• Velocity: Data in motion—Streaming data, milliseconds to seconds to respond.
• Variability: Data in many forms—structured, unstructured, text, etc.
• Veracity: Data in doubt—uncertainty due to latency, deception, ambiguities, etc.
• Not built on tables and does not employ SQL to manipulate data.
• Schema comprises key-value, document, columnar, graph, etc.
• Alternative to traditional relational databases.
• Database to handle unstructured, messy, and unpredictable data.
• Helpful for working with large sets of distributed data.

NoSQL databases differ from relational databases and have their own models and
architectures. When storing NoSQL databases in the cloud, caution is necessary due to the
diversity of these databases and the need for interoperability, portability, and security
measures. Cloud service providers (CSP) [8–12] offer scalability, availability, and privacy,
but it is important to encrypt sensitive user data before granting access to the CSP. This
can be challenging due to the varied nature of NoSQL databases. Database as a Service
(DBaaS) [13,14] is a cloud platform that converts traditional architectures into cloud archi-
tectures.

The main contributions of this SLR are the following:
• This SLR is related to the SQL and NoSQL database architecture assessments, scaling

capabilities, and performance analysis, particularly Oracle RDBMS and NoSQL Doc-
ument Database (MongoDB). In addition, data movement among various databases
across multiple cloud platforms is explored.

• A total of 142 studies have been analyzed to accomplish the research goals mentioned
earlier.

• This article identifies the research gaps in the associated architectures and their
causes.

Figure 2. CAP Combinations.

The following are the advantages of NoSQL databases:

• Volume: Data at rest—Terabytes to exabytes of existing data to process.
• Velocity: Data in motion—Streaming data, milliseconds to seconds to respond.
• Variability: Data in many forms—structured, unstructured, text, etc.
• Veracity: Data in doubt—uncertainty due to latency, deception, ambiguities, etc.
• Not built on tables and does not employ SQL to manipulate data.
• Schema comprises key-value, document, columnar, graph, etc.
• Alternative to traditional relational databases.
• Database to handle unstructured, messy, and unpredictable data.
• Helpful for working with large sets of distributed data.

NoSQL databases differ from relational databases and have their own models and
architectures. When storing NoSQL databases in the cloud, caution is necessary due to
the diversity of these databases and the need for interoperability, portability, and secu-
rity measures. Cloud service providers (CSP) [8–12] offer scalability, availability, and
privacy, but it is important to encrypt sensitive user data before granting access to the
CSP. This can be challenging due to the varied nature of NoSQL databases. Database as
a Service (DBaaS) [13,14] is a cloud platform that converts traditional architectures into
cloud architectures.

The main contributions of this SLR are the following:

• This SLR is related to the SQL and NoSQL database architecture assessments, scaling
capabilities, and performance analysis, particularly Oracle RDBMS and NoSQL Doc-
ument Database (MongoDB). In addition, data movement among various databases
across multiple cloud platforms is explored.

• A total of 142 studies have been analyzed to accomplish the research goals
mentioned earlier.

• This article identifies the research gaps in the associated architectures and their causes.

1.1. State of the Problem

The proliferation of big data has led to the need for scalable systems that can effectively
process massive amounts of data. Relational databases, which are based on SQL, can
manage structured, semi-structured, and unstructured data, to a certain extent, but have
limitations in terms of scalability. On the other hand, NoSQL databases, which follow the
BASE property and can expand their storage capacity horizontally, are better suited to
managing vast volumes of data and adapting to changes in data type and structure.

There are four types of NoSQL databases—key-value, document, column, and graph
databases—each with their own distinct features and applications. For example, a NoSQL

Big Data Cogn. Comput. 2023, 7, 97 4 of 44

graph database stores information in nodes rather than tables and stores associations (joins)
among nodes, which requires constant execution time. This gives it an advantage over SQL
databases when handling highly interconnected data.

MongoDB is an example of a NoSQL database that has effectively managed huge data
due to its excellent scalability characteristics. However, converting from OLTP databases
to MongoDB can cause issues, such as unique indices, composite keys, data inconsistency,
and data duplications due to the complexity of their schema.

Another major concern in cloud storage transfers is the protection of users’ private
information. Current cloud service provider (CSP) designs are developed without interop-
erability and portability issues being taken into consideration, making it difficult to offer
and create a unified cloud solution for NoSQL models.

Finally, in this SLR, the state-of-the-art security techniques and policies for NoSQL
databases are examined in detail.

1.2. Method

This SLR follows the PRISMA guidelines and aims to synthesize high-quality primary
studies based on evidence associated with specific research questions. SLRs have been
widely used in software engineering research, and our study focuses on SQL and NoSQL
database architecture assessments and performance evaluations, as well as data portability
and interoperability across multiple cloud platforms. The characteristics that differentiate
our study from existing ones are its systemic data collection process, comprehensive list of
covered studies, focused study scope, and its detailed classification and analysis of selected
studies. The remainder of the paper is organized as follows: Section 2 outlines the research
questions, search strings, inclusion/exclusion criteria, data extraction, and classification,
while Section 3 presents the results of the selected papers. The discussion and research
gaps are described in Section 4, and the conclusion and future work are summarized in
Section 5

2. Objectives and Research Questions

The purpose, focus, and objectives of the current SLR:

1. Address the existing SQL and NoSQL document approaches and techniques by
considering big data processing.

2. Perform a systematic literature review associated with SQL and NoSQL databases.
3. Review selected study subsets in depth.
4. Assess the strength and weaknesses of SQL and NoSQL databases on the basis of the

evidence collected and analyzed from these studies.
5. Highlight the research gap in the area.
6. Identify future research directions.
7. Formulate the following research questions to achieve the main objective of our study:

• Considering big data (structured and unstructured data): What is the need
for NoSQL?

• Why does the NoSQL database follow the BASE property instead of the SQL
database ACID property?

• Does DBaaS tackle data interoperability and portability efficiently in various
NoSQL databases?

2.1. Search Criteria

The search criteria for primary studies involve identifying and collecting the literature
that meets the inclusion and exclusion criteria. To accomplish this, various search tech-
niques were used, such as an electronic database search, manual search, and snowballing,
along with searching associated journals and conference proceedings. For our SLR, we
followed a protocol proposed by [15,16] and the seven phases investigated in [17]. Figure 3
illustrates the selection of associated studies.

Big Data Cogn. Comput. 2023, 7, 97 5 of 44

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 5 of 45

• Does DBaaS tackle data interoperability and portability efficiently in various
NoSQL databases?

2.1. Search Criteria
The search criteria for primary studies involve identifying and collecting the litera-

ture that meets the inclusion and exclusion criteria. To accomplish this, various search
techniques were used, such as an electronic database search, manual search, and snow-
balling, along with searching associated journals and conference proceedings. For our SLR,
we followed a protocol proposed by [15,16] and the seven phases investigated in [17]. Fig-
ure 3 illustrates the selection of associated studies.

Figure 3. Process flow—Selected studies.

First, we performed the database search suggested by [18]. The search strings men-
tioned in the search strategy section were used for categorizing and classifying, i.e., tools,
methods, and framework.

2.1.1. Search Resources
In Phase I, we derived a set of associated search strings. We used the derived set of

strings to find the related papers. The largest databases were selected for finding the as-
sociated articles:
• DBLP
• IEEExplore Digital Library (ieeexplore.ieee.org)
• Google Scholar
• ACM Digital Library (dl.acm.org)

Figure 3. Process flow—Selected studies.

First, we performed the database search suggested by [18]. The search strings men-
tioned in the search strategy section were used for categorizing and classifying, i.e., tools,
methods, and framework.

2.1.1. Search Resources

In Phase I, we derived a set of associated search strings. We used the derived set
of strings to find the related papers. The largest databases were selected for finding the
associated articles:

• DBLP
• IEEExplore Digital Library (ieeexplore.ieee.org)
• Google Scholar
• ACM Digital Library (dl.acm.org)
• Springer (Springerlink.com)
• Elsevier (sciencedirect.com)
• Wiley Online Library (onlinelibrary.wiley.com)

We found 13,000 papers during the search process using article titles, abstracts, and
keywords. There were 2431 papers that met the inclusion and exclusion criteria after
removing duplicates from Phase I. Backward snowballing in Phase V led to 89 articles
being selected after repeatedly validating the inclusion/exclusion criteria from Phases II
through IV.

2.1.2. Search Strategy

Various combinations of search strings were created. The devised search strings were
run on the mentioned search resources to identify the associated literature:

Big Data Cogn. Comput. 2023, 7, 97 6 of 44

• “SQL and NoSQL”
• “SQL or NoSQL”
• “Relational Database and Document Database”
• “Relational Database or Document Database”
• “Relational Database and NoSQL Document Database”
• “Relational Databases and MongoDB”
• “Relational Databases or MongoDB”
• “Oracle and MongoDB Comparison”
• “SQL and NoSQL Database Comparisons”
• “Advantages of MongoDB over RDBMS”
• “Relational and Non-relational Databases”
• “Cloud Data Portability and Interoperability”

2.2. Selection Process and Criteria

We included all associated papers by applying inclusion/exclusion criteria. In Phase
1, we evaluated the quality and characteristics of the papers according to our research
questions and finalized the selected list. Our research papers are organized by source
as follows:

• Step1: Total number of documents based on:

1. Papers Titles.

i. Papers Abstract.

a. Associated papers full reading

(1) Check the quality and impact of related papers

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 45

• Springer (Springerlink.com)
• Elsevier (sciencedirect.com)
• Wiley Online Library (onlinelibrary.wiley.com)

We found 13,000 papers during the search process using article titles, abstracts, and
keywords. There were 2431 papers that met the inclusion and exclusion criteria after re-
moving duplicates from Phase I. Backward snowballing in Phase V led to 89 articles being
selected after repeatedly validating the inclusion/exclusion criteria from Phases II through
IV.

2.1.2. Search Strategy
Various combinations of search strings were created. The devised search strings were

run on the mentioned search resources to identify the associated literature:
• “SQL and NoSQL”
• “SQL or NoSQL”
• “Relational Database and Document Database”
• “Relational Database or Document Database”
• “Relational Database and NoSQL Document Database”

• “Relational Databases and MongoDB”
• “Relational Databases or MongoDB”
• “Oracle and MongoDB Comparison”
• “SQL and NoSQL Database Comparisons”
• “Advantages of MongoDB over RDBMS”
• “Relational and Non-relational Databases”
• “Cloud Data Portability and Interoperability”

2.2. Selection Process and Criteria
We included all associated papers by applying inclusion/exclusion criteria. In Phase

1, we evaluated the quality and characteristics of the papers according to our research
questions and finalized the selected list. Our research papers are organized by source as
follows:
• Step1: Total number of documents based on:

1. Papers Titles.

i. Papers Abstract.

a. Associated papers full reading

(1) Check the quality and impact of related papers

✔ Check the article in the catalogue to avoid repetition

✔ Add item to the finalized papers catalogue

(2) Manual search and snowballing

(3) Repeat the entire process, go to Step1

Table 2 depicts the number of associated papers related to the points mentioned ear-
lier after each phase filtration.

Table 2. Paper selection process and criteria.

Search Source
Based on Title

(Phase II)
Based on Abstract

(Phase III)
Based on Full Reading

of Papers (Phase IV)
Total No. of Papers 1126 326 142

Check the article in the catalogue to avoid repetition

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 45

• Springer (Springerlink.com)
• Elsevier (sciencedirect.com)
• Wiley Online Library (onlinelibrary.wiley.com)

We found 13,000 papers during the search process using article titles, abstracts, and
keywords. There were 2431 papers that met the inclusion and exclusion criteria after re-
moving duplicates from Phase I. Backward snowballing in Phase V led to 89 articles being
selected after repeatedly validating the inclusion/exclusion criteria from Phases II through
IV.

2.1.2. Search Strategy
Various combinations of search strings were created. The devised search strings were

run on the mentioned search resources to identify the associated literature:
• “SQL and NoSQL”
• “SQL or NoSQL”
• “Relational Database and Document Database”
• “Relational Database or Document Database”
• “Relational Database and NoSQL Document Database”

• “Relational Databases and MongoDB”
• “Relational Databases or MongoDB”
• “Oracle and MongoDB Comparison”
• “SQL and NoSQL Database Comparisons”
• “Advantages of MongoDB over RDBMS”
• “Relational and Non-relational Databases”
• “Cloud Data Portability and Interoperability”

2.2. Selection Process and Criteria
We included all associated papers by applying inclusion/exclusion criteria. In Phase

1, we evaluated the quality and characteristics of the papers according to our research
questions and finalized the selected list. Our research papers are organized by source as
follows:
• Step1: Total number of documents based on:

1. Papers Titles.

i. Papers Abstract.

a. Associated papers full reading

(1) Check the quality and impact of related papers

✔ Check the article in the catalogue to avoid repetition

✔ Add item to the finalized papers catalogue

(2) Manual search and snowballing

(3) Repeat the entire process, go to Step1

Table 2 depicts the number of associated papers related to the points mentioned ear-
lier after each phase filtration.

Table 2. Paper selection process and criteria.

Search Source
Based on Title

(Phase II)
Based on Abstract

(Phase III)
Based on Full Reading

of Papers (Phase IV)
Total No. of Papers 1126 326 142

Add item to the finalized papers catalogue

(2) Manual search and snowballing
(3) Repeat the entire process, go to Step1

Table 2 depicts the number of associated papers related to the points mentioned earlier
after each phase filtration.

Table 2. Paper selection process and criteria.

Search Source Based on Title (Phase II) Based on Abstract (Phase III) Based on Full Reading of Papers
(Phase IV)

Total No. of Papers 1126 326 142

Table 2 shows that 1126 papers were initially selected on the basis of their titles. After
reviewing their abstracts, the first author chose 326 articles, and 142 papers were selected
for full reading. Of these, 89 were chosen via snowballing. Most of the papers were based
on empirical studies, which include:

• Research purpose
• Associated literature and supported theories
• Hypothesis measurement
• Proposed method, design, approach, dimension, and data collection
• Data result analysis
• Conclusion

2.2.1. Inclusion Criteria

The following types of papers were included according to our research questions:

• IC1: related SLRs and survey papers
• IC2: new proposed techniques and approaches relevant to our proposed SLR

Big Data Cogn. Comput. 2023, 7, 97 7 of 44

• IC3: effective research methods presented in the proposed study

To increase the reliability and efficiency of the SLR, the corresponding author reviewed
and investigated the impact and methodology of the included papers.

2.2.2. Exclusion Criteria

The research papers were excluded on the basis of the following criteria:

• EC1: papers not related to the mentioned domain
• EC2: irrelevant papers
• EC3: some papers based on the title and abstract
• EC4: non-peer-reviewed materials and papers
• EC4: articles not written in English and duplicated articles

To reduce the threat to the reliability of the SLR, the co-authors (2nd and 3rd) rechecked
the excluded papers according to the checklist of exclusion criteria.

The latest version of the proposed SLR will be used when it is published in the journal
or presented at a conference. The document quality was checked by the corresponding-
authors and co-authors.

2.3. Data Collection and Extraction

After collecting the 142 associated studies, two reviewers reviewed them and extracted
valuable data that satisfied the research questions [19]. The following data were obtained
from each selected paper:

• Title of paper
• Abstract of paper
• Paper source (journal or conference)
• Publication year
• Paper classification (type, scope)
• Relatedness to the proposed SLR
• Proposed SLR objectives and research question issues
• Paper summary and method

We selected most of the empirical articles. The empirical studies consisted of the
following categories of the papers’ evaluations, discussion assessments, experiments, and
reviews of existing techniques (SQL and NoSQL).

2.4. Data Analysis and Classification

Furthermore, information about each of the extracted data was arranged and tabulated
in accordance with the research questions as follows:

1. Considering big data (structured and unstructured data): What is the need for NoSQL?
2. Why does the NoSQL database follow the BASE property instead of the SQL database

ACID property?
3. Does DBaaS tackle data interoperability and portability efficiently in various

NoSQL databases?

During analysis, we grouped all extracted strategies into categories and summarized
our findings into three groups: research methods, research process phases, and evaluation.

2.5. Validity Threats and Evaluations

Threats to the SLR process, as suggested by [11], should be consistently evaluated.
These threats were categorized into different groups, including descriptive validity, the-
oretical validity, interpretive validity, generalizability validity, and repeatability [20,21].
Professor Zhang Cheng of Anhui University analyzed the SLR validity checks, and we
incorporated his suggested changes into the protocol.

Big Data Cogn. Comput. 2023, 7, 97 8 of 44

3. Results

In this section, we summarize our chosen research by publication year, paper genre,
and number of chosen studies from a particular digital library (presented in full in Table A1
(Appendix A). Based on the selection procedure and criteria, most of the empirical research
articles were chosen. According to the research literature, the researcher utilized both
types of databases for their recommended methodologies and studies. In addition to actual
investigations, we also discovered survey articles concerning SQL and NoSQL databases.
Following the associated review selection procedure, we categorized the selected studies
and publications into three main categories. Figure 4 illustrates the category pie chart
for studies.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 45

1. Considering big data (structured and unstructured data): What is the need for
NoSQL?

2. Why does the NoSQL database follow the BASE property instead of the SQL data-
base ACID property?

3. Does DBaaS tackle data interoperability and portability efficiently in various NoSQL
databases?
During analysis, we grouped all extracted strategies into categories and summarized

our findings into three groups: research methods, research process phases, and evaluation.

2.5. Validity Threats and Evaluations
Threats to the SLR process, as suggested by [11], should be consistently evaluated.

These threats were categorized into different groups, including descriptive validity, theo-
retical validity, interpretive validity, generalizability validity, and repeatability [20,21].
Professor Zhang Cheng of Anhui University analyzed the SLR validity checks, and we
incorporated his suggested changes into the protocol.

3. Results
In this section, we summarize our chosen research by publication year, paper genre,

and number of chosen studies from a particular digital library (presented in full in Table
A1 (Appendix A). Based on the selection procedure and criteria, most of the empirical
research articles were chosen. According to the research literature, the researcher utilized
both types of databases for their recommended methodologies and studies. In addition to
actual investigations, we also discovered survey articles concerning SQL and NoSQL da-
tabases. Following the associated review selection procedure, we categorized the selected
studies and publications into three main categories. Figure 4 illustrates the category pie
chart for studies.

Figure 4. Categorization of the selected studies.

The publication years of the selected SQL- and NoSQL-database-related studies
range between 2000 and 2022. Figure 5 depicts the number of papers published annually,
showing that NoSQL databases gained greater interest following 2008.

Figure 4. Categorization of the selected studies.

The publication years of the selected SQL- and NoSQL-database-related studies range
between 2000 and 2022. Figure 5 depicts the number of papers published annually, showing
that NoSQL databases gained greater interest following 2008.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 45

1. Considering big data (structured and unstructured data): What is the need for
NoSQL?

2. Why does the NoSQL database follow the BASE property instead of the SQL data-
base ACID property?

3. Does DBaaS tackle data interoperability and portability efficiently in various NoSQL
databases?
During analysis, we grouped all extracted strategies into categories and summarized

our findings into three groups: research methods, research process phases, and evaluation.

2.5. Validity Threats and Evaluations
Threats to the SLR process, as suggested by [11], should be consistently evaluated.

These threats were categorized into different groups, including descriptive validity, theo-
retical validity, interpretive validity, generalizability validity, and repeatability [20,21].
Professor Zhang Cheng of Anhui University analyzed the SLR validity checks, and we
incorporated his suggested changes into the protocol.

3. Results
In this section, we summarize our chosen research by publication year, paper genre,

and number of chosen studies from a particular digital library (presented in full in Table
A1 (Appendix A). Based on the selection procedure and criteria, most of the empirical
research articles were chosen. According to the research literature, the researcher utilized
both types of databases for their recommended methodologies and studies. In addition to
actual investigations, we also discovered survey articles concerning SQL and NoSQL da-
tabases. Following the associated review selection procedure, we categorized the selected
studies and publications into three main categories. Figure 4 illustrates the category pie
chart for studies.

Figure 4. Categorization of the selected studies.

The publication years of the selected SQL- and NoSQL-database-related studies
range between 2000 and 2022. Figure 5 depicts the number of papers published annually,
showing that NoSQL databases gained greater interest following 2008.

Figure 5. Number of papers per year.

Figure 6 depicts the number of papers connected to relational and NoSQL databases
for each digital library. Most relevant articles are in the IEEE and Springer digital li-
braries. Other possibilities in Figure 6 include articles such as white papers, book chap-
ters, and technical reports from a variety of publishers, including Oracle, MIT, Academic
Journal, SciTePress, IJACSA, and IOPScience. Figure 7 depicts the paper category (jour-
nal/conference proceeding) of a particular digital library from Figure 6.

Many researchers compared the performance and properties of databases, such as
MongoDB, MySQL, Cassandra, Couchbase, Oracle, SQL Server, PostgreSQL, Neo4j, and
Hbase, throughout the study of the chosen studies. Figure 8 shows the variety of databases
used to select the total number of research works.

Big Data Cogn. Comput. 2023, 7, 97 9 of 44

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 45

Figure 5. Number of papers per year.

Figure 6 depicts the number of papers connected to relational and NoSQL databases
for each digital library. Most relevant articles are in the IEEE and Springer digital libraries.
Other possibilities in Figure 6 include articles such as white papers, book chapters, and
technical reports from a variety of publishers, including Oracle, MIT, Academic Journal,
SciTePress, IJACSA, and IOPScience. Figure 7 depicts the paper category (journal/confer-
ence proceeding) of a particular digital library from Figure 6.

Figure 6. Number of papers per digital library.

Figure 7. Number of papers category per source.

Many researchers compared the performance and properties of databases, such as
MongoDB, MySQL, Cassandra, Couchbase, Oracle, SQL Server, PostgreSQL, Neo4j, and
Hbase, throughout the study of the chosen studies. Figure 8 shows the variety of databases
used to select the total number of research works.

0
5

10
15
20
25
30
35
40
45

No. of Papers Per Source

No. of papers

Figure 6. Number of papers per digital library.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 45

Figure 5. Number of papers per year.

Figure 6 depicts the number of papers connected to relational and NoSQL databases
for each digital library. Most relevant articles are in the IEEE and Springer digital libraries.
Other possibilities in Figure 6 include articles such as white papers, book chapters, and
technical reports from a variety of publishers, including Oracle, MIT, Academic Journal,
SciTePress, IJACSA, and IOPScience. Figure 7 depicts the paper category (journal/confer-
ence proceeding) of a particular digital library from Figure 6.

Figure 6. Number of papers per digital library.

Figure 7. Number of papers category per source.

Many researchers compared the performance and properties of databases, such as
MongoDB, MySQL, Cassandra, Couchbase, Oracle, SQL Server, PostgreSQL, Neo4j, and
Hbase, throughout the study of the chosen studies. Figure 8 shows the variety of databases
used to select the total number of research works.

0
5

10
15
20
25
30
35
40
45

No. of Papers Per Source

No. of papers

Figure 7. Number of papers category per source.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 45

Figure 8. Databases used in selected studies.

As can be seen in Figure 8, most studies comparing and analyzing performance and
attributes used one or more of the following databases: MongoDB, MySQL, Oracle, Cas-
sandra, PostgreSQL, Neo4j, SQL server, or CouchDB.

3.1. Empirical Studies Analysis
Empirical research and articles fall into the categories of comparisons, evaluations,

experiments, categorizations, dialogues, and surveys. Articles that we believe were rele-
vant to our study topics were chosen from the literature and assessed in light of our hy-
potheses and selection criteria.

RQ1: Considering big data (structured and unstructured data): What is the need for
NoSQL databases? RQ2: Why do NoSQL databases follow the BASE property instead of
the SQL database ACID property?

Modeling a database helped us anticipate the types of data that will be stored in it
and how they will be stored.

NoSQL, an acronym for “Not only SQL” [22], is an approach to database manage-
ment that excels at handling massive amounts of unstructured data and big data [23] an-
alytics [14]. All sorts of different query languages can be used with these databases, and
they do not adhere to a strict, predetermined schema structure. However, over the past
few decades, relational databases have used the industry standard SQL language. Docu-
ment-oriented databases are a subset of NoSQL databases. Databases that focus on storing
and retrieving documents include MongoDB and CouchDB. Databases of this type are
utilized for the storage and administration of data that is primarily document-based.
Complex data formats, such as JSON, BSON, XML, and PDF are used to store information
in document-oriented databases. Both MongoDB and CouchDB are free and open source;
however, MongoDB [24] is more suited to a distributed setting and to JSON. Researchers
in [25] investigated several different NoSQL database features. One popular database that
was built specifically with JSON in mind is MongoDB [22,26], which uses the C++ pro-
gramming language. MongoDB uses dynamic schema [17] structures [1] instead of prede-
fined, static documents. Data analysis and retrieval are quick and accurate because of im-
provements in query processing, indexing support, and in-memory aggregation. In addi-
tion to offering complete safety, it provides recovery and backup utilities. SQL and NoSQL
databases are shown in Figure 9 along with their respective data storage structure.

Figure 8. Databases used in selected studies.

As can be seen in Figure 8, most studies comparing and analyzing performance
and attributes used one or more of the following databases: MongoDB, MySQL, Oracle,
Cassandra, PostgreSQL, Neo4j, SQL server, or CouchDB.

Big Data Cogn. Comput. 2023, 7, 97 10 of 44

Empirical Studies Analysis

Empirical research and articles fall into the categories of comparisons, evaluations,
experiments, categorizations, dialogues, and surveys. Articles that we believe were relevant
to our study topics were chosen from the literature and assessed in light of our hypotheses
and selection criteria.

RQ1: Considering big data (structured and unstructured data): What is the need for
NoSQL databases? RQ2: Why do NoSQL databases follow the BASE property instead of
the SQL database ACID property?

Modeling a database helped us anticipate the types of data that will be stored in it and
how they will be stored.

NoSQL, an acronym for “Not only SQL” [22], is an approach to database manage-
ment that excels at handling massive amounts of unstructured data and big data [23]
analytics [14]. All sorts of different query languages can be used with these databases,
and they do not adhere to a strict, predetermined schema structure. However, over the
past few decades, relational databases have used the industry standard SQL language.
Document-oriented databases are a subset of NoSQL databases. Databases that focus on
storing and retrieving documents include MongoDB and CouchDB. Databases of this type
are utilized for the storage and administration of data that is primarily document-based.
Complex data formats, such as JSON, BSON, XML, and PDF are used to store information
in document-oriented databases. Both MongoDB and CouchDB are free and open source;
however, MongoDB [24] is more suited to a distributed setting and to JSON. Researchers
in [25] investigated several different NoSQL database features. One popular database
that was built specifically with JSON in mind is MongoDB [22,26], which uses the C++
programming language. MongoDB uses dynamic schema [17] structures [1] instead of
predefined, static documents. Data analysis and retrieval are quick and accurate because
of improvements in query processing, indexing support, and in-memory aggregation. In
addition to offering complete safety, it provides recovery and backup utilities. SQL and
NoSQL databases are shown in Figure 9 along with their respective data storage structure.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 11 of 45

 SQL Databases NoSQL Databases

Relational

Analytical (OLAP)

Column Family

Key

Key

Key

Key

Value

Value

Value

Value

Key-Value

Graph Document

Figure 9. SQL and NoSQL database storage structures.

SQL (Oracle, MySQL, and SQL-Server) and NoSQL (MongoDB, Neo4j) databases
have been the subject of numerous studies comparing their structure, design, and perfor-
mance [24–50]. These studies used the proposed techniques for situations involving SQL
and NoSQL databases and analyzed the outcomes. NoSQL databases have different fea-
tures and applications. Because of their ability to scale horizontally, NoSQL databases
cannot guarantee the ACID property. In this regard, the Neo4j graph database [51,52] is
an excellent option. Graph databases [53–55] have been shown to effectively organize and
store data with complex dependencies. Documents serve as MongoDB’s primary focus.
MongoDB uses the BSON format, which is an offshoot of JSON.

With huge data, MongoDB performs well and has shown itself repeatedly. Research
in [56] compared the NoSQL database MongoDB with the relational database Postgre SQL
for social network service and stream sensor data. In the scenarios where the two data-
bases were compared; MongoDB came out on top [56]. Unlike relational database man-
agement systems (RDBMS), the NoSQL [57] database is well-suited for use in a cluster
setting, where its flexible and powerful architecture can accommodate vast amounts of
data in a wide variety of forms. MongoDB and MySQL were compared with the canonical
database management system in [35]. MongoDB outperformed MySQL in data retrieval
and data insertion. Based on the comparisons, they presented, it was clear that NoSQL
MongoDB was the superior option to MySQL when handling large amounts of data. In-
depth research of the prerequisites for effectively managing massive amounts of unstruc-
tured data was conducted for articles [43,58]. They preferred to use the NoSQL MongoDB
database instead of employing MySQL RDBMS. The relational and non-relational data-
base model was examined in detail [44]. Depending on their analysis, the NoSQL Mon-
goDB database outperformed the MySQL database. They suggested that for a small da-
taset with basic queries, MySQL is efficient, while for large datasets with complicated que-
ries, MongoDB is a more acceptable solution. The authors of [40] compared the perfor-
mance of Oracle RDBMS with the NoSQL MongoDB database. As a result of their research,
they concluded that NoSQL databases are not a viable alternative to SQL databases. They
[40] claimed that companies can select a database suitable for their needs by considering
the specifics of their company.

Figure 9. SQL and NoSQL database storage structures.

SQL (Oracle, MySQL, and SQL-Server) and NoSQL (MongoDB, Neo4j) databases
have been the subject of numerous studies comparing their structure, design, and per-

Big Data Cogn. Comput. 2023, 7, 97 11 of 44

formance [24–50]. These studies used the proposed techniques for situations involving
SQL and NoSQL databases and analyzed the outcomes. NoSQL databases have different
features and applications. Because of their ability to scale horizontally, NoSQL databases
cannot guarantee the ACID property. In this regard, the Neo4j graph database [51,52] is
an excellent option. Graph databases [53–55] have been shown to effectively organize and
store data with complex dependencies. Documents serve as MongoDB’s primary focus.
MongoDB uses the BSON format, which is an offshoot of JSON.

With huge data, MongoDB performs well and has shown itself repeatedly. Research
in [56] compared the NoSQL database MongoDB with the relational database Postgre SQL
for social network service and stream sensor data. In the scenarios where the two databases
were compared; MongoDB came out on top [56]. Unlike relational database management
systems (RDBMS), the NoSQL [57] database is well-suited for use in a cluster setting, where
its flexible and powerful architecture can accommodate vast amounts of data in a wide
variety of forms. MongoDB and MySQL were compared with the canonical database
management system in [35]. MongoDB outperformed MySQL in data retrieval and data
insertion. Based on the comparisons, they presented, it was clear that NoSQL MongoDB
was the superior option to MySQL when handling large amounts of data. In-depth research
of the prerequisites for effectively managing massive amounts of unstructured data was
conducted for articles [43,58]. They preferred to use the NoSQL MongoDB database instead
of employing MySQL RDBMS. The relational and non-relational database model was
examined in detail [44]. Depending on their analysis, the NoSQL MongoDB database
outperformed the MySQL database. They suggested that for a small dataset with basic
queries, MySQL is efficient, while for large datasets with complicated queries, MongoDB
is a more acceptable solution. The authors of [40] compared the performance of Oracle
RDBMS with the NoSQL MongoDB database. As a result of their research, they concluded
that NoSQL databases are not a viable alternative to SQL databases. They [40] claimed
that companies can select a database suitable for their needs by considering the specifics of
their company.

As for data scalability, high performance, and data availability, we discovered many
publications [59–68] that discuss migrating from a relational database to a NoSQL database,
as well as other papers [59,69–78] on the topic. Because of its scalability, integrity, dis-
semination, security [24,59,69–74], and customizable designs, MongoDB is well-suited
for processing massive amounts of data. According to the cited works, switching from a
relational database to the NoSQL database MongoDB is the way to go. MongoDB uses the
Binary JSON Object Notation (BSON) format to store its information. Because it does not
require junctions as do relational databases, MongoDB is able to store and retrieve large
numbers of documents in a single collection efficiently. MongoDB is versatile enough to
handle and process data in a wide variety of formats, including structured, semi-structured,
and unstructured data. Relational databases were created with the express purpose of han-
dling organized data, and as such, they can handle a certain amount of data that is vertical
in nature. To be clear, NoSQL databases are not meant to replace relational databases, but
their increased performance and utility mean that they have a place alongside relational
databases in some contexts. According to the research [60,79], the relational database sys-
tem does not scale well with massive amounts of data. Automatic mapping from MySQL
RDBMS to a MongoDB NoSQL database utilizing metadata saved in MySQL RDBMS was
proposed in article [61]. NoSQL databases do not promise to offer the same atomicity,
consistency, isolation, and durability that are hallmarks of relational database management
systems [80]. The BASE [81] feature is observed by NoSQL databases. NoSQL [60] is an um-
brella term for a collection of technologies that share the goals of data availability, efficient
data scaling, effective storage management, and improved performance. Research in [25]
looks at the motivations for the shift from relational database management systems to
nonrelational document-oriented databases. Meanwhile, the ACE (availability, consistency,
and efficiency) aspects of the big data system have been explored in both databases [82,83].

Big Data Cogn. Comput. 2023, 7, 97 12 of 44

Research into the topic of automatic schema transformation from SQL to NoSQL can be
found in [84].

Articles [70,85] and [86] compared the efficiency of several NoSQL databases (includ-
ing Couchbase, MongoDB, Re-thinkDB, and in-memory) when used with real-world data.
While planning the trials they’ve proposed, the authors considered several factors, such as
the response time of various databases. Comparative performance analyses between Oracle
NoSQL and MongoDB were conducted in the study [71]. Databases were studied from
multiple angles, including their storage model, scalability, concurrency, and replication.
The authors drew the conclusion that, overall, MongoDB was more popular than Oracle’s
NoSQL offering. Based on DBEngine.com’s rankings, MongoDB is the fifth best NoSQL
database, whereas Oracle NoSQL is ranked as number 78. The paper [73] claimed that when
compared with MongoDB’s MapReduce, Oracle’s RDBMS aggregation performed better.
On the other hand, regarding the speed with which queries were answered, MongoDB
bested Oracle RDBMS. According to [40], Oracle aggregation was superior to MongoDB
aggregation for SUM, COUNT, and AVG workloads. The work in [40] used a dataset with
approximately 500,000 records, which was insufficient for big data analytics. The process
flow diagram of the SQL Select statement in Oracle 11g RDBMS is depicted in Figure 10.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 45

SQL Select
Statement

Server Process
check query
syntax and
semantics

IF error

Yes

Then check
datafile, table
name, where
clause, joins,

sorting,

Full table scan/
Index based
table scan

Figure 10. SQL Select statement process flow diagram.

MongoDB data retrieval is simple and easy because of the sub-document structure
and does not require checking constraints or any clause, unlike the SQL Select statement
of Oracle 11 g RDBMS. The SQL Insert statement process flow is shown in Figure 11.

Figure 11. SQL Insert statement process flow diagram.

In comparison with Oracle RDBMS, MongoDB insertion is faster since it does not
have to verify the steps shown in Figure 11 of the SQL Insert statement.

In contrast, MapReduce is the programming module [87] that performs well in dis-
tributing scenarios and is more ideal for big data [88] analysis compared with basic aggre-
gation [73] in cluster (multiple server) contexts. Before commencing the map stage,
MapReduce operations can conduct any arbitrary sorting, and they limit the documents
in a single collection that they utilize as their input. The two phases of MapReduce, “Map”
and “Reduce”, are required for the MapReduce algorithm to work; MongoDB uses the
map phase for each document that is fed into MapReduce. A pair of critical values is

Figure 10. SQL Select statement process flow diagram.

MongoDB data retrieval is simple and easy because of the sub-document structure
and does not require checking constraints or any clause, unlike the SQL Select statement of
Oracle 11 g RDBMS. The SQL Insert statement process flow is shown in Figure 11.

In comparison with Oracle RDBMS, MongoDB insertion is faster since it does not have
to verify the steps shown in Figure 11 of the SQL Insert statement.

In contrast, MapReduce is the programming module [87] that performs well in dis-
tributing scenarios and is more ideal for big data [88] analysis compared with basic ag-
gregation [73] in cluster (multiple server) contexts. Before commencing the map stage,
MapReduce operations can conduct any arbitrary sorting, and they limit the documents in
a single collection that they utilize as their input. The two phases of MapReduce, “Map”
and “Reduce”, are required for the MapReduce algorithm to work; MongoDB uses the
map phase for each document that is fed into MapReduce. A pair of critical values is
returned from the map function. MongoDB employs a process called “reduction” to gather
and compress the aggregated data, and then MongoDB stores the results in a collection.
For example, in the Chicago crime dataset, the map function calculates all the crimes

Big Data Cogn. Comput. 2023, 7, 97 13 of 44

against each day, and then the reduction function takes the day as the key and extracts the
appropriate values (Key: values). The MapReduce–Merge framework was developed by
the authors of [89] by including the merge operation into the MapReduce architecture. The
performance of MapReduce was increased and was able to calculate relational algebra due
to the merge operation and was able to process the data in the cluster. In order to maximize
MapReduce productivity and enhance the cluster’s query performance, others proposed the
MRShare framework [90]. Therefore, Oracle RDBMS aggregation outperformed MongoDB
in MapReduce aggregation.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 45

SQL Select
Statement

Server Process
check query
syntax and
semantics

IF error

Yes

Then check
datafile, table
name, where
clause, joins,

sorting,

Full table scan/
Index based
table scan

Figure 10. SQL Select statement process flow diagram.

MongoDB data retrieval is simple and easy because of the sub-document structure
and does not require checking constraints or any clause, unlike the SQL Select statement
of Oracle 11 g RDBMS. The SQL Insert statement process flow is shown in Figure 11.

Figure 11. SQL Insert statement process flow diagram.

In comparison with Oracle RDBMS, MongoDB insertion is faster since it does not
have to verify the steps shown in Figure 11 of the SQL Insert statement.

In contrast, MapReduce is the programming module [87] that performs well in dis-
tributing scenarios and is more ideal for big data [88] analysis compared with basic aggre-
gation [73] in cluster (multiple server) contexts. Before commencing the map stage,
MapReduce operations can conduct any arbitrary sorting, and they limit the documents
in a single collection that they utilize as their input. The two phases of MapReduce, “Map”
and “Reduce”, are required for the MapReduce algorithm to work; MongoDB uses the
map phase for each document that is fed into MapReduce. A pair of critical values is

Figure 11. SQL Insert statement process flow diagram.

Over the past decade, Oracle RDBMS has been widely adopted by businesses of all
sizes. Due to their single-image abstract system architecture, SQL RDBMSs did not fare
well with regard to processing unstructured data.

The study [72] investigated several features and classifications of NoSQL databases
operating on top of Hadoop [91–93]. The study [72,94] found that NoSQL databases could
be broken down into subcategories according to factors such as scalability and data type
(connected vs. document). Table 3 compares Oracle RDBMS with MongoDB and lists their
primary features.

Table 3. MongoDB and Oracle RDBMS Characteristics.

SQL MongoDB

Rigid schema Flexible schema
Table Collection
Row Document

Column Field
Multiple joins are required to obtain the complete detail of a single
person, student, or customer, which causes slow data accessibility.

Data accessibility is very fast, as all data are stored in one
single document

Vertical scalability Horizontal scalability
Complex data sharding Data sharding becomes simpler

Considers data storage efficiency Considers the speed, performance, developer time
Performs well in aggregation Performs better in a retrieval

Does not perform read/write very quickly in big data analytics Performs read/write very quickly because of memory mapping
function in big data analytics.

Supports relational algebra [60] Supports relational algebra [60]

The key strengths of Oracle relational database and MongoDB NoSQL database are
described in Table A3 (Appendix A), while Table A2 (Appendix A) compares NoSQL
databases (MongoDB, Neo4j) with relational databases (Oracle, MySQL, and SQL-Server).

Big Data Cogn. Comput. 2023, 7, 97 14 of 44

According to the cited works [95–97], there has been a notable increase in the quan-
tity of geospatial and geolocated data. Many applications were developed to handle
and use geospatial data [98–103], and this is true across many different fields (emer-
gency management, archaeology, IoT, and smart cities). In order to process the massive
amounts of geographical data effectively [27], a powerful database management system is
strictly required.

When handling massive amounts of data, NoSQL databases, rather than SQL databases,
are the best option for web applications [57,104–107]. Geospatial and location data were also
managed using NoSQL databases [108,109]. It was suggested in multiple reports [110–113]
that NoSQL databases were able to effectively process vast amounts of unstructured data.
The study [114] reported that researchers first became aware of spatial data in Geographic
Information Systems foundational writing. Two problems with effective geospatial query
data processing were investigated in the research [115,116]. The first was that conventional
optimization methods were inadequate for solving geographical queries. When taking
big analytics into account, it became clear that every method and approach to geographic
queries tried thus far was inadequate for the massive amounts of data involved. In contrast
to traditional textual data, which contain only a limited set of qualities, geospatial data
offer a wide range of additional features. Extensive geospatial data processing, according
to several studies [113,117–126], necessitates well-established methods for processing the
enormous quantity of geo-spatial data at hand. The article [127] demonstrated that well-
known RDBMS systems encountered numerous difficulties when attempting to analyze
geographical data. Using a performance comparison analysis, the authors of [108] looked
at how NoSQL document database MongoDB stacked up against the relational database
management system PostGIS. As their tests showed, MongoDB performed better than
PostGIS when handling geospatial data.

The oracle spatial storage data model [128] had two basic components: location and
form. Storage models, such as index Engine and Geometry Engine, employed by query
analysis, made use of the SDO_GEOMETRY data type. For location services, a geocoder
was utilized to translate an address into SDO_GEOMETRY information. Oracle Maps and
Map Viewer were used for visualization.

SQL Server 2016 (https://www.microsoft.com/en-us/cloud-platform/sql-server
(accessed on 7 January 2020)) and Azure SQL database (https://azure.microsoft.com/
en-us/services/sql-Database (accessed on 9 January 2020)) and its cloud version both
include various geo-functions for geospatial data analytics, as does SQL Oracle spatial
database, while NoSQL databases, e.g., Azure DocumentDB (https://azure.microsoft.
com/en-us/services/documentdb (accessed on 10 January 2020)) and MongoDB (https:
//www.mongodb.com (accessed on 15 January 2020)), enable geographical capabilities.
The Database as a Service (DBaaS) paradigm utilized by the Azure SQL database also
features the Microsoft SQL server’s same functionalities and provides cloud services. Post-
greSQL (https://www.postgresql.org (accessed on 17 January 2020)) is a free and open
relational database system. Comparatively, PostGIS is an extension of PostgreSQL that
serves as a spatial database (http://postgis.net (accessed on 18 January 2020)) for working
with geospatial information. The NoSQL database Azure DocumentDB is built by Microsoft
and provides the same geographic operations and functionalities as MongoDB. MongoDB
supports the GeoJSON standard data format. The authors of [129] undertook a performance
analysis of geographical data. According to their research, the Azure DocumentDB was
faster than the Azure SQL database but less scalable than the Azure SQL database. Popular
SQL and NoSQL databases’ primary geospatial properties are outlined in Table 4.

NoSQL MongoDB Data Modeling

Figure 12 depicts the shard nodes, configuration servers, and routing servers (or
mongos) that make up the MongoDB architecture, as described in [42,130,131].

https://www.microsoft.com/en-us/cloud-platform/sql-server
https://azure.microsoft.com/en-us/services/sql-Database
https://azure.microsoft.com/en-us/services/sql-Database
https://azure.microsoft.com/en-us/services/documentdb
https://azure.microsoft.com/en-us/services/documentdb
https://www.mongodb.com
https://www.mongodb.com
https://www.postgresql.org
http://postgis.net

Big Data Cogn. Comput. 2023, 7, 97 15 of 44

Table 4. SQL and NoSQL databases geospatial characteristics.

Database Oracle PostGIS Azure SQL MongoDB DocumentDB

Geometry Objects Supported

Point, LineString,
Polygon,

MultiPoint,
MultiLinePoint,
MultiPolygon,

GeometryCollection

Point, LineString,
Polygon,

MultiPoint,
MultiLinePoint,
MultiPolygon,

GeometryCollection

Point, LineString,
Polygon,

MultiPoint,
MultiLinePoint,
MultiPolygon,

GeometryCollection

Point, LineString,
Polygon,

MultiPoint,
MultiLinePoint,
MultiPolygon,

GeometryCollection

Point, LineString,
Polygon,

MultiPoint,
MultiLinePoint,
MultiPolygon,

GeometryCollection

Geometry Functionalities Supported

For geometry
instances, Oracle has

the support of
Open Geospatial

Consortium (OGC)

For geometry
instances, PostGIS
has the support of
Open Geospatial

Consortium (OGC)

For geometry instances,
Azure SQL has the

support of
Open Geospatial

Consortium (OGC)

Inclusion,
Intersection, Dis-
tance/Proximity

Inclusion, Dis-
tance/Proximity

Spatial Indexes Supported
B-Trees, Parallel
index builds for

spatial R-tree indexes

GiST index, R-Tree
index, B-Tree index B-Trees, 2D plane index 2D index, 2D

sphere index
2D plane

index, quadtree

GeoServer Compatibility Yes Yes Yes Yes Yes

DBaaS Yes No Yes (Cloud
Computing Platform) Yes Yes

Horizontal Scalability No No No Yes Yes

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 16 of 45

GeoServer
Compatibility Yes Yes Yes Yes Yes

DBaaS Yes No
Yes (Cloud

Computing Platform)
Yes Yes

Horizontal
Scalability No No No Yes Yes

NoSQL MongoDB Data Modeling
Figure 12 depicts the shard nodes, configuration servers, and routing servers (or

mongos) that make up the MongoDB architecture, as described in [42,130,131].

Figure 12. MongoDB Architecture.

The data are stored in a shard, and a MongoDB cluster cannot be constructed without
one or more shards. When a node fails, the information for that shard is held by its replicas.
Data transactions (read/write) determine which shard is used. One or more servers are
used by the replicated node, and the secondary node is modeled like the original server.
In case the primary server goes down, one of the backup servers will take over. The server
is the hub around which all operations (read/write) revolve. Eventually, the cluster will
be in sync with all of the distributed read transactions. A set of configuration servers in
the cluster is responsible for storing metadata. Data shards are identified by these servers,
which also relay which data chunk belongs to which shard. Customer service requests
that either the routing servers or MongoDB carry out the action. Prior to receiving confir-
mation from the client, MongoDB assigns each user task to the appropriate shard on the
basis of the task type, then combines the resulting data. Since Mongos [23] are stateless,
they can be used in a distributed setting.

Memory-mapped files are used by MongoDB to make the most of available memory,
which, in turn, boosts performance. Indexing in the MongoDB [132] database uses B-trees.
In a MongoDB cluster [133], a user can claim ownership of a certain partition collection
by using a shard key.

RQ3: Does DBaaS tackle data interoperability and portability efficiently in various
NoSQL databases?

In-depth research on the literature of DBaaS architecture was conducted for this work.
The data analysis and extraction show that the cloud DBaaS approach developed for rela-
tional databases is not optimal for NoSQL databases. Expert time and effort can be re-
duced, and security can be improved if scientists and researchers can find a unified [134–
138] DBaaS [139] solution for both SQL and NoSQL databases. There is also no need to re-

Figure 12. MongoDB Architecture.

The data are stored in a shard, and a MongoDB cluster cannot be constructed without
one or more shards. When a node fails, the information for that shard is held by its replicas.
Data transactions (read/write) determine which shard is used. One or more servers are
used by the replicated node, and the secondary node is modeled like the original server. In
case the primary server goes down, one of the backup servers will take over. The server
is the hub around which all operations (read/write) revolve. Eventually, the cluster will
be in sync with all of the distributed read transactions. A set of configuration servers in
the cluster is responsible for storing metadata. Data shards are identified by these servers,
which also relay which data chunk belongs to which shard. Customer service requests that
either the routing servers or MongoDB carry out the action. Prior to receiving confirmation
from the client, MongoDB assigns each user task to the appropriate shard on the basis of
the task type, then combines the resulting data. Since Mongos [23] are stateless, they can be
used in a distributed setting.

Memory-mapped files are used by MongoDB to make the most of available memory,
which, in turn, boosts performance. Indexing in the MongoDB [132] database uses B-trees.
In a MongoDB cluster [133], a user can claim ownership of a certain partition collection by
using a shard key.

Big Data Cogn. Comput. 2023, 7, 97 16 of 44

RQ3: Does DBaaS tackle data interoperability and portability efficiently in various
NoSQL databases?

In-depth research on the literature of DBaaS architecture was conducted for this
work. The data analysis and extraction show that the cloud DBaaS approach developed
for relational databases is not optimal for NoSQL databases. Expert time and effort
can be reduced, and security can be improved if scientists and researchers can find a
unified [134–138] DBaaS [139] solution for both SQL and NoSQL databases. There is also
no need to re-engineer programs for use with different CSPs thanks to standard APIs
(APIs). Data portability and interoperability among different cloud providers are the pri-
mary obstacles to overcome. Interoperability is defined differently by each of the three
paradigms [136]: IaaS, PaaS, and SaaS. Open standards [137] help mitigate the interoperabil-
ity issue; however, our solution is focused on the IaaS layer specifically. When transferring
information among different cloud providers, unified APIs are typically necessary [138].
There is not a single data storage model utilized by all cloud services. When a developer
migrates from one CSP to another, the data are transferred according to the high-level
architecture depicted in Figure 13.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 17 of 45

engineer programs for use with different CSPs thanks to standard APIs (APIs). Data port-
ability and interoperability among different cloud providers are the primary obstacles to
overcome. Interoperability is defined differently by each of the three paradigms [136]: IaaS,
PaaS, and SaaS. Open standards [137] help mitigate the interoperability issue; however,
our solution is focused on the IaaS layer specifically. When transferring information
among different cloud providers, unified APIs are typically necessary [138]. There is not
a single data storage model utilized by all cloud services. When a developer migrates from
one CSP to another, the data are transferred according to the high-level architecture de-
picted in Figure 13.

CSPs follow
various Models
& Architectures

Data Movement
difficult among

CSPs for
Developers

Make

Interoperability
& Portability

Because of

Unified API

requires
Data Movement
among various
CSPs Platforms

minimize

Figure 13. Data Movement inside CSPs.

Databases [140] that are both consistent and connected, as well as management [141]
that is both effective and efficient, are key and critical concerns in the modern information
technology era. The fundamental features of a database system are the permanent data
store’s assurance of the data’s independence from the underlying physical storage me-
dium, as well as the query processing capabilities enabled by declarative queries (DBS).
In the database sector, a wide variety of approaches to the various domains have been
observed. Multiple DMSs, including ACID, OOM, XML, and data warehousing, are based
on the relational data model. However, the BASE [81] attribute is supported in NoSQL
databases, which are primarily intended for processing large amounts of data.

New cloud services [142] and capabilities are being offered by cloud service provid-
ers to customers at a low cost and with high efficiency. However, multiple cloud service
providers offer the same features using varying implementations and user interfaces [143],
which inevitably causes problems with interoperability [144], incompatibility [145], and
portability. These are the difficult problems for cloud service providers while embracing
and facilitating cloud technology [146]. IaaS, PaaS, and SaaS interoperability are all differ-
ent terms with different meanings and applications within the realm of cloud services
[136]. Cloud users should be moved from one CSP to another for the following reasons
[137]: downtime or failure higher rate, contract termination, corporate plan changes, better
alternatives with low cost, and legal difficulties. Customers using multiple cloud provid-
ers cannot easily port their data among them. The cloud service models strive to control
the customer’s capabilities since their key architectures lack interoperability. This issue is
addressed by resorting to vendor lock-in, which poses a significant security concern for
cloud-based models [147]. Data portability [148] will improve as increasingly more cloud
service providers (CSPs) adopt the open standard to solve interoperability problems. As
a result, it can be challenging for a developer to ensure that data and applications are
consistent across different cloud services.

Open Virtualization Format (OVF) (https://www.dmtf.org/standards/ovf accessed on
3 March 2020), Cloud Infrastructure Management Interface (CIMI)
(https://www.iso.org/standard/66296.html, accessed on 15 March 2020)Open Cloud Com-
puting Interface (OCCI)(https://www.analyticssteps.com/blogs/what-open-cloud-com-
puting-interface-occi, accessed on 18 March 2020) and Cloud Data Management Interface

Figure 13. Data Movement inside CSPs.

Databases [140] that are both consistent and connected, as well as management [141]
that is both effective and efficient, are key and critical concerns in the modern information
technology era. The fundamental features of a database system are the permanent data
store’s assurance of the data’s independence from the underlying physical storage medium,
as well as the query processing capabilities enabled by declarative queries (DBS). In the
database sector, a wide variety of approaches to the various domains have been observed.
Multiple DMSs, including ACID, OOM, XML, and data warehousing, are based on the
relational data model. However, the BASE [81] attribute is supported in NoSQL databases,
which are primarily intended for processing large amounts of data.

New cloud services [142] and capabilities are being offered by cloud service providers
to customers at a low cost and with high efficiency. However, multiple cloud service
providers offer the same features using varying implementations and user interfaces [143],
which inevitably causes problems with interoperability [144], incompatibility [145], and
portability. These are the difficult problems for cloud service providers while embracing
and facilitating cloud technology [146]. IaaS, PaaS, and SaaS interoperability are all different
terms with different meanings and applications within the realm of cloud services [136].
Cloud users should be moved from one CSP to another for the following reasons [137]:
downtime or failure higher rate, contract termination, corporate plan changes, better
alternatives with low cost, and legal difficulties. Customers using multiple cloud providers
cannot easily port their data among them. The cloud service models strive to control the
customer’s capabilities since their key architectures lack interoperability. This issue is
addressed by resorting to vendor lock-in, which poses a significant security concern for
cloud-based models [147]. Data portability [148] will improve as increasingly more cloud
service providers (CSPs) adopt the open standard to solve interoperability problems. As

Big Data Cogn. Comput. 2023, 7, 97 17 of 44

a result, it can be challenging for a developer to ensure that data and applications are
consistent across different cloud services.

Open Virtualization Format (OVF) (https://www.dmtf.org/standards/ovf accessed
on 3 March 2020), Cloud Infrastructure Management Interface (CIMI) (https://www.iso.
org/standard/66296.html, accessed on 15 March 2020)Open Cloud Computing Interface
(OCCI)(https://www.analyticssteps.com/blogs/what-open-cloud-computing-interface-
occi, accessed on 18 March 2020) and Cloud Data Management Interface (CDMI) (https:
//www.iso.org/standard/60617.html, accessed on 20 March 2020) have all been explored as
potential solutions for managing interoperability across CSPs. These standards support only
the IaaS layer. Similarly, many initiatives, such as MOSAIC [4,149], MODACLOUDS [5,150],
and the Clous4SOA [151], have been established to address the semantic interoperability
challenge at the PaaS layer. Having multiple APIs for each PaaS means that the initiatives
cannot solve the interoperability problem on their own.

As expected, the CIMI standard is compatible with the IaaS API and helps reduce the
degree of interoperability required by cloud users and their infrastructure service providers.
By using OCCI, the interoperability between CSPs can be reduced while still producing
adequate results. Because these standards do not incorporate interoperability features into
their underlying architectures, they are not widely used by a variety of CSPs. In addition,
there is a problem with the availability of standardized interfaces and APIs.

Design patterns, cloud middle infrastructures, the Service Delivery Cloud Platform
(SDCP), and migration tools have all been developed by other academics [137,152,153] to
facilitate the movement of data among different clouds. Despite saving users time, these
methods do not solve the portability problem among different CSPs that arises from having
to learn and implement several APIs. Amazon Web Service (AWS), Microsoft Azure, and
Google App Engine (GAE) are examples of cloud service providers that help consumers
build and launch cloud-based apps. In addition, they provide the Database as a Service
(DBaaS) cloud platform to support the database developers. Data porting in DBaaS, which
can occur between SQL [154] and NoSQL [155] databases as well as inside each type of
NoSQL database, can potentially be problematic due to the interoperability issue. Many
types of NoSQL databases adhere to incompatible storage formats and data paradigms.
There is a need for standardized APIs that can regulate data movement among various
cloud storage platforms.

To host their data and applications, software developers can take advantage of
DBaaS [139], a highly scalable and available backend cloud service. As a result, DBaaS
is the most alluring option for cloud customers right now [154]. Database as a Service
(DBaaS) [156] is a cloud service offered by cloud providers (CSPs) that facilitates the transi-
tion from traditional database architecture to cloud database architecture. SaaS facilitates
remote access to computer programs and their features and functionality. PNUTS, HBase,
SimpleDB, and Google BigTable are some other cloud-based database services. Potentially,
the DBaaS framework can do a good job of handling traditional databases. However, DBaaS
performance declines in areas such as data consistency, confidentiality, integrity, availability,
and lack of security due to the different approaches followed by the many databases. If data
privacy and security were guaranteed, the outsourcing model known as DBaaS may be a
financial success. An expert virtualization consultant for private table database clouds was
proposed in the research [157]. Cloud computing allows for the integration of numerous
applications into the framework of the service itself. The scalability and adaptability of
cloud computing comes at a lower price than ever before.

To provide more data interoperability, portability, and security during data porting,
the paper [134,135] investigated two unified API frameworks, CDPort and Se-cloudDB,
for SQL and NoSQL databases. Before handing it over to a third party, the API that
they offered ensured the privacy of users’ critical information (CSP). As part of their
planned MCTool, requests are transformed into their corresponding models and then
communicated to the appropriate database, considering the models that it can handle.
Metadata encryption/decryption keys ensure that only authorized users and the DBA have

https://www.dmtf.org/standards/ovf
https://www.iso.org/standard/66296.html
https://www.iso.org/standard/66296.html
https://www.analyticssteps.com/blogs/what-open-cloud-computing-interface-occi
https://www.analyticssteps.com/blogs/what-open-cloud-computing-interface-occi
https://www.iso.org/standard/60617.html
https://www.iso.org/standard/60617.html

Big Data Cogn. Comput. 2023, 7, 97 18 of 44

access to and can make changes to the data stored in the various clouds. Encryption and
decryption are supported by their proposed framework.

4. Discussion and Classification

The SQL vs. NoSQL debate is not about relational versus non-relational databases,
despite the names. Both databases’ transaction models are analyzed and contrasted. When
an application is executed, the database performs a series of operations known as “transac-
tions”. All transactions in a SQL database depend on ACID properties. In this case, ACID
refers to the principles of atomism, consistency, isolation, and durability. However, NoSQL
database designers concluded that the ACID property was a useless roadblock to securing
huge data. Consequently, in the early 2000s, Professor Eric Brewer proposed a new theory.
The CAP principles are consistency, availability, and partition tolerance. The theorem states
that all these qualities can be obtained concurrently by designers working in a distributed
environment. As a trade-off for guaranteed consistency and availability, developers can
implement a partition-tolerant database using the CA model. If the developer of a database
places more value on availability and partition tolerance than consistency, then the database
cannot be said to be AP-based. To achieve consistency and partition tolerance without
compromising availability, a CP-based database is deployed. Table 5 describes the main
features supported by both flavors of databases.

Table 5. DBMS’s Features.

DBMSs
Features

Data Schema Scalability Compliance Architecture Consistency Query Language Performance Best Suited For

RDBMS S Fixed Vertical ACID Centralized Strict SQL Slow BFT

NoSQL SUSm Dynamic Horizontal BASE Distributed Eventual OO API,
SQL Like Fast LSWA, SD

S: Structured; SUSm: Structured, Unstructured, and Semi-Structured; LSWA: Large-Scale Warehouse Applications,
Sensor Data; BFT: Banking, Financial Transaction.

Standardization on how to classify DBMSs has led to several sub-categories. The
foundation of any database management system is the data model upon which it is built.
Many contemporary commercial DBMSs rely heavily on the relational data model. The
object data model has seen little adoption, even though it has seen use in a small number of
commercial systems. Many legacy applications continue to run on database systems based
on hierarchical and network data models. We can classify the NoSQL business model as
one of the following, as defined in Table 6.

NoSQL database systems have been given a variety of indications, which can be
attributed to the fact that the implementation structure does not include conventional
SQL. Several distinct types of NoSQL databases each make use of a unique set of querying
procedures. Software developers are often responsible for appropriately designing query
accomplishment rather than depending on a declarative query language that combines
questions and delivers fast query execution plans. This is because a declarative query
language can combine questions. Users of the system are responsible for performing
extra tasks, such as validating and interpreting the information that has been gathered. In
addition, the responsibility for ensuring data consistency, data replication, and availability
during concurrent changes in shared and replicated databases is shifting more and more to
the hands of developers. The combination of massive data systems with NoSQL databases
can have several different effects on software designs and architectures.

Brewer formulated a set of requirements for distributed databases by utilizing his
CAP method [7]. These requirements serve as a baseline. In the case where there is a
network partition (P: in the cluster, when the information is lost randomly between the
nodes), consistency (C: present the identical data to all users) must take precedence over
availability (available to users) (A: the acknowledgement must be received by every client
as either success or failure). If there is not a partition (P), a framework will favor latency

Big Data Cogn. Comput. 2023, 7, 97 19 of 44

(L) over consistency (C), as shown by Abadi’s PARCELS; nevertheless, when there is a
partition (P), the framework will emphasize availability (A) over consistency (C).

Table 6. Database Classification.

Challenges with reliability and availability (CA): This database design places a priority on data consistency and accessibility using a
replication approach. Parts of the database do not care about partition tolerance. If the nodes are partitioned, the data will go out of

sync. Vertica, Greenplum, and relational database management systems are examples of this type of database.

There are problems with consistency and partition tolerance (CP) that must be fixed. The primary objective of such a database
management system is to ensure the integrity of the data it stores. However, high availability is no longer supported. The data are

stored in the various nodes, and when a node crashes, it causes the data that ensures consistency between them to become
unavailable. It maintains partition tolerance by blocking data resynchronization. Hypertable, BigTable, and HBase are only a few

examples of the database systems that are CP-aware.

In this type of database, providing data availability and partition tolerance (AP) is a top priority. If there is a communication
breakdown among nodes, it does not affect the status of any individual node. After a partition is resolved, data are resynchronized

but consistency is not ensured. These principles are followed by databases such as Riak, CouchDB, and KAI.

When one element of a database goes down but the others keep running, that section of the database is said to be “basically
available.” In the event of a node failure, the operation will continue by replicating the data among the remaining nodes.

In a soft state, data are subject to change over time depending on factors such as the level of participation of the user. The
usefulness of such information may also deteriorate after a certain period has passed. Therefore, it is necessary to either update or

obtain the data for the information to be useful in the system.

According to eventual consistency, after every data modification, the data do not instantly become consistent throughout the entire
system, but they will become consistent eventually. The data, it is said, will continue to be accurate into the foreseeable future.

Today, it is not enough to rely solely on structured data, as the unstructured nature of
astronomical data necessitates fast data analytics and information extraction methods. SQL
database capabilities are limited in their ability to effectively process various forms of large
data. The capabilities of NoSQL databases allow for the efficient processing of massive data
sets. NoSQL databases excel in the areas of storage capacity expansion, schema flexibility,
scalability, and real-time access. The BASE attribute is adhered to by NoSQL databases.
Instead of prioritizing data consistency and security, NoSQL databases place an emphasis
on improving data read/write efficiency. The application is responsible for ensuring data
consistency. For this reason, it is an excellent option for handling large datasets. In addition,
NoSQL databases do not apply restrictions at the data, column, or table levels as used in
structured database.

This research analyzed approximately 140 previous studies that compared the useful-
ness, productivity, and dependability of SQL databases with NoSQL databases. This re-
search considered vast amounts of data. According to our investigations, NoSQL databases
offer a greater capacity for expansion [23,37,68,158,159]. SQL databases are better suited
for transactional systems and use more resources to ensure data integrity and consistency,
whereas NoSQL databases are better equipped to handle huge and diverse datasets and
use fewer resources to ensure data integrity and consistency. On the other hand, NoSQL
databases [24,95] are distinct in the sense that they place a larger priority on the accessibility
of data. The results of our testing indicate that relational databases cannot be effectively
replaced by NoSQL databases. Because both databases have their advantages and disad-
vantages, the database that an organization chooses to use will depend on the requirements
that are unique to that business. To give just one illustration, NoSQL databases, which
make it possible to use the MapReduce programming module, are better suited to parallel
computing [124,160] when they are implemented within a cluster environment.

NoSQL databases are constructed on a schema that is more fluid and dynamic, in
contrast to relational databases, which are strongly dependent on a preset data structure
that is referred to as a “schema” (tabular form) [24,62,68,81,85,158,161]. For example, to
keep track of student data, one should use the StdRegNo, StdName, and StdAddress
fields. When working with relational databases, the first thing that needs to occur is the
construction of a schema that satisfies all the necessary domain and integrity requirements.

Big Data Cogn. Comput. 2023, 7, 97 20 of 44

After that, one will be able to save the relevant student data and comply with the necessary
restrictions. When considering extending the scope of the current database by incorporating
two new columns, one should give this some consideration. Those who are going to be
responsible for making modifications to the existing schema will also be responsible for
migrating data from the previous schema to the new one. When dealing with large data
sets, the procedure might become impractically slow and drawn out. The fact that NoSQL
databases do not automatically update themselves whenever new changes are made to
the schema presents the most significant challenge for agile software development. [25].
When working with NoSQL databases, it is not necessary to have a predetermined schema
to make any kind of change. Table A4 of Appendix A contains a listing of the several
databases that were accessed during the research that was selected.

Data normalization to control outliers, relational schema (attributes), domain con-
straints, check constraints, unique constraints, and Not NULL constraints, among other
things, all aid safe data integration in relational databases [24,26,37] as opposed to NoSQL
databases [24,26,26,37]. Relational databases provide well-established security and authen-
tication systems for users. SQL databases are superior to NoSQL databases in terms of
both performance and endurance. SQL is the standard interface for all relational databases;
however, NoSQL databases do not use SQL. Instead, they use a different interface.

SQL and NoSQL databases follow a wide variety of models [60,68,126]. In addition,
there is a difference in the underlying data model used by each NoSQL database [72,76] type.
Given the prevalence of multiple CSPs, it is difficult to accomplish data portability [134,138].
The rapid expansion of commercial databases presents another difficulty for cloud storage.
Instead, AWS DBaaS [1] offers the storage expansion options for Azure cloud databases are
somewhat restricted. Product categories, architectures, database types, and languages are
outlined in Table 7.

Table 7. Database product category, architecture type, and languages.

Database Name Database Category Database Architecture Database Type Written in

MongoDB NoSQL-Document Store Distributed Multi-Model Open Source C++, Go, JavaScript, Python
MySQL SQL Open Source C, C++
Oracle SQL Not Assembly language, C, C++

SQL Server SQL Not C, C++
Neo4j NoSQL-Graph Family Open Source Java

Couchbase NoSQL-Document Store Distributed Multi-Model Open Source C++, Erlang, C, Go
CouchDB NoSQL-Document Store Distributed Multi-Model Open Source Erlang, JavaScript, C, C++
Cassandra NoSQL-Column Based Distributed Multi-Model Open Source Java

Rethink NoSQL-Document Store Distributed Multi-Model Open Source C++, Python, Java,
JavaScript, Bash

MariaDB SQL Open Source C, C++, Perl, Bash
RavenDB NoSQL-Document Store Open Source C#

BigTable NoSQL-Column Based Not C++ (core), Java, Python,
Go, Ruby

DynamoDB NoSQL-Key/Value Store Not Java
SimpleDB NoSQL-Key/Value Store Distributed Database Not Erlang

PostgreSQL SQL Open Source C
PostGIS SQL Open Source C
Hbase NoSQL-Column Based Distributed Multi-Model Open Source Java

GraphDB NoSQL-Graph Family Distributed Database
Sybase SQL Not SQL
Redis NoSQL- Key/Value Store Open Source ANSI C

HyperTable NoSQL-Column Based Open Source C++
JenusGraph NoSQL-Graph Family Open Source Java

VoltDB in-memory DBMS Open Source Java, C++
VoldeMort NoSQL-Key/Value Store Distributed datastore Open Source Java

Infogrid NoSQL-Graph Family Open Source Java
H2 SQL Open Source Java

ArangoDB NoSQLDB Open Source C++, JavaScript
OrientDB NoSQLDB Open Source Java

Azure SQL SQL Open Source C, C++
Azure DocumentDB NoSQL-Document Store Open Source SQL (Core) API

Big Data Cogn. Comput. 2023, 7, 97 21 of 44

4.1. Research Gap

The implementation of complicated distribution systems is required to achieve sig-
nificant levels of both availability and scalability. In addition, sharding and partitioning
take place on the foundational layers of the software architecture, which are referred to as
the application tier, the caching tier, and the back-end storage tier, respectively. To achieve
great scalability, however, can be challenging because of the atomic abstraction image that
is presented by a typical framework that uses SQL as the gold-standard non-procedural
language. In addition, the software needs to be intelligent to tackle issues that arise with
data replicas and inconsistencies that are brought about by collisions between changes
to replicas that are happening at the same time. When regard to quality criteria, such as
scalability, consistency, performance, and durability, each variety of NoSQL database has
its own unique set of drawbacks and limitations. In addition, the architect is fundamentally
required to conduct research on the characteristics of the nominee database to fulfill the
requirements imposed by the vendor while choosing the appropriate database. The gaps of
each flavor of NoSQL databases are described in Table 8.

Table 8. Gaps among NoSQL databases.

If your applications simply need to store and retrieve data items that are transparent to the DBMS and can be identified by a key, a
key-value store may be the best option for you. In contrast, the software crashes if it tries to perform a database query based on a

value for an attribute other than the key. Furthermore, it is impossible to update or obtain just one field from a document’s
key-value store.

When applications require granular control over which records to obtain, which fields within a record to change, and which fields
to retrieve based on criteria other than the primary key, document databases are an excellent option. Document data stores provide

more query flexibility than key-value stores.

When applications need to store data with hundreds or thousands of fields but need to access only a subset of these fields in most
queries, column-family data stores are an efficient solution. Such data repositories are well suited for massive data sets.

Graph databases are ideally suited for use cases that include storing and analyz-ing data on entities with complex relationships to
one another. In a graph data-base, the importance of entities and their connections is treated equally.

The term “big data” [88,158,162] is frequently used to refer to data obtained from large-
scale sensor networks or user-generated information from social networks [88,158,162].
However, because many people do not have the necessary skills, they do not know how
to handle data to accomplish a desired outcome for their businesses. This is because a
significant number of the technologies, techniques, and disciplines concerning big data
are relatively recent developments. Relational data stores, othe other hand, are unable to
process such a large data collection, which necessitates the creation of new storage system
capabilities. Data stored in a NoSQL database do not require a centralized schema. Because
of their greater scalability, data availability, fault tolerance, and the rapid processing of
massive amounts of unstructured data, NoSQL databases are suitable for handling big
data. There are a lot of questions that have not been solved yet because of the differences
between relational databases and NoSQL databases.

The paper concludes that NoSQL is not a suitable alternative to relational databases.
In addition to this, NoSQL is an excellent option for heterogeneous big data. Each of these
fields has numerous unfilled research voids. The simplicity, scalability, and performance
of NoSQL databases’ designs are areas with significant room for study. Different from
the relational database’s strict schema data structure, the NoSQL databases use a flat-
file or key/value data model (tabular form). NoSQL databases, due to their horizontal
scalability, are well-suited to deal with the vast quantities and varieties of data currently
in use. However, this is not the case for SQL databases, which can scale vertically. When
comparing NoSQL with relational databases, scalability and performance are the two most
important factors. There is also the unanswered research question of how to integrate the
features [49] of relational databases with those of nonrelational databases. For NoSQL
databases, there is also a lack of study into the problem of simple schema design [163–165].

Big Data Cogn. Comput. 2023, 7, 97 22 of 44

The development of flexible data migration frameworks [50,54,62,65,76] from a re-
lational database to a NoSQL data storage is another area of research that has received
increased interest in recent years. There is a lot at stake regarding the success of the SQL-to-
NoSQL data transfer. It is crucial since any company needs to extract useful insights from
its own data, such as system resource use and employee performance reviews.

Additionally, NoSQL is the superior option to relational databases on the cloud because
of the cloud platform’s distributed nature. In order to reduce cloud consumer effort during
data movement across many cloud platforms and to exert control over data interoperability
and portability concerns, the state of the art requires unified API [134,135,138] frameworks.

4.2. Prediction and Occurrences of DBMSs against a Particular DBMS

Our data set-up is based on Table A4. First, we created a pair of (x, y) data. We then
used a combination formula to create a pair of (x, y) for a line with more than two database
names, thus constructing 301 pairs. We used a label encoder to encode x and y to numbers
from string for pre-processing and used Gaussian Naïve Bayes to train our encoded data.
Once it was prepared, we obtained a unique database name from x. We encoded those
unique names and then tested them on individual encoded data. Then, we obtained the
probability of all classes corresponding to individual encoded data and represented the
result as a unique x encoded corresponding to the rest of the different database probabilities.
Thus, the table size is n by n, where n is a unique database.

Analysis of the collected data: On the collected data, we trained the Gaussian Naïve
Bayes model. Nevertheless, the main issue is that it predicted the MongoDB for all database
names except itself. MongoDB in label set (y) are many as compared to the others. Figure A1
and Table A6 of Appendix A show that the MongoDB percentage contains more than 22%
of all data. Thus, the model is data-biased. To cater to this issue of data imbalance, we
generated data.

Analysis of the collected and generated data: On the basis of the analysis presented
in Figure A1, we concluded that the databases “MongoDB, Cassandra, MySQL, and HBase”
significantly contributed to a collected dataset. Thus, we adopted the strategy of ignoring
these database names when creating a combination of other database names. The percent-
age of these database names can then be decreased, and another database name can be
increased, thus causing the dataset to be balanced. As we can see from Figure A2 and
Table A7 of Appendix A, the dataset seems balanced, and the results differ from what we
obtained from the collected dataset.

5. Conclusions

The findings indicate that there is no need to transition from relational databases to
NoSQL databases. As there are advantages and disadvantages to both types of databases,
a company can choose the DBMS that best meets its requirements. An organization can
utilize an SQL database if it places a priority on data standardization and consistency.
NoSQL should be utilized when a business has a large quantity of unstructured data and
data availability is a high requirement. A relational database may be preferred over a
NoSQL database for the aggregation of small datasets, and vice versa for big data analytics.
MapReduce is most suited for use in clusters due to its distributed nature. Although
MapReduce is slow during the process of aggregation, it is more effective in parallel
computing and was developed to handle massive amounts of unstructured data. NoSQL
databases, due to their dispersed and highly scalable nature, are well-suited for applications
that generate voluminous data with diverse features. When geospatial data are involved,
the scalability of relational databases is superior to that of NoSQL databases. NoSQL
databases have a faster data response time than relational databases, particularly when
handling huge amounts of geospatial data.

NoSQL data stores offer an alternative to conventional RDBMS, but it is probable
that organizations may not immediately decide which one to use. The optimal strategy
for choosing the proper NoSQL database is to determine what the application requires

Big Data Cogn. Comput. 2023, 7, 97 23 of 44

that a relational database management system cannot deliver. If a Relational Database
Management System (RDBMS) can effectively manage the data, a NoSQL storage system
may not be required.

Moreover, it is generally agreed that the NoSQL database is a newer development
in the database space. However, they are being developed using generally recognized
theories. Despite the benefits, NoSQL-based systems are not without their flaws, such as
lack of widely accepted standards or a well-known query language for use with NoSQL
databases. Each database has its own characteristics and ways of working. In contrast,
these data sets are new and dynamic. There is no assurance that all data will be written to
the data store correctly because NoSQL databases do not offer strict ACID characteristics.

Furthermore, NoSQL databases make rapid development simple because of their
dynamic/flexible schema. Different from the rigid structure of relational databases, the
models and architectures of NoSQL databases are more adaptable.

Changing from one storage model to another is challenging for developers because of
the different models used by NoSQL databases. Different CSPs use incompatible proto-
cols and interfaces, making them incompatible with one another. Because each CSP has
developed their own APIs for their specific services, it becomes difficult for data to be
shared between them. To effectively manage data portability and interoperability, NoSQL
databases require a single, standardized cloud solution.

Future directions for work regarding structured data include adopting a denormalized
strategy for SQL RDBMS and comparing the outcomes of inserting, updating, and retrieving
data in MongoDB with those in another system. Instead, we can compare the performance
of MongoDB and SQL RDBMS in a specific scenario by keeping an eye on the normalized
approach taken by the former and then evaluating the outcomes of data insertion, update,
and retrieval. The parallel geospatial approaches used by NoSQL databases demand more
attention if they are to serve large numbers of users efficiently. Computer vision [166], object
detection [167], signal classification [168], and various other deep learning applications [169]
are just some of the deep learning-based applications that can benefit from the expansion
of big data [170] methodologies.

Author Contributions: Conceptualization, W.K. and C.Z.; methodology, W.K. and C.Z.; software,
W.K., C.Z. and T.K.; validation, W.K., C.Z., and T.K.; formal analysis, W.K. and C.Z.; investigation,
W.K., C.Z. and A.M.R.; resources, W.K., C.Z. and K.R.; data curation, W.K., C.Z., T.K., K.R. and A.M.R.;
writing—original draft preparation, W.K.; writing—review and editing, W.K., T.K., K.R. and A.M.R.;
visualization, W.K. and T.K.; supervision, C.Z. and B.L.; project administration, C.Z. and B.L.; funding
acquisition, C.Z., B.L. and A.M.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is partially supported by the National High Technology Research and Develop-
ment Program of China (863 programs) under Grant 2014AA012204, the NSFC under Grant 61671018,
and the Chinese Government Scholarship (CSC) for International Scholars.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data associated with this study can be found at: https://www.kaggle.
com/datasets/wisalkhan5/db-all-combinations; https://www.kaggle.com/datasets/wisalkhan5/db-
data (accessed on 23 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/datasets/wisalkhan5/db-all-combinations
https://www.kaggle.com/datasets/wisalkhan5/db-all-combinations
www.kaggle.com/datasets/wisalkhan5/db-data
www.kaggle.com/datasets/wisalkhan5/db-data

Big Data Cogn. Comput. 2023, 7, 97 24 of 44

Appendix A

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 25 of 45

insertion, update, and retrieval. The parallel geospatial approaches used by NoSQL data-
bases demand more attention if they are to serve large numbers of users efficiently. Com-
puter vision [166], object detection [167], signal classification [168], and various other deep
learning applications [169] are just some of the deep learning-based applications that can
benefit from the expansion of big data [170] methodologies.

Author Contributions: Conceptualization, W.K. and Z.C.; methodology, W.K. and Z.C.; software,
W.K., Z.C. and T.K.; validation, W.K., Z.C, and T.K.; formal analysis, W.K. and Z.C.; investigation,
W.K., Z.C. and A.M.R.; resources, W.K., Z.C. and K.R.; data curation, W.K., Z.C., T.K., K.R. and
A.M.R.; writing—original draft preparation, W.K.; writing—review and editing, W.K., T.K., K.R.
and A.M.R.; visualization, W.K. and T.K.; supervision, Z.C. and B.L.; project administration, Z.C.
and B.L.; funding acquisition, Z.C., B.L. and A.M.R. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This work is partially supported by the National High Technology Research and Devel-
opment Program of China (863 programs) under Grant 2014AA012204, the NSFC under Grant
61671018, and the Chinese Government Scholarship (CSC) for International Scholars.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data associated with this study can be found at:
https://www.kaggle.com/datasets/wisalkhan5/db-all-combinations; https://www.kaggle.com/da-
tasets/wisalkhan5/db-data (accessed on 23 April 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figure A1. Pie Chart 1: Collected Data.

Figure A1. Pie Chart 1: Collected Data.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 26 of 45

Figure A2. Pie Chart 2: Updated Collected Data.

Table A1. Selected Primary studies.

Title Publication Year Journal/Conference Name Category
Optimization of linear recursive queries in
SQ

2009 IEEE Transaction on Knowledge and Data
Engineering

Journal

Building scalable databases:
Denormalization, the NoSQL movement
and Digg

2009 NA Other

NoSQL–NOT ONLY SQL 2013 International Journal of Enterprise
Computing and Business Systems

Journal

Towards robust distributed systems 2000 ACM- Principal on Distributed
Computing

Conference

A study on data storage security issues in
cloud computing 2016

2nd International Conference on
Intelligent Computing, Communication &
Convergence

Conference

CloudDBGuard: A framework for
encrypted data storage in NoSQL wide
column stores

2019 Data & Knowledge Engineering Journal

Survey on NoSQL database 2011 6th international conference on pervasive
computing and applications Conference

RDBMS to NoSQL: reviewing some next-
generation non-relational database’s

2011
INTERNATIONAL JOURNAL OF
ADVANCED ENGINEERING SCIENCES
AND TECHNOLOGIES

Journal

SQL databases v. NoSQL databases 2010 Communication of the ACM Journal
The transition from rdbms to nosql. a
comparative analysis of three popular

2014

Database Systems Journal Journal

Figure A2. Pie Chart 2: Updated Collected Data.

Big Data Cogn. Comput. 2023, 7, 97 25 of 44

Table A1. Selected Primary studies.

Title Publication Year Journal/Conference Name Category

Optimization of linear recursive queries in SQ 2009 IEEE Transaction on Knowledge and Data Engineering Journal

Building scalable databases: Denormalization, the NoSQL movement
and Digg 2009 NA Other

NoSQL–NOT ONLY SQL 2013 International Journal of Enterprise Computing and Business Systems Journal

Towards robust distributed systems 2000 ACM- Principal on Distributed Computing Conference

A study on data storage security issues in cloud computing 2016 2nd International Conference on Intelligent Computing,
Communication & Convergence Conference

CloudDBGuard: A framework for encrypted data storage in NoSQL wide
column stores 2019 Data & Knowledge Engineering Journal

Survey on NoSQL database 2011 6th international conference on pervasive computing and applications Conference

RDBMS to NoSQL: reviewing some next-generation
non-relational database’s 2011 INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING

SCIENCES AND TECHNOLOGIES Journal

SQL databases v. NoSQL databases 2010 Communication of the ACM Journal

The transition from rdbms to nosql. a comparative analysis of three popular
non-relational solutions: Cassandra, mongodb and couchbase 2014 Database Systems Journal Journal

The battle between NoSQL Databases and RDBMS 2019 NA Other

Ten years of critical review on database forensics research 2019 Digital Investigation Journal

Big data processing tools: an experimental performance evaluation 2019 Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery Journal

MongoDB NoSQL injection analysis and detection 2016 3rd International Conference on Cyber Security and Cloud
Computing (CSCloud) Conference

A comparative study: MongoDB vs. MySQL 2015 13th International Conference on Engineering of Modern Electric
Systems (EMES) Conference

Comparing nosql mongodb to an sql db 2013 In Proceedings of the 51st ACM Southeast Conference Conference

Using MongoDB to implement textbook management system instead
of MySQL 2011 IEEE 3rd International Conference on Communication Software

and Networks Conference

MongoDB vs Oracle–database comparison 2012 third international conference on emerging intelligent data and
web technologies Conference

Big Data Cogn. Comput. 2023, 7, 97 26 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

A performance comparison of SQL and NoSQL databases 2013 IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing (PACRIM) Conference

SQL database with physical database tuning technique and NoSQL graph
database comparisons 2019 In Proceedings of 2019 IEEE 3rd Information Technology, Networking,

Electronic and Automation Control Conference, ITNEC Conference

Predictive Performance Comparison Analysis of Relational & NoSQL
Graph Databases 2017 IJACSA Journal

Comparative study of relational and non-relations database performances
using Oracle and MongoDB systems 2014 Journal Impact Factor Journal

A comparison of a graph database and a relational database: a data
provenance perspective 2010 In Proceedings of the 48th annual Southeast regional conference Conference

SQL support over MongoDB using metadata 2013 International Journal of Scientific and Research Publications Journal

Comparative analysis of nosql (mongodb) with mysql database 2015 International Journal of Modern Trends in Engineering and Research Journal

A comprehensive comparison of SQL and MongoDB databases 2015 International Journal of Scientific and Research Publications Journal

Performance comparison of in-memory and disk-based databases using
transaction processing performance council (TPC) benchmarking 2018 Journal of Internet and Information. Systems Journal

ANALYSIS AND COMPARISON OF DOCUMENT-BASED DATABASES
WITH SQL RELATIONAL DATABASES: MONGODB VS MYSQL 2018 Proceedings of the International Conference

onInformation Technologies Conference

Performance Analysis of RDBMS and No SQL Databases: PostgreSQL,
MongoDB and Neo4 2018 3rd International Conference and Workshops on Recent Advances and

Innovations in Engineering (ICRAIE) Conference

Comparison of query performance in relational a non-relation databases 2019 13th International Scientific Conference on Sustainable, Modern and
Safe Transport(TRANSCOM) Conference

Closing the functional and performance gap between SQL and NoSQL 2016 In Proceedings of the 2016 International Conference on Management
of Data Conference

Migration from rdbms to column-oriented nosql: Lessons learned and
open problems 2018 In Proceedings of the 7th International Conference on

Emerging Databases Conference

A performance evaluation of open source graph databases 2014 In Proceedings of the first workshop on Parallel programming for
analytics applications Conference

Labeled Property Graphs: SQL or NoSQL? 2019 Ivannikov Memorial Workshop (IVMEM) Conference

Big Data Cogn. Comput. 2023, 7, 97 27 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

Graph Schema Storage in SQL Object-Relational Database and NoSQL
Document-Oriented Database: A Comparative Study, 2019 in International Conference Europe Middle East & North Africa

Information Systems and Technologies to Support Learning Conference

Graph-Based Denormalization for Migrating Big Data from SQL Database
to NoSQL Database 2019 In Intelligent Communication Technologies and Virtual

Mobile Networks Conference

The use of a graph-based system to improve bibliographic information
retrieval: System design, implementation, and evaluation 2017 Journal of the Association for Information Science and Technology Journal

A study on data input and output performance comparison of MongoDB
and PostgreSQL in the big data environment 2015 In 2015 8th International Conference on Database Theory and

Application (DTA) Conference

Comparison of SQL, NoSQL and NewSQL databases for internet of things 2016 IEEE Bombay Section Symposium (IBSS) Conference

Data Migration from Relational Database to MongoDB 2019 Global Journal of Computer Science and Technology Journal

Modeling MongoDB with relational model 2013 In 2013 Fourth International Conference on Emerging Intelligent Data
and Web Technologies Conference

Automatic mapping of MySQL databases to NoSQL MongoDB 2016 in 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS) Conference

Migrating from SQL to NOSQL Database: Practices and Analysis 2018 in 2018 International Conference on Innovations in Information
Technology (IIT) Conference

Data adapter for querying and transformation between SQL and
NoSQL database 2016 Future Generation Computer Systems. Journal

Migration of healthcare relational database to NoSQL cloud database for
healthcare analytics and management 2019 Healthcare Data Analytics and Management, Other

A framework for migrating relational datasets to NoSQL 2015 International Conference On Computational Science Conference

Transformation of SQL system to NoSQL system and performing data
analytics using SVM 2017 In 2017 International Conference on Trends in Electronics and

Informatics (ICEI) Conference

Correlation Aware Technique for SQL to NoSQL Transformation 2014 7th International Conference on Ubi-Media Computing
and Workshops Conference

SQL to NoSQL transformation system using data adapter and analytics 2017 IEEE International Conference on Technological Innovations in
Communication, Control and Automation (TICCA) Conference

Integration and virtualization of relational SQL and NoSQL systems
including MySQL and MongoDB 2014 International Conference on Computational Science and

Computational Intelligence Conference

Big Data Cogn. Comput. 2023, 7, 97 28 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

NoSQL real-time database performance comparison 2018 International Journal of Parallel, Emergent and Distributed Systems Journal

MongoDB and Oracle NoSQL: A technical critique for design decisions 2016 International Conference on Emerging Trends in Engineering,
Technology and Science (ICETETS) Conference

Nosql database: New era of databases for big data analytics-classification,
characteristics and comparison 2013 ARVIX NA

Query Response Time Comparison NOSQLDB MONGODB with
SQLDB Oracle 2015 Jurnal Ilmiah Teknologi Informasi Journal

Relative scalability of NoSQL databases for genotype data manipulation. 2018 Revista de Informática Teórica e Aplicada - RITA Journal

Scalable SQL and NoSQL data stores 2011 ACM Sigmod Record Other

SQL-to-NoSQL schema denormalization and migration: a study on content
management systems 2015 IEEE International Conference on Systems, Man, and Cybernetics Conference

SQL & NoSQL Databases 2019 Other Other

Integration of Relational and NoSQL Databases 2018 In Asian Conference on Intelligent Information and Database Systems. Other

Literature Review on Database Design Testing Techniques 2019 Advances in Intelligent Systems and Computing Other

Database engines: Evolution of greenness 2018 Journal of Software: Evolution and Process Conference

BASE analysis of NoSQL database 2015 Future Generation Computer Systems Journal

Evaluation of ACE properties of traditional SQL and NoSQL big
data systems 2019 In Proceedings of the 34th ACM/SIGAPP Symposium on

Applied Computing Conference

Adaptive trade-off between consistency and performance in data replication 2017 Software: Practice and Experience Other

Automatic SQL-to-NoSQL schema transformation over the MySQL and
HBase databases 2015 IEEE International Conference on Consumer Electronics-Taiwan Conference

Analyzing and Comparison of NoSQL DBMS 2018 International Scientific-Practical Conference Problems
of Infocommunications Conference

A performance evaluation of in-memory databases 2017 Journal of King Saud University Computer and Information Science Journal

MapReduce: simplified data processing on large clusters 2008 Communications of the ACM Journal

Database technologies in the world of big data 2015 In Proceedings of the 16th International Conference on Computer
Systems and Technologies Conference

Big Data Cogn. Comput. 2023, 7, 97 29 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

Map-reduce-merge: simplified relational data processing on large clusters 2007 In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data Conference

MRShare: sharing across multiple queries in MapReduce 2010 Proceedings of the VLDB Endowment Conference

A Comparison of NoSQL and SQL Databases over the Hadoop and Spark
Cloud Platforms using Machine Learning Algorithms 2018 IEEE International Conference on Consumer

Electronics-Taiwan (ICCE-TW) Conference

Performance Analysis of Hadoop-Based SQL and NoSQL for Processing
Log Data 2015 International Conference on Database Systems for

Advanced Applications Conference

The impact of columnar file formats on SQL-on-hadoop engine
performance: A study on ORC and Parquet 2019 Concurrency and Computation: Practice and Experience Journal

Working with NoSQL Alternatives 2018 In Cloud Data Design, Orchestration, and Management Using
Microsoft Azure Conference

Evaluation of relational and NoSQL approaches for patient cohort
identification from heterogeneous data sources 2017 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM) Conference

Comparison of NoSQL Database and Traditional Database-An
emphatic analysis 2018 International Journal on Informatics Visualization Journal

Performance Comparison of Two Database Management Systems MySQL
vs. MongoDB 2018 Other Other

The Comparison of Processing Efficiency of Spatial Data for PostGIS and
MongoDB Databases 2019 In International Conference: Beyond Databases, Architectures

and Structures Conference

Geospatial big data: challenges and opportunities 2015 Big Data Research Journal

Considerations on geospatial big data 2016 IOP Conf. Series: Earth and Environmental Science Conference

Using convolutional networks and satellite imagery to identify patterns in
urban environments at a large scale 2017 In Proceedings of the 23rd ACM SIGKDD international conference on

knowledge discovery and data mining Conference

Report on the Seventh International Workshop on Location and the Web
(LocWeb 2017) 2017 IEEE International Conference on Big Data Conference

Internet of things as a methodological concept 2013 Fourth International Conference on Computing for Geospatial
Research and Application Conference

Twitter under crisis: Can we trust what we RT? 2010 In Proceedings of the first workshop on social media analytics, Conference

Big Data Cogn. Comput. 2023, 7, 97 30 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

Speeding up the clock in remote sensing: identifying the ‘black spots’ in
exposure dynamics by capitalizing on the full spectrum of joint high spatial
and temporal resolution

2017 Natural Hazards Journal

Geospatial Big Data and archaeology: Prospects and problems too great
to ignore 2017 Journal of Archaeological Science Journal

How Poor Is the ‘Poor Man’s Search Engine’? 2018 in International Conference: Beyond Databases, Architectures
and Structures Conference

Performance aspects of migrating a web application from a relational to a
NoSQL database 2015 In International Conference: Beyond Databases, Architectures

and Structures Conference

MySQL and NoSQL database comparison for IoT application 2016 IEEE International Conference on Advances in Computer
Applications (ICACA), Conference

A proposed performance evaluation of NoSQL databases in the field of IoT 2018 8th International Conference on Computer Science and Information
Technology (CSIT) Conference

SQL or NoSQL? Contrasting approaches to the storage, manipulation and
analysis of spatio-temporal online social network data 2014 International Conference on Computational Science and

Its Applications Conference

Comparative analysis of relational and non-relational databases in the
context of performance in web applications 2017 International Conference: Beyond Databases, Architectures

and Structures Conference

Evaluation of XPath queries over XML documents using
SparkSQL framework 2017 International Conference: Beyond Databases, Architectures and

Structures, 2017 Conference

The multi-model databases–a review 2017 International Conference: Beyond Databases, Architectures
and Structures Conference

1.06 GIS Databases and NoSQL Databases 2017 Comprehensive Geographic Information Systems Other

Geographic information systems and science 2005 Other Other

Computational model for efficient processing of geofield queries 2009 Man-Machine Interactions, Springer Other

A data model for heterogeneous data integration architecture 2014 International Conference: Beyond Databases, Architectures
and Structures Conference

Efficient storage of big-data for real-time gps applications 2014 Fourth International Conference on Big Data and Cloud Computing Conference

An attempt to automate the simplification of building objects in
multiresolution databases 2015 International Conference: Beyond Databases, Architectures

and Structures Conference

Big Data Cogn. Comput. 2023, 7, 97 31 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

The extended structure of multi-resolution database, 2014 International Conference: Beyond Databases, Architectures
and Structures Conference

GISB: a benchmark for geographic map information extraction 2015 International Conference: Beyond Databases, Architectures
and Structures Conference

The importance of contextual topology in the process of harmonization of
the spatial databases on example BDOT500 2016 Baltic Geodetic Congress (BGC Geomatics) Conference

A Big Data processing strategy for hybrid interpretation of flood
embankment multisensor data 2016 Geology, Geophysics and Environment Journal

Evaluation of relational and NoSQL database architectures to manage
genomic annotations 2016 Journal of Biomedical Informatics Journal

SQL or NoSQL? Which Is the Best Choice for Storing Big Spatio-Temporal
Climate Data? 2018 International Conference on Conceptual Modeling Conference

Mysql spatial and postgis–implementations of spatial data standards 2011 Electronic Journal of Polish Agricultural Universities (EJPAU) Journal

Pro oracle spatial for oracle database 11 2008 Dreamtech Press Other

SQL versus NoSQL databases for geospatial applications 2017 IEEE International Conference on Big Data (Big Data) Conference

Exploring the Design Needs for the New Database Era 2018 Enterprise, Business-Process and Information Systems Modeling Other

Forensic investigation framework for the document store NoSQL DBMS:
MongoDB as a case study 2016 Digital Investigation Journal

Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB
for Real-Time Data Warehousing 2019 IEEE Acces Journal

Security issues in nosql databases 2011 IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications Conference

Cdport: A portability framework for nosql datastores 2015 Arabian Journal for Science and Engineering Journal

SeCloudDB: A Unified API for Secure SQL and NoSQL Cloud Databases 2019 In Proceedings of the 2019 3rd International Conference on Cloud and
Big Data Computing, Conference

A Survey on Approaches for Interoperability and Portability of Cloud
Computing Services 2014 the proceedings of the 4th International Conference on Cloud

Computing and Services Science (CLOSER 2014) Conference

Big Data Cogn. Comput. 2023, 7, 97 32 of 44

Table A1. Cont.

Title Publication Year Journal/Conference Name Category

Design patterns to enable data portability between clouds’ databases 2012 12th International Conference on Computational Science and
Its Applications Conference

Cdport: A framework of data portability in cloud platforms 2014 Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services Conference

Internet of things data storage infrastructure in the cloud using
NoSQL databases 2017 EEE Latin America Transactions Journal

Data management in cloud environments: NoSQL and NewSQL data stores 2013 Journal of Cloud Computing: Advances, Systems and Applications Journal

Cloud computing—The business perspective 2011 Decision Support System Journal

The cloudmdsql multistore system 2016 Proceedings of the 2016 International Conference on Management
of Data Conference

A semantic interoperability framework for cloud platform as a service 2011 IEEE Third International Conference on Cloud Computing Technology
and Science Conference

Cloud Computing Interoperability Approaches-Possibilities and Challenges 2012 Local Proceedings of the Fifth Balkan Conference in Informatics Conference

Cloud computing interoperability: the state of play 2011 IEEE Third International Conference on Cloud Computing Technology
and Science Conference

UML model of a standard API for cloud computing
application development 2019 9th International Conference on Electrical Engineering, Computing

Science and Automatic Control (CCE) Conference

Experiences in building a mOSAIC of clouds 2013 Journal of Cloud Computing, Advances, Systems and Applications Journal

Supporting the development and operation of multi-cloud applications:
The modaclouds approach 2013 15th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing Conference

Portability and interoperability between clouds: challenges and case study 2011 European Conference on a Service-Based Internet Conference

Simplifying MapReduce data processing 2013 International Journal of Computational Science and Engineering Journal

A common API for delivering services over multi-vendor cloud resources 2013 Journal of Systems and Software Journal

A survey of large scale data management approaches in cloud environments 2011 IEEE Communications Surveys and Tutorials Conference

Relational cloud: A database-as-a-service for the cloud 2011 MIT Journal

Database as a service (DBaaS) 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010) Conference

Private table database virtualization for dbaas 2011 Fourth IEEE International Conference on Utility and
Cloud Computing Conference

Big Data Cogn. Comput. 2023, 7, 97 33 of 44

Table A2. SQL and NoSQL Databases—Comparison Studies.

Performance Comparisons NoSQL Databases

Relational Databases [3,5–10,12–14,16,17,20,25,27,28,30,37,38,47,56,108]

Table A3. Main strength of Oracle relational database and MongoDB NoSQL database.

Properties Oracle RDBMS MongoDB

ACID X
BASE X
Large Data Scalability X
Data Sharding X X
Partitioning X X
Replication X X
Distributed X X
Vertical/Horizontal Vertical Horizontal
Schema Rigid Schema Schema-less/dynamic schema
Full SQL X
Indexing X X
Uni-Code Characters X X
Built-in MapReduce X
Maximum Value Size 4 KB 16 MB
Sharing Support X
Open Source/Licensed Licensed Open Source

Table A4. Databases used in each of the selected studies:.

PID Discussion/Performance Evaluations/Comparisons/Characteristics of SQL & NoSQL Databases
[11] Google Big Table, Amazon SimpleDB, Apache CouchDB, MongoDB, Cassandra, Hbase
[13] Cassandra, MongoDB, Couchbase
[14] SQL, Cassandra, CouchDB, DynamoDB, MongoDB, GraphDB
[15] MySQL, Oracle, SQL Server, PostgreSQL, Sybase, MongoDB, Redis
[23] MongoDB
[24] MySQL, MongoDB
[25] SQL Server, MongoDB
[26] MongoDB, MySQL
[27] MongoDB, Oracle
[28] MongoDB, RavenDB, CouchDB, Cassandra, HyperTable, CouchBase, MS-SQL Server Express
[29] Oracle, Neo4j
[30] Neo4j, Oracle
[31] Oracle, MongoDB
[32] MySQL, Neo4j
[34] MongoDB, MySQL
[36] SQL Server, In-memory TPC databases via HammerDB
[37] MongoDB, MySQL
[38] PostgreSQL, MongoDB, Neo4j
[39] SQL and NoSQL databases
[40] Oracle 12c, JSON, BSON, OSON
[42] Open Source Graph Databases
[43] PostgreSQL, H2 (Open Source lightweight Java RDMS), HBase, JanusGraph
[44] Oracle 11g, MongoDB
[46] Neo4j, MySQL
[47] MongoDB, PostgreSQL
[48] MongoDB, MySQL, VoltDB for IoT data used in sensor
[49] MySQL, MongoDB
[50] SQL to NoSQL MongoDB Migration
[51] MySQL, MongoDB

Big Data Cogn. Comput. 2023, 7, 97 34 of 44

Table A4. Cont.

PID Discussion/Performance Evaluations/Comparisons/Characteristics of SQL & NoSQL Databases
[52] MySQL, MongoDB
[54] MySQL, MongoDB
[55] MySQL, MongoDB
[56] MySQL to MongoDB transformation
[58] MySQL (JDBC driver), Cassandra (Simba’s Cassandra JDBC and ODBC)
[59] MySQL, MongoDB
[60] CouchBase, RethinkDB, MongoDB
[61] MongoDB and Oracle NoSQL

[62] Dynamo (Amazon), Voldmart (LinkedIn), Redis, BerkeleyDB, Riak, MongoDB, CouchDB, SimpleDB
(Amazon), DynamoDB, Neo4j, InfoGrid, Sones GraphDB, Infinite Graph

[63] MongoDB, Oracle
[64] CAP, ACID, BASE
[65] SQL and NoSQL databases characteristics
[67] CAP, ACID, BASE, NoSQL database categories discussions
[69] Literature Review on Database Design Testing Techniques (SQL & NoSQL databases)
[71] ACID Model Databases
[72] NoSQL BASE Analysis
[73] SQL & NoSQL Availability, Consistency and Efficiency properties
[74] SQL ACID & NoSQL BASE properties are discussed
[75] MySQL, Hbase databases
[76] NoSQL DBMSs, CAP, Aerospike, Cassandra, CouchDB, MongoDB
[77] In memory databases: MongoDB, Redis, Memcached, Cassandra, H2
[82] SQL to NoSQL databases over Hadoop and spark cloud
[83] PostgreSQL, MongoDB, MariaDB, Hbase Hadoop based analysis
[84] SQL on Hadoop, Columnar file format, Hive, SparkSQL
[86] MySQL, MongoDB, Cassandra, 8 de-identified patients datasets
[96] MySQL, MongoDB, Cassandra
[97] SQL and NoSQL databases characteristics, IoT, MySQL & MongoDB comparisons
[98] BASE, IoT, RDBMS, MongoDB, Cassandra
[99] PostGIS and MongoDB comparisons for spatial data
[100] PostgreSQL, Oracle, MongoDB in cloud platform for spatial data
[101] PostgreSQL, MongoDB, Cassandra for web applications
[103] ArangoDB, OrientDB, Couchbase server characteristics & comparisons, ACID, BASE
[104] Various databases models for geospatial data
[105] Heterogeneous data integration models and architectures have been investigated
[108] Efficient storage data model for GPS application
[110] Spatial databases, MRDB, Topographic database and WGS have been discussed
[113] GISB: Geo-information extraction framework
[114] Spatial databases inconsistencies
[115] Big geospatial data processing strategies
[116] MySQL, PostgreSQL, MongoDB, DbSNP database for genomic annotations.
[117] Investigated general data management platform for high-dimensional spatio-temporal data
[118] Spatial data standards: OGC OpenGIS and SQL/MM – PostgreSQL +PostGIS & MySQL Spatial
[119] Oracle 11g database for spatial data
[120] Azure SQL database, PostGIS, MongoDB, Azure DocumentDB, DBaaS for spatial data
[121] ACID, BASE, Database modeling & Design, SQL & NoSQL databases characteristics
[122] NoSQL MongoDB Case study
[123] Synthetic dataset, NoSQL MongoDB (semi-structured & structured data)
[124] Security features of MongoDB and Cassandra
[125] Cloud data portability framework (Unified APIs) for various NoSQL databases

Big Data Cogn. Comput. 2023, 7, 97 35 of 44

Table A5. Each DBMS with its DBMSID.

DBMSID DBMS-Name

0 AmazonSimpleDB

1 ApacheCouchDB

2 ArangoDB

3 AzureDocumentDB

4 AzureSQLdatabase

5 Cassandra

6 CoucHBase

7 CouchDB

8 DynamoDB

9 GoogleBigTable

10 GraphDB

11 H2

12 HBase

13 HyperTable

14 JanusGraph

15 MS-SQLServerExpress

16 MariaDB

17 Memcached

18 MongoDB

19 MySQL

20 Neo4j

21 Oracle11g

22 OracleNoSQL

23 OrientDB

24 PostGIS

25 PostgreSQL

26 RavenDB

27 Redis

28 RethinkDB

29 SQL

30 SQLServer

31 Sybase

Big Data Cogn. Comput. 2023, 7, 97 36 of 44

Table A6. Occurrences of a particular DBMS against other DBMSs based on Table A4 (Unbalanced data).

DBMSID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Predicted Result
0 0.05 0.05 0.01 0.01 0.02 0.10 0.05 0.05 0.03 0.08 0.03 0.01 0.07 0.04 0.00 0.04 0.00 0.02 0.21 0.01 0.00 0.00 0.00 0.03 0.03 0.01 MongoDB
1 0.05 0.05 0.01 0.01 0.01 0.10 0.05 0.05 0.03 0.07 0.03 0.01 0.07 0.03 0.00 0.04 0.00 0.02 0.21 0.01 0.00 0.00 0.00 0.05 0.03 0.01 MongoDB
2 0.05 0.05 0.01 0.01 0.01 0.10 0.05 0.05 0.03 0.06 0.03 0.01 0.06 0.03 0.01 0.03 0.00 0.02 0.20 0.01 0.00 0.00 0.00 0.07 0.03 0.01 MongoDB
3 0.05 0.05 0.01 0.01 0.01 0.10 0.05 0.05 0.02 0.06 0.03 0.01 0.06 0.03 0.01 0.03 0.00 0.02 0.20 0.01 0.00 0.00 0.00 0.08 0.03 0.01 MongoDB
4 0.05 0.05 0.01 0.01 0.01 0.10 0.05 0.05 0.02 0.05 0.02 0.01 0.06 0.03 0.01 0.03 0.00 0.01 0.20 0.01 0.00 0.00 0.00 0.08 0.03 0.01 MongoDB
5 0.04 0.04 0.01 0.01 0.01 0.11 0.05 0.05 0.02 0.05 0.02 0.02 0.06 0.03 0.01 0.03 0.00 0.02 0.20 0.02 0.00 0.00 0.00 0.06 0.03 0.02 MongoDB
6 0.04 0.04 0.01 0.01 0.01 0.11 0.05 0.05 0.02 0.04 0.02 0.02 0.06 0.03 0.01 0.03 0.00 0.02 0.21 0.02 0.00 0.00 0.00 0.04 0.03 0.02 MongoDB
7 0.04 0.04 0.01 0.01 0.01 0.11 0.05 0.05 0.02 0.04 0.02 0.02 0.06 0.03 0.01 0.03 0.00 0.02 0.21 0.03 0.00 0.00 0.00 0.02 0.03 0.03 MongoDB
8 0.04 0.04 0.01 0.01 0.01 0.12 0.05 0.05 0.02 0.03 0.02 0.02 0.05 0.03 0.01 0.03 0.00 0.02 0.22 0.04 0.00 0.00 0.00 0.01 0.02 0.04 MongoDB
9 0.04 0.03 0.01 0.01 0.01 0.12 0.05 0.05 0.02 0.03 0.02 0.02 0.05 0.03 0.01 0.03 0.01 0.02 0.22 0.04 0.00 0.00 0.00 0.00 0.02 0.04 MongoDB
10 0.03 0.03 0.01 0.01 0.01 0.12 0.05 0.05 0.02 0.03 0.02 0.02 0.05 0.03 0.01 0.03 0.01 0.02 0.22 0.05 0.00 0.00 0.00 0.00 0.02 0.05 MongoDB
11 0.03 0.03 0.01 0.01 0.01 0.12 0.05 0.05 0.02 0.02 0.02 0.03 0.05 0.03 0.01 0.03 0.01 0.02 0.22 0.06 0.00 0.01 0.00 0.00 0.02 0.06 MongoDB
12 0.03 0.02 0.01 0.01 0.01 0.12 0.05 0.04 0.02 0.02 0.02 0.03 0.05 0.03 0.01 0.03 0.01 0.02 0.23 0.07 0.00 0.01 0.00 0.00 0.02 0.07 MongoDB
13 0.02 0.02 0.01 0.01 0.01 0.12 0.04 0.04 0.02 0.02 0.02 0.03 0.05 0.02 0.01 0.03 0.01 0.02 0.23 0.08 0.00 0.02 0.00 0.00 0.02 0.07 MongoDB
14 0.02 0.02 0.01 0.01 0.01 0.11 0.04 0.04 0.02 0.01 0.02 0.03 0.04 0.02 0.01 0.02 0.01 0.01 0.23 0.09 0.00 0.02 0.00 0.00 0.02 0.08 MongoDB
15 0.02 0.01 0.01 0.01 0.01 0.11 0.04 0.04 0.02 0.01 0.02 0.03 0.04 0.02 0.01 0.02 0.01 0.01 0.23 0.10 0.00 0.03 0.00 0.00 0.01 0.09 MongoDB
16 0.01 0.01 0.01 0.01 0.01 0.11 0.04 0.04 0.02 0.01 0.02 0.03 0.04 0.02 0.01 0.02 0.01 0.01 0.22 0.11 0.01 0.04 0.00 0.00 0.01 0.09 MongoDB
17 0.01 0.01 0.01 0.01 0.01 0.10 0.04 0.04 0.02 0.01 0.01 0.03 0.04 0.02 0.01 0.02 0.02 0.01 0.22 0.11 0.02 0.05 0.00 0.00 0.01 0.10 MongoDB
18 0.00 0.99 0.00 0.00 0.00 OracleNoSQL
19 0.01 0.01 0.01 0.01 0.01 0.09 0.04 0.03 0.01 0.01 0.01 0.03 0.03 0.02 0.01 0.02 0.02 0.01 0.21 0.12 0.04 0.07 0.00 0.00 0.01 0.10 MongoDB
20 0.00 0.00 0.01 0.01 0.01 0.08 0.03 0.03 0.01 0.00 0.01 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.21 0.12 0.06 0.08 0.00 0.00 0.01 0.10 MongoDB
21 0.00 0.00 0.01 0.01 0.01 0.08 0.03 0.03 0.01 0.00 0.01 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.20 0.12 0.06 0.09 0.00 0.00 0.01 0.10 MongoDB
22 0.00 0.00 0.01 0.01 0.01 0.07 0.03 0.03 0.01 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.21 0.12 0.06 0.10 0.00 0.00 0.01 0.09 MongoDB
23 0.00 0.00 0.01 0.01 0.01 0.07 0.03 0.03 0.01 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.21 0.12 0.05 0.10 0.00 0.00 0.01 0.09 MongoDB
24 0.00 0.00 0.01 0.01 0.01 0.07 0.03 0.03 0.01 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.22 0.12 0.03 0.11 0.00 0.00 0.00 0.09 MongoDB
25 0.00 0.00 0.01 0.01 0.01 0.07 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.22 0.11 0.02 0.11 0.00 0.00 0.00 0.09 MongoDB

Big Data Cogn. Comput. 2023, 7, 97 37 of 44

Table A7. Occurrences of a particular DBMS against other DBMSs based on Table A4 data and generated data (Balanced data).

DBMSID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Predicted Result
0 0.04 0.04 0.03 0.03 0.03 0.01 0.04 0.04 0.04 0.04 0.04 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.02 0.00 0.03 0.03 0.03 0.04 0.04 0.03 GoogleBigTable
1 0.04 0.04 0.03 0.03 0.03 0.01 0.04 0.04 0.04 0.04 0.04 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.04 0.04 0.03 GoogleBigTable
2 0.04 0.04 0.03 0.03 0.03 0.01 0.04 0.04 0.04 0.04 0.04 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.04 0.04 0.03 CouchDB
3 0.04 0.04 0.03 0.03 0.03 0.01 0.04 0.04 0.03 0.04 0.04 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.04 0.04 CouchDB
4 0.04 0.04 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 CouchDB
5 0.04 0.04 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 CouchDB
6 0.04 0.04 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 PostgreSQL
7 0.04 0.04 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.04 0.03 0.03 0.01 0.03 0.03 0.04 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 PostgreSQL
8 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 PostgreSQL
9 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.03 0.03 0.03 0.03 0.03 0.04 PostgreSQL
10 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
11 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
12 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
13 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.01 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
14 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
15 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
16 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
17 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
18 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
19 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
20 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
21 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
22 0.03 0.03 0.03 0.03 0.03 0.01 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
23 0.03 0.03 0.03 0.03 0.03 0.01 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
24 0.03 0.03 0.03 0.03 0.03 0.01 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL
25 0.03 0.03 0.03 0.03 0.03 0.01 0.04 0.04 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.04 PostgreSQL

Big Data Cogn. Comput. 2023, 7, 97 38 of 44

References
1. Siddiqa, A.; Hashem, I.A.T.; Yaqoob, I.; Marjani, M.; Shamshirband, S.; Gani, A.; Nasaruddin, F. A survey of big data management:

Taxonomy and state-of-the-art. J. Netw. Comput. Appl. 2016, 71, 151–166. [CrossRef]
2. Kong, X.; Shi, Y.; Yu, S.; Liu, J.; Xia, F. Academic social networks: Modeling, analysis, mining and applications. J. Netw. Comput.

Appl. 2019, 132, 86–103. [CrossRef]
3. Ordonez, C. Optimization of Linear Recursive Queries in SQL. IEEE Trans. Knowl. Data Eng. 2009, 22, 264–277. [CrossRef]
4. Obasanjo, D. Building scalable Databases: Denormalization, the NoSQL movement and Digg. 2009.
5. Strozzi, C. NoSQL—A Relational Database Management System. 2007–2010. Available online: http//www.strozzi.it/cgi-bin/

CSA/tw7/I/en_US/nosql/Home%20Page (accessed on 13 November 2019).
6. George, S. NoSQL—NOT ONLY SQL. Int. J. Enterp. Comput. Bus. Syst. 2013, 2.
7. Brewer, E.A. Towards robust distributed systems. In PODC; Inktomi: Foster City, CA, USA, 2000; Volume 7.
8. Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud

computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [CrossRef]
9. Rao, B.T. A Study on Data Storage Security Issues in Cloud Computing. Procedia Comput. Sci. 2016, 92, 128–135.
10. Mansouri, Y.; Prokhorenko, V.; Babar, M.A. An automated implementation of hybrid cloud for performance evaluation of

distributed databases. J. Netw. Comput. Appl. 2020, 167, 102740. [CrossRef]
11. Ravi, K.; Khandelwal, Y.; Krishna, B.S.; Ravi, V. Analytics in/for cloud-an interdependence: A review. J. Netw. Comput. Appl. 2018,

102, 17–37. [CrossRef]
12. Wiese, L.; Waage, T.; Brenner, M. CloudDBGuard: A framework for encrypted data storage in NoSQL wide column stores. Data

Knowl. Eng. 2019, 126, 101732. [CrossRef]
13. Ribas, M.; Furtado, C.; de Souza, J.N.; Barroso, G.C.; Moura, A.; Lima, A.S.; Sousa, F.R. A Petri net-based decision-making

framework for assessing cloud services adoption: The use of spot instances for cost reduction. J. Netw. Comput. Appl. 2015,
57, 102–118. [CrossRef]

14. Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Parizi, R.M.; Choo, K.-K.R. Fog data analytics: A taxonomy and process model. J.
Netw. Comput. Appl. 2019, 128, 90–104. [CrossRef]

15. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Keele University: Keele,
UK, 2007.

16. Dyba, T.; Kitchenham, B.A.; Jorgensen, M. Evidence-based software engineering for practitioners. IEEE Softw. 2005, 22, 58–65.
[CrossRef]

17. Hosseinzadeh, S.; Rauti, S.; Laurén, S.; Mäkelä, J.-M.; Holvitie, J.; Hyrynsalmi, S.; Leppänen, V. Diversification and obfuscation
techniques for software security: A systematic literature review. Inf. Softw. Technol. 2018, 104, 72–93. [CrossRef]

18. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An
update. Inf. Softw. Technol. 2015, 64, 1–18. [CrossRef]

19. Badampudi, D.; Wohlin, C.; Petersen, K. Experiences from using snowballing and Database searches in systematic literature
studies. In Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering, Nanjing,
China, 27–29 April 2015; p. 17.

20. Petersen, K.; Gencel, C. Worldviews, research methods, and their relationship to validity in empirical software engineering
research. In Proceedings of the 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th
International Conference on Software Process and Product Measurement, Ankara, Turkey, 23–26 October 2013; pp. 81–89.

21. Maxwell, J. Understanding and validity in qualitative research. Harv. Educ. Rev. 1992, 62, 279–301. [CrossRef]
22. Alsolai, H.; Roper, M. A systematic literature review of machine learning techniques for software maintainability prediction. Inf.

Softw. Technol. 2020, 119, 106214. [CrossRef]
23. Rodrigues, M.; Santos, M.Y.; Bernardino, J. Big data processing tools: An experimental performance evaluation. Wiley Interdiscip.

Rev. Data Min. Knowl. Discov. 2019, 9, e1297. [CrossRef]
24. Hou, B.; Qian, K.; Li, L.; Shi, Y.; Tao, L.; Liu, J. MongoDB NoSQL injection analysis and detection. In Proceedings of the 2016 IEEE

3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing, China, 25–27 June 2016; pp. 75–78.
25. Padhy, R.P.; Patra, M.R.; Satapathy, S.C. RDBMS to NoSQL: Reviewing some next-generation non-relational Database’s. Int. J.

Adv. Eng. Sci. Technol. 2011, 11, 15–30.
26. Győrödi, C.; Győrödi, R.; Pecherle, G.; Olah, A. A comparative study: MongoDB vs MySQL. In Proceedings of the 2015 13th

International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 11–12 June 2015; pp. 1–6.
27. Băzăr, C.; Iosif, C.S. The transition from rdbms to nosql. a comparative analysis of three popular non-relational solutions:

Cassandra, mongodb and couchbase. Database Syst. J. 2014, 5, 49–59.
28. Mukherjee, S. The Battle between NoSQL Databases and RDBMS; University of the Cumberlands: Williamsburg, KY, USA, 2019.
29. Chopade, R.; Pachghare, V.K. Ten years of critical review on database forensics research. Digit. Investig. 2019, 29, 180–197.

[CrossRef]
30. Kitchenham, B.; Brereton, P. A systematic review of systematic review process research in software engineering. Inf. Softw. Technol.

2013, 55, 2049–2075. [CrossRef]
31. Imam, A.A.; Basri, S.; Ahmad, R.; González-Aparicio, M.T. Literature Review on Database Design Testing Techniques. In

Proceedings of the Computer Science Online Conference, Faro, Portugal; 2019; pp. 1–13.

https://doi.org/10.1016/j.jnca.2016.04.008
https://doi.org/10.1016/j.jnca.2019.01.029
https://doi.org/10.1109/TKDE.2009.83
http//www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home% 20Page
http//www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home% 20Page
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2020.102740
https://doi.org/10.1016/j.jnca.2017.11.006
https://doi.org/10.1016/j.datak.2019.101732
https://doi.org/10.1016/j.jnca.2015.07.002
https://doi.org/10.1016/j.jnca.2018.12.013
https://doi.org/10.1109/MS.2005.6
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.17763/haer.62.3.8323320856251826
https://doi.org/10.1016/j.infsof.2019.106214
https://doi.org/10.1002/widm.1297
https://doi.org/10.1016/j.diin.2019.04.001
https://doi.org/10.1016/j.infsof.2013.07.010

Big Data Cogn. Comput. 2023, 7, 97 39 of 44

32. Han, J.; Haihong, E.; Le, G.; Du, J. Survey on NoSQL Database. In Proceedings of the 2011 6th International Conference on
Pervasive Computing and Applications, Port Elizabeth, South Africa, 26–28 October 2011; pp. 363–366.

33. Stonebraker, M. SQL Databases v. NoSQL Databases. Commun. ACM 2012, 53, 10–11. [CrossRef]
34. Parker, Z.; Poe, S.; Vrbsky, S.V. Comparing nosql mongodb to an sql db. In Proceedings of the 51st ACM Southeast Conference,

Savannah, GA, USA, 4–6 April 2013; p. 5.
35. Wei-Ping, Z.; Ming-Xin, L.I.; Huan, C. Using MongoDB to implement textbook management system instead of MySQL. In

Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks, Xian, China, 27–29 May
2011; pp. 303–305.

36. Boicea, A.; Radulescu, F.; Agapin, L.I. MongoDB vs. Oracle-Database comparison. In Proceedings of the 2012 Third International
Conference on Emerging Intelligent Data and Web Technologies, Bucharest, Romania, 19–21 September 2012; pp. 330–335.

37. Li, Y.; Manoharan, S. A performance comparison of SQL and NoSQL Databases. In Proceedings of the 2013 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 27–29 August 2013;
pp. 15–19.

38. Khan, W.; Ahmad, W.; Luo, B.; Ahmed, E. SQL Database with physical Database tuning technique and NoSQL graph Database
comparisons. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Chengdu, China, 15–17 March 2019. [CrossRef]

39. Khan, W.; Shahzad, W. Predictive Performance Comparison Analysis of Relational & NoSQL Graph Databases. Int. J. Adv.
Comput. Sci. Appl. 2017, 8, 523–530.

40. Faraj, A.; Rashid, B.; Shareef, T. Comparative study of relational and non-relations Database performances using Oracle and
MongoDB systems. J. Impact Factor 2014, 5, 11–22.

41. Vicknair, C.; Macias, M.; Zhao, Z.; Nan, X.; Chen, Y.; Wilkins, D. A comparison of a graph Database and a relational Database: A
data provenance perspective. In Proceedings of the 48th annual Southeast regional conference, Oxfrod, MS, USA, 15–17 April
2010; p. 42.

42. Khan, S.; Mane, V. SQL support over MongoDB using metadata. Int. J. Sci. Res. Publ. 2013, 3, 1–5.
43. Kumar, L.; Rajawat, S.; Joshi, K. Comparative analysis of nosql (mongodb) with mysql Database. Int. J. Mod. Trends Eng. Res.

2015, 2, 120–127.
44. Aghi, R.; Mehta, S.; Chauhan, R.; Chaudhary, S.; Bohra, N. A comprehensive comparison of SQL and MongoDB Databases. Int. J.

Sci. Res. Publ. 2015, 5, 1–3.
45. Ayub, M.B.; Ali, N. Performance comparison of in-memory and disk-based Databases using transaction processing performance

council (TPC) benchmarking. J. Internet Inf. Syst. 2018, 8, 1–8. [CrossRef]
46. Deari, R.; Zenuni, X.; Ajdari, J.; Ismaili, F.; Raufi, B. Analysis and Comparison of Document-Based Databases with Sql Relational

Databases: Mongodb vs Mysql. In Proceedings of the International Conference on Information Technologies (InfoTech-2018),
Varna, Bulgaria, 20–21 September 2018.

47. Sharma, M.; Sharma, V.D.; Bundele, M.M. Performance Analysis of RDBMS and No SQL Databases: PostgreSQL, MongoDB
and Neo4j. In Proceedings of the 2018 3rd International Conference and Workshops on Recent Advances and Innovations in
Engineering (ICRAIE), Rajasthan, India, 22–25 November 2018; pp. 1–5.

48. Čerešňák, R.; Kvet, M. Comparison of query performance in relational a non-relation Databases. Transp. Res. Procedia 2019,
40, 170–177. [CrossRef]

49. Liu, Z.H.; Hammerschmidt, B.; McMahon, D.; Liu, Y.; Chang, H.J. Closing the functional and performance gap between SQL and
NoSQL. In Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July
2016; pp. 227–238.

50. Kim, H.-J.; Ko, E.-J.; Jeon, Y.-H.; Lee, K.-H. Migration from rdbms to column-oriented nosql: Lessons learned and open problems.
In Proceedings of the 7th International Conference on Emerging Databases, Panevezys, Lithuania, 26–27 April 2018; pp. 25–33.

51. McColl, R.C.; Ediger, D.; Poovey, J.; Campbell, D.; Bader, D.A. A performance evaluation of open source graph Databases. In
Proceedings of the First Workshop on Parallel Programming for Analytics Applications, Orlando, FL, USA, 16 February 2014;
pp. 11–18.

52. Anikin, D.; Borisenko, O.; Nedumov, Y. Labeled Property Graphs: SQL or NoSQL? In Proceedings of the 2019 Ivannikov Memorial
Workshop (IVMEM), Velikiy Novgorod, Russia, 13–14 September 2019; pp. 7–13.

53. El Mouden, Z.A.; Jakimi, A.; Hajar, M.; Boutahar, M. Graph Schema Storage in SQL Object-Relational Database and NoSQL
Document-Oriented Database: A Comparative Study. In Proceedings of the International Conference Europe Middle East
& North Africa Information Systems and Technologies to Support Learning, Marrakech, Morocco, 21–23 November 2019;
pp. 176–183.

54. Rathika, V. Graph-Based Denormalization for Migrating Big Data from SQL Database to NoSQL Database. In Proceedings of the
Intelligent Communication Technologies and Virtual Mobile Networks, Tirunelveli, India, 14–15 February 2019; pp. 546–556.

55. Zhu, Y.; Yan, E.; Song, I. The use of a graph-based system to improve bibliographic information retrieval: System design,
implementation, and evaluation. J. Assoc. Inf. Sci. Technol. 2017, 68, 480–490. [CrossRef]

56. Jung, M.-G.; Youn, S.-A.; Bae, J.; Choi, Y.-L. A study on data input and output performance comparison of MongoDB and
PostgreSQL in the big data environment. In Proceedings of the 2015 8th International Conference on Database Theory and
Application (DTA), Jeju Island, Republic of Korea, 28–25 November 2015; pp. 14–17.

https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1109/ITNEC.2019.8729264
https://doi.org/10.5897/JIIS2018.0106
https://doi.org/10.1016/j.trpro.2019.07.027
https://doi.org/10.1002/asi.23677

Big Data Cogn. Comput. 2023, 7, 97 40 of 44

57. Fatima, H.; Wasnik, K. Comparison of SQL, NoSQL and NewSQL Databases for internet of things. In Proceedings of the 2016
IEEE Bombay Section Symposium (IBSS), Maharashtra, India, 21–22 December 2016; pp. 1–6.

58. Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw.
Comput. Appl. 2019, 140, 1–22. [CrossRef]

59. Singh, A. Data Migration from Relational Database to MongoDB. Glob. J. Comput. Sci. Technol. 2019.
60. Zhao, G.; Huang, W.; Liang, S.; Tang, Y. Modeling MongoDB with relational model. In Proceedings of the 2013 Fourth International

Conference on Emerging Intelligent Data and Web Technologies, Washington, DC, USA, 9–11 September 2013; pp. 115–121.
61. Stanescu, L.; Brezovan, M.; Burdescu, D.D. Automatic mapping of MySQL Databases to NoSQL MongoDB. In Proceedings of the

2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016;
pp. 837–840.

62. Yassine, F.; Awad, M.A. Migrating from SQL to NOSQL Database: Practices and Analysis. In Proceedings of the 2018 International
Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, 18–19 November 2018; pp. 58–62.

63. Liao, Y.-T.; Zhou, J.; Lu, C.-H.; Chen, S.-C.; Hsu, C.-H.; Chen, W.; Jiang, M.-F.; Chung, Y.-C. Data adapter for querying and
transformation between SQL and NoSQL database. Futur. Gener. Comput. Syst. 2016, 65, 111–121. [CrossRef]

64. Tomar, D.; Bhati, J.P.; Tomar, P.; Kaur, G. Migration of healthcare relational Database to NoSQL cloud Database for healthcare
analytics and management. In Healthcare Data Analytics and Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–87.

65. Rocha, L.; Vale, F.; Cirilo, E.; Barbosa, D.; Mourão, F. A Framework for Migrating Relational Datasets to NoSQL 1. Procedia Comput.
Sci. 2015, 51, 2593–2602. [CrossRef]

66. Ghule, S.; Vadali, R. Transformation of SQL system to NoSQL system and performing data analytics using SVM. In Proceedings
of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017;
pp. 883–887.

67. Hsu, J.C.; Hsu, C.H.; Chen, S.C.; Chung, Y.C. Correlation Aware Technique for SQL to NoSQL Transformation. In Proceedings
of the 2014 7th International Conference on Ubi-Media Computing and Workshops, Washington, DC, USA, 12–14 July 2014;
pp. 43–46.

68. Solanke, G.B.; Rajeswari, K. SQL to NoSQL transformation system using data adapter and analytics. In Proceedings of the 2017
IEEE International Conference on Technological Innovations in Communication, Control and Automation (TICCA), Chennai,
India, 6 April 2017; pp. 59–63.

69. Lawrence, R. Integration and virtualization of relational SQL and NoSQL systems including MySQL and MongoDB. In Proceed-
ings of the 2014 International Conference on Computational Science and Computational Intelligence, Kunming, China, 15–16
November 2014; Volume 1, pp. 285–290.

70. Pereira, D.A.; de Morais, W.O.; Pignaton de Freitas, E. NoSQL real-time Database performance comparison. Int. J. Parallel
Emergent Distrib. Syst. 2018, 33, 144–156. [CrossRef]

71. Anand, V.; Rao, C.M. MongoDB and Oracle NoSQL: A technical critique for design decisions. In Proceedings of the 2016
International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India, 24–16
April 2016; pp. 1–4.

72. Moniruzzaman, A.B.M.; Hossain, S.A. Nosql Database: New era of Databases for big data analytics-classification, characteristics
and comparison. arXiv 2013, arXiv:1307.0191.

73. Simanjuntak, H.T.A.; Simanjuntak, L.; Situmorang, G.; Saragih, A. Query Response Time Comparison NOSQLDB MONGODB
with SQLDB Oracle. JUTI J. Ilm. Teknol. Inf. 2015, 13, 95–105. [CrossRef]

74. Almeida, A.L.; Schettino, V.J.; Barbosa, T.J.R.; Freitas, P.F.; Guimarães, P.G.S.; Arbex, W.A. Relative scalability of NoSQL Databases
for genotype data manipulation. Embrapa Gado Leite-Artig. Periódico Indexado 2018, 25, 93–100. [CrossRef]

75. Cattell, R. Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 2011, 39, 12–27. [CrossRef]
76. Lee, C.-H.; Zheng, Y.-L. SQL-to-NoSQL schema denormalization and migration: A study on content management systems. In

Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015;
pp. 2022–2026.

77. Meier, A.; Kaufmann, M.; Meier, A.; Kaufmann, M. Nosql databases. In SQL & NoSQL Databases: Models, Languages, Consistency
Options and Architectures for Big Data Management; Springer Vieweg: Wiesbaden, Germany, 2019; pp. 201–218.

78. Pokorný, J. Integration of Relational and NoSQL Databases. In Proceedings of the Asian Conference on Intelligent Information
and Database Systems, Dong Hoi, Vietnam, 19–21 March 2018; pp. 35–45.

79. Miranskyy, A.V.; Al-zanbouri, Z.; Godwin, D.; Bener, A.B. Database engines: Evolution of greenness. J. Softw. Evol. Process. 2017,
30, e1915. [CrossRef]

80. Chapple, M. The Acid Model. Available online: http//Databases.about.com/od/specificproducts/a/acid.htm (accessed on 26
February 2020).

81. Chandra, D.G. BASE analysis of NoSQL database. Futur. Gener. Comput. Syst. 2015, 52, 13–21. [CrossRef]
82. Gonzalez-Aparicio, M.T.; Younas, M.; Tuya, J.; Casado, R. Evaluation of ACE properties of traditional SQL and NoSQL big data

systems. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019;
pp. 1988–1995.

83. Sun, H.; Xiao, B.; Wang, X.; Liu, X. Adaptive trade-off between consistency and performance in data replication. Softw. Pract. Exp.
2017, 47, 891–906. [CrossRef]

https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1016/j.future.2016.02.002
https://doi.org/10.1016/j.procs.2015.05.367
https://doi.org/10.1080/17445760.2017.1307367
https://doi.org/10.12962/j24068535.v13i1.a392
https://doi.org/10.22456/2175-2745.79334
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1002/smr.1915
http//Databases.about.com/od/specificproducts/a/acid.htm
https://doi.org/10.1016/j.future.2015.05.003
https://doi.org/10.1002/spe.2462

Big Data Cogn. Comput. 2023, 7, 97 41 of 44

84. Lee, C.-H.; Zheng, Y.-L. Automatic SQL-to-NoSQL schema transformation over the MySQL and HBase Databases. In Proceedings
of the 2015 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 June 2015; pp. 426–427.

85. Kuzochkina, A.; Shirokopetleva, M.; Dudar, Z. Analyzing and Comparison of NoSQL DBMS. In Proceedings of the 2018
International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkov,
Ukraine, 9–12 October 2018; pp. 560–564.

86. Kabakus, A.T.; Kara, R. A performance evaluation of in-memory databases. J. King Saud Univ. Inf. Sci. 2017, 29, 520–525.
[CrossRef]

87. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
88. Pokorný, J. Database technologies in the world of big data. In Proceedings of the 16th International Conference on Computer

Systems and Technologies, Dublin, Ireland, 25–26 June 2015; pp. 1–12.
89. Yang, H.; Dasdan, A.; Hsiao, R.-L.; Parker, D.S. Map-reduce-merge: Simplified relational data processing on large clusters. In

Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2007;
pp. 1029–1040.

90. Nykiel, T.; Potamias, M.; Mishra, C.; Kollios, G.; Koudas, N. MRShare: Sharing across multiple queries in MapReduce. Proc.
VLDB Endow. 2010, 3, 494–505. [CrossRef]

91. Lee, C.-H.; Shih, Z.-W. A Comparison of NoSQL and SQL Databases over the Hadoop and Spark Cloud Platforms using Machine
Learning Algorithms. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Taichung, Taiwan, 19–21 May 2018; pp. 1–2.

92. Son, S.; Gil, M.-S.; Moon, Y.-S.; Won, H.-S. Performance Analysis of Hadoop-Based SQL and NoSQL for Processing Log Data. In
Proceedings of the International Conference on Database Systems for Advanced Applications, Hanoi, Vietnam, 20–23 April 2015;
pp. 293–299.

93. Ivanov, T.; Pergolesi, M. The impact of columnar file formats on SQL-on-hadoop engine performance: A study on ORC and
Parquet. Concurr. Comput. Pract. Exp. 2019, 32, e5523. [CrossRef]

94. Diaz, F.; Freato, R. Working with NoSQL Alternatives. In Cloud Data Design, Orchestration, and Management Using Microsoft Azure;
Springer: Cham, Switzerland, 2018; pp. 169–262.

95. Zeng, N.; Zhang, G.-Q.; Li, X.; Cui, L. Evaluation of relational and NoSQL approaches for patient cohort identification from
heterogeneous data sources. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Kansas City, MO, USA, 13–16 November 2017; pp. 1135–1140.

96. Lee, J.-G.; Kang, M. Geospatial Big Data: Challenges and Opportunities. Big Data Res. 2015, 2, 74–81. [CrossRef]
97. Liu, Z.; Guo, H.; Wang, C. Considerations on Geospatial Big Data. IOP Conf. Ser. Earth Environ. Sci. 2016, 46, 012058. [CrossRef]
98. Albert, A.; Kaur, J.; Gonzalez, M.C. Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environ-

ments at a Large Scale. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1357–1366.

99. Ahlers, D.; Wilde, E. Report on the Seventh International Workshop on Location and the Web (LocWeb 2017). ACM SIGIR Forum
2017, 51, 52–57. [CrossRef]

100. Bari, N.; Mani, G.; Berkovich, S. Internet of things as a methodological concept. In Proceedings of the 2013 Fourth International
Conference on Computing for Geospatial Research and Application, San Jose, CA, USA, 22–24 July 2013; pp. 48–55.

101. Mendoza, M.; Poblete, B.; Castillo, C. Twitter under crisis: Can we trust what we RT? In Proceedings of the First Workshop on
Social Media Analytics, Washington, DC, USA, 25 July 2010; pp. 71–79.

102. Aubrecht, C.; Meier, P.; Taubenböck, H. Speeding up the clock in remote sensing: Identifying the ‘black spots’ in exposure
dynamics by capitalizing on the full spectrum of joint high spatial and temporal resolution. Nat. Hazards 2017, 86, 177–182.
[CrossRef]

103. McCoy, M.D. Geospatial Big Data and archaeology: Prospects and problems too great to ignore. J. Archaeol. Sci. 2017, 84, 74–94.
[CrossRef]

104. Burzańska, M.; Wiśniewski, P. How Poor Is the ‘Poor Man’s Search Engine’? In Proceedings of the International Conference:
Beyond Databases, Architectures and Structures, Poznań, Poland, 18–20 September 2018; pp. 294–305.

105. Harezlak, K.; Skowron, R. Performance aspects of migrating a web application from a relational to a NoSQL Database. In
Proceedings of the International Conference: Beyond Databases, Architectures and Structures, Ustroń, Poland, 26–29 May 2015;
pp. 107–115.

106. Rautmare, S.; Bhalerao, D.M. MySQL and NoSQL Database comparison for IoT application. In Proceedings of the 2016 IEEE
International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 235–238.

107. Aya, A.-S.; Qattous, H.; Hijjawi, M. A proposed performance evaluation of NoSQL Databases in the field of IoT. In Proceedings of
the 2018 8th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 11–12 July 2018;
pp. 32–37.

108. Bartoszewski, D.; Piorkowski, A.; Lupa, M. The comparison of processing efficiency of spatial data for PostGIS and MongoDB
databases. In Proceedings of the Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and
Analysis: 15th International Conference, BDAS 2019, Ustroń, Poland, 28–31 May 2019; pp. 291–302.

https://doi.org/10.1016/j.jksuci.2016.06.007
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.14778/1920841.1920906
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1088/1755-1315/46/1/012058
https://doi.org/10.1145/3130332.3130342
https://doi.org/10.1007/s11069-015-1857-9
https://doi.org/10.1016/j.jas.2017.06.003

Big Data Cogn. Comput. 2023, 7, 97 42 of 44

109. Tear, A. SQL or NoSQL? In Contrasting approaches to the storage, manipulation and analysis of spatio-temporal online social
network data. In Proceedings of the International Conference on Computational Science and Its Applications, Guimaraes,
Portugal, 30 June–3 July 2014; pp. 221–236.

110. Fraczek, K.; Plechawska-Wojcik, M. Comparative analysis of relational and non-relational Databases in the context of performance
in web applications. In Proceedings of the International Conference: Beyond Databases, Architectures and Structures, Ustroń,
Poland, 30 May–2 June 2017; pp. 153–164.

111. Hricov, R.; Šenk, A.; Kroha, P.; Valenta, M. Evaluation of XPath queries over XML documents using SparkSQL framework. In
Proceedings of the International Conference: Beyond Databases, Architectures and Structures, Ustroń, Poland, 30 May–2 June
2017; pp. 28–41.

112. Płuciennik, E.; Zgorzałek, K. The multi-model Databases–A review. In Proceedings of the International Conference: Beyond
Databases, Architectures and Structures, Ustroń, Poland, 30 May–2 June 2017; pp. 141–152.

113. Yue, P.; Tan, Z. 1.06 GIS Databases and NoSQL Databases. Compr. Geogr. Inf. Syst. 2017, 50.
114. Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Science; John Wiley & Sons: Hoboken,

NJ, USA, 2005.
115. Bajerski, P.; Kozielski, S. Computational model for efficient processing of geofield queries. In Man-Machine Interactions; Springer:

Cham, Switzerland, 2009; pp. 573–583.
116. Chromiak, M.; Stencel, K. A data model for heterogeneous data integration architecture. In Proceedings of the International

Conference: Beyond Databases, Architectures and Structures, Ustron, Poland, 27–30 May 2014; pp. 547–556.
117. Akulakrishna, P.K.; Lakshmi, J.; Nandy, S.K. Efficient storage of big-data for real-time gps applications. In Proceedings of the 2014

IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, Australia, 3–5 December 2014; pp. 1–8.
118. Lupa, M.; Kozioł, K.; Leśniak, A. An attempt to automate the simplification of building objects in multiresolution Databases. In

Proceedings of the International Conference: Beyond Databases, Architectures and Structures, Ustroń, Poland, 26–29 May 2015;
pp. 448–459.

119. Kozioł, K.; Lupa, M.; Krawczyk, A. The extended structure of multi-resolution Database. In Proceedings of the International
Conference: Beyond Databases, Architectures and Structures, Ustron, Poland, 27–30 May 2014; pp. 435–443.

120. Wyszomirski, M. Przegląd możliwości zastosowania wybranych baz danych NoSQL do zarządzania danymi przestrzennymi.
Rocz. Geomatyki-Ann. Geomat. 2018, 16, 55–69.

121. Czerepicki, A. Perspektywy zastosowania baz danych NoSQL w inteligentnych systemach transportowych. Pr. Nauk. Politech.
Warsz. Transp. 2013, 92, 29–38.

122. Martins, P.; Cecílio, J.; Abbasi, M.; Furtado, P. GISB: A benchmark for geographic map information extraction. In Beyond Databases,
Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery; Springer: Cham, Switzerland, 2015;
pp. 600–609.

123. Inglot, A.; Koziol, K. The importance of contextual topology in the process of harmonization of the spatial Databases on example
BDOT500. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2–4 June 2016; pp. 251–256.

124. Chuchro, M.; Franczyk, A.; Dwornik, M.; Leśniak, A. A Big Data processing strategy for hybrid interpretation of flood embank-
ment multisensor data. Geol. Geophys. Environ. 2016, 42, 269–277. [CrossRef]

125. Schulz, W.L.; Nelson, B.G.; Felker, D.K.; Durant, T.J.S.; Torres, R. Evaluation of relational and NoSQL Database architectures to
manage genomic annotations. J. Biomed. Inform. 2016, 64, 288–295. [CrossRef] [PubMed]

126. Lian, J.; Miao, S.; McGuire, M.; Tang, Z. SQL or NoSQL? In Which Is the Best Choice for Storing Big Spatio-Temporal Climate
Data? In Proceedings of the International Conference on Conceptual Modeling, Xi’an, China, 22–25 October 2018; pp. 275–284.

127. Piórkowski, A. Mysql spatial and postgis–implementations of spatial data standards. EJPAU 2011, 14, 3.
128. Kothuri, R.; Godfrind, A.; Beinat, E. Pro Oracle Spatial for Oracle Database 11g; Dreamtech Press: New Delhi, India, 2008.
129. Baralis, E.; Dalla Valle, A.; Garza, P.; Rossi, C.; Scullino, F. SQL versus NoSQL Databases for geospatial applications. In Proceedings

of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3388–3397.
130. Roy-Hubara, N.; Sturm, A. Exploring the Design Needs for the New Database Era. In Enterprise, Business-Process and Information

Systems Modeling; Springer: Cham, Switzerland, 2018; pp. 276–290.
131. Yoon, J.; Jeong, D.; Kang, C.-H.; Lee, S. Forensic investigation framework for the document store NoSQL DBMS: MongoDB as a

case study. Digit. Investig. 2016, 17, 53–65. [CrossRef]
132. Mehmood, E.; Anees. T. Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB for Real-Time Data

Warehousing. IEEE Access 2019, 7, 134215–134225. [CrossRef]
133. Okman, L.; Gal-Oz, N.; Gonen, Y.; Gudes, E.; Abramov, J. Security issues in nosql databases. In Proceedings of the 2011 IEEE 10th

International Conference on Trust, Security and Privacy in Computing and Communications, Changsha, China, 16 November
2011; pp. 541–547.

134. Alomari, E.; Barnawi, A.; Sakr, S. CDPort: A Portability Framework for NoSQL Datastores. Arab. J. Sci. Eng. 2015, 40, 2531–2553.
[CrossRef]

135. Alomari, E.; Noaman, A. SeCloudDB: A Unified API for Secure SQL and NoSQL Cloud Databases. In Proceedings of the 2019 3rd
International Conference on Cloud and Big Data Computing, Oxford, UK, 28–30 August 2019; pp. 38–42.

136. Stravoskoufos, K.; Preventis, A.; Sotiriadis, S.; Petrakis, E.G.M. A Survey on Approaches for Interoperability and Portability of
Cloud Computing Services. In CLOSER; Technical University of Crete: Chania, Greece, 2014; pp. 112–117.

https://doi.org/10.7494/geol.2016.42.3.269
https://doi.org/10.1016/j.jbi.2016.10.015
https://www.ncbi.nlm.nih.gov/pubmed/27810480
https://doi.org/10.1016/j.diin.2016.03.003
https://doi.org/10.1109/ACCESS.2019.2941925
https://doi.org/10.1007/s13369-015-1703-0

Big Data Cogn. Comput. 2023, 7, 97 43 of 44

137. Shirazi, M.N.; Kuan, H.C.; Dolatabadi, H. Design patterns to enable data portability between clouds’ Databases. In Proceedings
of the 2012 12th International Conference on Computational Science and Its Applications, Salvador, Bahia, 18–21 June 2012;
pp. 117–120.

138. Alomari, E.; Barnawi, A.; Sakr, S. Cdport: A framework of data portability in cloud platforms. In Proceedings of the 16th
International Conference on Information Integration and Web-based Applications & Services, Singapore, 28–30 November 2014;
pp. 126–133.

139. Indu, I.; PM, R.A.; Bhaskar, V. Encrypted token based authentication with adapted SAML technology for cloud web services. J.
Netw. Comput. Appl. 2017, 99, 131–145.

140. Vanelli, B.; da Silva, M.P.; Manerichi, G.; Pinto, A.S.R.; Dantas, M.A.R.; Ferrandin, M.; Boava, A. Internet of Things Data Storage
Infrastructure in the Cloud Using NoSQL Databases. IEEE Lat. Am. Trans. 2017, 15, 737–743. [CrossRef]

141. Grolinger, K.; Higashino, W.A.; Tiwari, A.; Capretz, M.A. Data management in cloud environments: NoSQL and NewSQL data
stores. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 22. [CrossRef]

142. Marston, S.; Li, Z.; Bandyopadhyay, S.; Zhang, J.; Ghalsasi, A. Cloud computing—The business perspective. Decis. Support Syst.
2011, 51, 176–189. [CrossRef]

143. Kolev, B.; Bondiombouy, C.; Valduriez, P.; Jiménez-Peris, R.; Pau, R.; Pereira, J. The cloudmdsql multistore system. In Proceedings
of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 2113–2116.

144. Loutas, N.; Kamateri, E.; Tarabanis, K. A semantic Interoperability framework for cloud platform as a service. In Proceedings
of the 2011 IEEE Third International Conference on Cloud Computing Technology and Science, Washington, DC, USA, 29
November–1 December 2011; pp. 280–287.

145. Zhou, L.; Fu, A.; Yu, S.; Su, M.; Kuang, B. Data integrity verification of the outsourced big data in the cloud environment: A
survey. J. Netw. Comput. Appl. 2018, 122, 1–15. [CrossRef]

146. Kostoska, M.; Gusev, M.; Ristov, S.; Kiroski, K. Cloud Computing Interoperability Approaches-Possibilities and Challenges. In
BCI; Ss. Cyril and Methodius University: Skopje, Macedonia, 2012; pp. 30–34.

147. Loutas, N.; Kamateri, E.; Bosi, F.; Tarabanis, K. Cloud computing Interoperability: The state of play. In Proceedings of the 2011
IEEE Third International Conference on Cloud Computing Technology and Science, Washington, DC, USA, 29 November–1
December 2011; pp. 752–757.

148. Escalera, M.F.P.; Chavez, M.A.L. UML model of a standard API for cloud computing application development. In Proceedings of
the 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City,
Mexico, 26–28 September 2012; pp. 1–8.

149. Petcu, D.; Martino, B.D.; Venticinque, S.; Rak, M.; Máhr, T.; Lopez, G.; Brito, F.; Cossu, R.; Stopar, M.; Šperka, S.; et al. Experiences
in building a mOSAIC of clouds. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 12. [CrossRef]

150. Di Nitto, E.; da Silva, M.A.A.; Ardagna, D.; Casale, G.; Craciun, C.D.; Ferry, N.; Muntes, V.; Solberg, A. Supporting the
development and operation of multi-cloud applications: The modaclouds approach. In Proceedings of the 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 23–26 September 2013;
pp. 417–423.

151. Petcu, D. Portability and Interoperability between clouds: Challenges and case study. In Proceedings of the European Conference
on a Service-Based Internet, Poznan, Poland, 26–28 October 2011; pp. 62–74.

152. Liao, C.-S.; Shih, J.-M.; Chang, R.-S. Simplifying MapReduce data processing. Int. J. Comput. Sci. Eng. 2013, 8, 219–226. [CrossRef]
153. Silva, L.A.B.; Costa, C.; Oliveira, J.L. A common API for delivering services over multi-vendor cloud resources. J. Syst. Softw.

2013, 86, 2309–2317. [CrossRef]
154. Sakr, S.; Liu, A.; Batista, D.M.; Alomari, M. A Survey of Large Scale Data Management Approaches in Cloud Environments. IEEE

Commun. Surv. Tutor. 2011, 13, 311–336. [CrossRef]
155. Curino, C.; Jones, E.P.; Popa, R.A.; Malviya, N.; Wu, E.; Madden, S.; Balakrishnan, H.; Zeldovich, N. Relational Cloud: A

Database-as-a-Service for the Cloud; MIT Libraries: Boston, MA, USA, 2011.
156. Lehner, W.; Sattler, K.-U. Database as a service (DBaaS). In Proceedings of the 2010 IEEE 26th International Conference on Data

Engineering (ICDE 2010), Long Beach, CA, USA, 1–6 March 2010; pp. 1216–1217.
157. Kiefer, T.; Lehner, W. Private table Database virtualization for dbaas. In Proceedings of the 2011 Fourth IEEE International

Conference on Utility and Cloud Computing, Melbourne, Austalia, 5–8 December 2011; pp. 328–329.
158. Zafar, R.; Yafi, E.; Zuhairi, M.F.; Dao, H. Big data: The NoSQL and RDBMS review. In Proceedings of the 2016 International

Conference on Information and Communication Technology (ICICTM), Kuala Lumpur, Malaysia, 16–17 May 2016; pp. 120–126.
159. Sahatqija, K.; Ajdari, J.; Zenuni, X.; Raufi, B.; Ismaili, F. Comparison between relational and NOSQL Databases. In Proceedings

of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 216–221.

160. Alias, N.; Suhari, N.N.; Saipol, H.F.; Dahawi, A.A.; Saidi, M.M.; Hamlan, H.A.; Teh, C.R. Parallel computing of numerical schemes
and big data analytic for solving real life applications. Jurnal Teknologi. 2016, 78. [CrossRef]

161. Chang, M.-L.E.; Chua, H.N. SQL and NoSQL Database Comparison. In Proceedings of the Future of Information and Communi-
cation Conference, Vienna, Austria, 4–6 December 2018; pp. 294–310.

162. Frizzo-Barker, J.; Chow-White, P.A.; Mozafari, M.; Ha, D. An empirical study of the rise of big data in business scholarship. Int. J.
Inf. Manag. 2016, 36, 403–413. [CrossRef]

https://doi.org/10.1109/TLA.2017.7896402
https://doi.org/10.1186/2192-113X-2-22
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.jnca.2018.08.003
https://doi.org/10.1186/2192-113X-2-12
https://doi.org/10.1504/IJCSE.2013.055353
https://doi.org/10.1016/j.jss.2013.04.037
https://doi.org/10.1109/SURV.2011.032211.00087
https://doi.org/10.11113/jt.v78.9552
https://doi.org/10.1016/j.ijinfomgt.2016.01.006

Big Data Cogn. Comput. 2023, 7, 97 44 of 44

163. Chickerur, S.; Goudar, A.; Kinnerkar, A. Comparison of relational Database with document-oriented Database (mongodb) for big
data applications. In Proceedings of the 2015 8th International Conference on Advanced Software Engineering & Its Applications
(ASEA), Jeju Isalnd, Republic of Korea, 25–28 November 2015; pp. 41–47.

164. Kumar, M.S. Comparison of NoSQL Database and Traditional Database-An emphatic analysis. JOIV Int. J. Inform. Vis. 2018,
2, 51–55. [CrossRef]

165. Ansari, H. Performance Comparison of Two Database Management Systems MySQL vs. MongoDB; Umeå University: Umeå, Sweden,
2018.

166. Khan, W.; Raj, K.; Kumar, T.; Roy, A.M.; Luo, B. Introducing Urdu Digits Dataset with Demonstration of an Efficient and Robust
Noisy Decoder-Based Pseudo Example Generator. Symmetry 2022, 14, 1976. [CrossRef]

167. Roy, A.M.; Bhaduri, J. A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision. AI 2021,
2, 413–428. [CrossRef]

168. Roy, A.M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in
brain-machine interfaces. Biomed. Signal Process. Control. 2022, 74, 103496. [CrossRef]

169. Singh, A.; Raj, K.; Kumar, T.; Verma, S.; Roy, A.M. Deep Learning-Based Cost-Effective and Responsive Robot for Autism
Treatment. Drones 2023, 7, 81. [CrossRef]

170. Dhasade, S.D. Nosql Database. Available online: https://www.irjmets.com/uploadedfiles/paper/issue_10_october_2022/30598
/final/fin_irjmets1665589950.pdf (accessed on 11 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.30630/joiv.2.2.58
https://doi.org/10.3390/sym14101976
https://doi.org/10.3390/ai2030026
https://doi.org/10.1016/j.bspc.2022.103496
https://doi.org/10.3390/drones7020081
https://www.irjmets.com/uploadedfiles/paper/issue_10_october_2022/30598/final/fin_irjmets1665589950.pdf
https://www.irjmets.com/uploadedfiles/paper/issue_10_october_2022/30598/final/fin_irjmets1665589950.pdf

	Introduction
	State of the Problem
	Method

	Objectives and Research Questions
	Search Criteria
	Search Resources
	Search Strategy

	Selection Process and Criteria
	Inclusion Criteria
	Exclusion Criteria

	Data Collection and Extraction
	Data Analysis and Classification
	Validity Threats and Evaluations

	Results
	Discussion and Classification
	Research Gap
	Prediction and Occurrences of DBMSs against a Particular DBMS

	Conclusions
	Appendix A
	References

