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Abstract: The Online Roadshow, a new type of web application, is a digital marketing approach
that aims to maximize contactless business engagement. It leverages web computing to conduct
interactive game sessions via the internet. As a result, massive amounts of personal data are generated
during the engagement process between the audience and the Online Roadshow (e.g., gameplay
data and clickstream information). The high volume of data collected is valuable for more effective
market segmentation in strategic business planning through data-driven processes such as web
personalization and trend evaluation. However, the data storage and processing techniques used in
conventional data analytic approaches are typically overloaded in such a computing environment.
Hence, this paper proposed a new big data processing framework to improve the processing, handling,
and storing of these large amounts of data. The proposed framework aims to provide a better dual-
mode solution for processing the generated data for the Online Roadshow engagement process in both
historical and real-time scenarios. Multiple functional modules, such as the Application Controller,
the Message Broker, the Data Processing Module, and the Data Storage Module, were reformulated to
provide a more efficient solution that matches the new needs of the Online Roadshow data analytics
procedures. Some tests were conducted to compare the performance of the proposed frameworks
against existing similar frameworks and verify the performance of the proposed framework in
fulfilling the data processing requirements of the Online Roadshow. The experimental results
evidenced multiple advantages of the proposed framework for Online Roadshow compared to
similar existing big data processing frameworks.

Keywords: Online Roadshow; big data processing framework; Apache Spark; Apache Kafka

1. Introduction

In this era of digital business, various efforts are being made to maximize the impact of
contactless engagement. Business owners are trying to explore potential solutions to engage
their customers and foster alternative interaction. The pandemic changed marketing, and
marketing techniques shifted from the physical realm to online, resulting in consumers be-
coming more accepting of online interactions, especially during movement control periods
(i.e., lockdown periods), such as the Movement Control Order (MCO) in Malaysia [1] (and
many other countries). A lot of them adopted the virtual interaction platforms through
web applications such as e-commerce websites and virtual reality applications. The Online
Roadshow, a new type of web application, is a digital marketing approach that aims to
maximize contactless business engagement by leveraging web computing and to conduct
interactive game sessions via the internet [2]. The Online Roadshow generates massive
amounts of user preference data during the period of engagement with participants. The
varieties of interactive game data involve data on body movement, voice input, and I/O
(input/output) interfaces (e.g., keyboard and mouse) [3]. These data can be categorized
into two formats: semi-structured and unstructured (e.g., semi-structured game details and
unstructured bodily movement coordination information). This makes it more challenging
for traditional programming approaches to process the data [4].
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Additionally, the high volume and velocity of the data being generated renders tradi-
tional manual data processing insufficient [5]. To address these challenges in the Online
Roadshow, there is a need to improve the implementation of data processing with an
expected workload so that it can be cost-efficient; have high fault tolerance; and reduce data
inaccuracy, inconsistency, and noise to provide quality low-latency clustering outcomes
for a better user experience and improve the use of the user engagement data. Historical
and real-time big data analysis can enhance contactless business engagement by using big
data processing frameworks. Furthermore, big data analytics are crucial for improving the
accuracy of the business evaluation and real-time tactical decision-making [6–8].

The ever-growing volume of data exponentially increases the complexity of data
processing. Consequently, the concept of big data is introduced to handle and process the
massive data sets [9]. The conventional data processing approach is overloaded as it is
outrun by the fast advancement of many computing infrastructures [10]. Conventional
relational database or storage solutions, such as the MySQL database, are no longer suited
to handling gigabytes of data or larger amounts of data as they have long processing times
and lower levels of fault tolerance regarding long-term-running workloads. Hence, it is
difficult to perform big data analysis using the conventional data analytics approach as it is
inefficient due to the five Vs of big data: higher volume, velocity, variety, value, and lower
veracity [11,12].

Organizations are looking at building and operating data processing components that
can handle data volumes that are growing faster than the computer resource requirements.
New methods of implementing data processing tasks with an expected workload in a more
cost-efficient way, as well as with higher fault tolerance, are required [13]. Traditional
programming models, such as the message passing interface (MPI) and application pro-
gramming interface (API) definition using ad hoc standards [14], are no longer sufficient for
the efficient handling of big data [15]. Therefore, by leveraging advanced big data analysis
technologies such as Artificial Intelligence (AI) and Machine Learning, which require a
massive dataset to produce reliable output [16], improvements can be made to business
strategies and the decision-making process. The concept of big data processing has been
introduced to handle and process massive datasets, facilitating better connections between
the company and the market [17].

In this paper, a big data processing framework is proposed to provide a better approach
for the historical and real-time processing of engagement data from Online Roadshows.
The framework enhances the data processing capabilities of big data processing beyond
that of traditional programming models to ensure consistency and compatibility while also
streamlining processing. The proposed framework not only handles the complexities of
semi-structured and unstructured engagement data but it also introduces a pre-processing
method to transform the data into a unified semi-structured format that complies with
the Complex Event Processing (CEP) paradigm. Moreover, the framework incorporates
a dual-mode data processing approach that allows for the simultaneous management of
real-time and historical data. This enables a comprehensive analysis of the overall trend and
personalized engagement characteristics for each participant. Consequently, this means
that the framework could help improve the efficiency, accuracy, and responsiveness of the
strategic planning and decision-making processes for companies making use of the Online
Roadshow.

By processing the audience preference data of the Online Roadshow in real-time,
a targeted advertising approach can better convince the target audience of the value of
specific products or services that match their needs, achieving higher marketing effective-
ness [18,19] and a better user experience. Web personalization can provide a customized
web experience based on the past behaviors of customers, allowing advertisers to deliver a
more personalized targeted advertisements [20]. This allows advertisers to iterate relevant
marketing messages based on the specific behavioral patterns of consumers. This is pre-
dicted to be the future of advertising [21,22]. Historical data processing further facilitates
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the evaluation of marketing strategies and trends, enabling businesses to optimize the
placement of advertisements and achieve higher engagement rates.

This paper also presents a proof of concept by comparing the performance of the
proposed framework with existing big data processing frameworks. This comparison
demonstrated the effectiveness of the proposed framework in handling high volumes of
semi-structured data. This facilitates more cost-efficient and fault-tolerant data processing,
effectively reducing data inaccuracies, inconsistencies, and noise.

In the next section (Section 2), the background, terms, and concepts discussed in
the Introduction section will be elaborated. The literature related to big data processing
frameworks for Online Roadshows, the background of this study, various existing big
data processing frameworks, and the functional modules of big data processing are also
presented in the next section. The proposed framework will be presented in Section 3,
followed by the experimental environment setup and results in Section 4. In Section 5, the
experimental results are discussed to provide an in-depth analysis of the proposed frame-
work. Lastly, in Section 6, the work of the present study is summarized, and conclusions
are drawn.

2. Literature Review

This section starts by giving the background of this research work on Online Roadshow,
a new framework for online advertising. After that, the next subsection provides an
in-depth review of big data processing frameworks, their associated capabilities, and
functional modules. These include the Application Controller, the Message Broker, the
Data Processing Module, and the Data Storage approaches. This subsection also relates
these modules to the context of big data processing for the Online Roadshow, explaining
its benefits regarding real-time marketing.

2.1. Online Roadshow

The Online Roadshow is a digital interactive advertising campaign model that was pro-
posed in [2], developed in response to the COVID-19 (Coronavirus disease 2019) pandemic,
which forced individuals to remain socially distanced from one another in an attempt to
minimize the spread of the disease [23]. The pandemic disrupted conventional business
engagement, as business owners could no longer interact with their customers directly. The
framework leverages the web computing power and ubiquitous internet connectivity to
achieve higher levels of business engagement in virtual ways, using the VARK (Visual, Au-
dio, Reading and Writing, and Kinesthetic) Learning Model to overcome the ineffectiveness
of non-face-to-face interaction [24].

The framework allows business owners to integrate their product- or service-specific
advertising components dynamically into the roadshow’s activities. The VARK Learning
Model is embedded in the interactive games through the use of graphical content, audio
content, and interactive content to implement audio visual, reading/writing, or kinesthetic
modalities. The interactive games attract participants through various dynamic pieces of
content, facilitating the potential exploration of audience preference information, such as
audience demographic data and clickstream data. The data analytics module collects and
processes the data collected in real-time. The module then generates responsive feedback
for business owners through various computing techniques, such as classification and
clustering, to provide cues on how to improve user experience [20].

The main purpose of implementing the big data processing approach in the Online
Roadshow is to reduce the data inaccuracy, inconsistency, and noise to provide a quality
low-latency clustering outcome for a better user roadshow experience. This is in line with
similar works like the D-Impact, a pre-processing data algorithm that achieves higher
clustering quality by removing noise and outliers [25]. In leveraging the real-time big data
processing technique on the clustering procedure, low-latency personalization solutions,
such as real-time web personalization, are made possible. Instead of recommending general
advertising content to the audience, real-time web personalization can provide a more
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customized web experience to the individual users based on their past web interactions [20].
Advertising will become more personalized and targeted, meaning that advertisers can
iterate highly relevant advertising messages based on the specific behaviors and needs of
consumers. This is the future of advertising [21,22]. Companies are now expected to have
a better comprehension of current market trends thanks to the implementation of highly
accurate targeted advertising, which allows them to persuasively convince their target
audience of the value of their products or services [17,18].

In an optimal personalized advertising scenario, an audience is expected to receive
dynamic advertising content based on their preferences, deduced from their behavioral
data. The use of clustering techniques on the data to discover customer groups can
improve customer experience through personalization. For instance, the navigational data
extracted from the weblog can be processed into useful information that can be sent through
newsletters with highly relevant suggestions to increase audience satisfaction [20]. Research
on targeted advertising indicates that it is an effective marketing approach for a multitude
of products and services [26,27]. A successful example of this is Facebook, which leverages
targeted advertising techniques to allow business owners to place highly specific targeted
advertisements in front of different groups and audiences based on their demographical
information, such as hobbies, current living area, age, and gender [28]. This leads to
consumers receiving advertisements relevant to their needs, potentially boosting their
desire to purchase the advertised product or service (purchase intention) [29]. This process
can significantly lower marketing costs and is less time-consuming [30]. Another example
of this is the experiment conducted in [31], which assessed the efficacy of chocolate product
advertisements targeted towards children. The study proved the efficacy of the advertising
approach by evidencing how in enhanced purchase intention and built a positive brand
reputation.

2.2. Existing Real-Time Big Data Processing Frameworks

With the evolution of rapidly growing information technology, conventional data stor-
age approaches, such as the relational database, are no longer sufficient for the processing
of large chunks of data, as they have unacceptably long processing times. Thus, in the 1980s,
a big data processing framework, as illustrated in Figure 1, was introduced to eliminate the
inefficiency of the conventional data processing framework [32–34]. Data storage modules
using the distributed data storage approach on distributed file systems provide more effec-
tive data balancing and have fault tolerance capabilities with higher I/O bandwidths. They
support higher data loads by improving the structure of the framework, helping to store
large amounts of data in a more responsive manner [35]. For example, the Apache Kafka
approach of the message broker module intends to improve the inefficiency of traditional
polling-based communication, facilitating enhancements in data persistence, volume, ve-
locity, and fault tolerance capability [31]. On the other hand, the Apache Spark approach
allows for faster data processing compared to the conventional approach, leveraging the
MapReducing programming model, which has parallel programming capabilities [36].

Real-time decision-making capabilities fulfil the requirements of time-critical data
processing. For instance, the authors of [37] leveraged the decision-making capabilities of a
real-time big data processing framework to manufacture preventive maintenance systems.
Device data are collected and further processed to evaluate the health conditions of the
manufactured devices using Apache Storm. Moreover, Apache Spark was implemented
by the authors of [38] to analyze data collected by the second by multiple sensors in
an experimental environment to monitor the operating conditions of a turbine syngas
compressor, giving the engineers sufficient time to identify the solutions to potential
problems.

On the other hand, the authors of [2] explored the possibility of analyzing environmen-
tal monitoring data by using the Apache Spark as middleware to reduce the complexity
of the underlying platform, easing the integration of the data processing module and the
other devices. Additionally, Apache Spark has been implemented as a stability monitor in
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power systems to analyze the data generated by sensors during power production [39]. The
stability index is calculated in real-time with an expected minimized latency for monitoring
purposes to reduce the possibility of issues such as black out and islanding. A real-time
thief identification procedure also helps to locate the crime location by closely monitoring
the power grids [39].
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Table 1 summarizes the four existing applications of big data processing based on the
different modules, as indicated in Figure 1. In order to achieve optimal results for real-time
big data processing, several criteria, such as time criticality, data processing mode (e.g.,
batch and stream processing), hardware specification, etc., have to be considered.

Table 1. Existing applications of the big data processing framework.

Research works Jabbar, A. et al. (2019) [37]. Yu, W. et al. (2020) [38]. Akanbi, A., and
Masinde, M. (2020) [2].

Shyam R. et al. (2015)
[39].

Domain Marketing decisions Manufacturing a
predictive alert system

Environment
monitoring

Power grid
monitoring

Data Diversity

Transactions (Customer
detail, CRM, Orders,

Products, IOT, Social Media,
Clickstream, Web Data,

Search History

Manufacturer device
health data (sensor

data)
Weather Data Power Grid Stability,

Thief Identification

Application
Controller Module Cloud based controller OPC UA Accessible through

Kafka API N/A
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Table 1. Cont.

Data Processing
Module Apache Storm Apache Spark Apache Spark Apache Spark

Message Broker
Module N/A N/A Apache Kafka Apache Kafka

Data Storage
Module HDFS Hadoop Distributed

File System (HDFS) N/A Apache Cassandra

2.3. Application Controller

In web applications, the controller translates user requests or interactions from the
view in the Graphic User Interface (GUI) into the operations that the model will perform.
Regarding the handling of user interaction requests from the data source, a request handler
is responsible for properly processing and handling the request based on the payload [40,41].
The three existing application controller approaches mentioned in Table 1 indicate the im-
portant role of the application controller in four different big data processing applications.
Regarding Online Roadshows, a cloud-based application controller is necessary as it eases
information exchange communication between the client and server. In comparison, the
Open Platform Communication (OPC UA) approach used in [38] requires middleware in
the web communication process [42]. Two commonly used protocols in communicating
and exchanging information between digital devices over a network [43] are taken into
consideration for the purpose of message exchange in the cloud-based application con-
troller implementation. They are the SOAP (Simple Object Access Protocol) and REST
(Representational State Transfer) protocol.

According to the authors of [44], SOAP is a stateless and one-way message exchange
messaging protocol that facilitates communication by using the Hypertext Transfer Protocol
(HTTP) and Extensible Markup Language (XML) between SOAP nodes. On the other hand,
REST is a client-server architecture that allows clients to send requests for further processing
in the server [43]. REST does not limit request parameter to XML, supporting various
formats such as JSON (JavaScript Object Notation), strings, etc. With its support for RESTful
API (Representational state transfer application program interface) and CEP, Spring MVC’s
ability to process data without using a proxy service makes it more suitable for use in
Online Roadshows. The framework provides better component linking capabilities (e.g.,
Spark, Kafka, and HDFS) and has a higher-level code usability.

Table 2 shows the comparison between SOAP and REST in terms of coding flexibility
and scalability, payload format, payload weight, and bandwidth utilization. These protocols
affect the overall operation of big data processing. Leveraging REST protocol, REST API
provides an entry point for the exchange of messages. It provides high code flexibility and
scalability because there is no need to change the code on the client-side when there are
changes in the API. Furthermore, REST API is expected to consume less bandwidth due to
its lightweight data format (e.g., JSON-formatted string, etc.).

Table 2. Comparison between SOAP and REST.

Factor SOAP REST

Code flexibility and scalability Requires changes in client-side code when
the service interface changes occur [44].

Requires no change in client-side code when the
REST interface changes [45].

Payload format Always returns XML data [45]. Supports various types of data formats [45] (e.g.,
JSON, Multipart, etc.).

Payload weight Has a heavy payload compared to REST
[44,45].

REST is lightweight as it is meant for the transfer
of lightweight data over a commonly known

interface (e.g., URI) [44].

Bandwidth consumption
Consumes more bandwidth as SOAP

responses may require more than 10 times
more bytes compared to REST [44].

Requires less bandwidth because the response is
lightweight (e.g., JSON-formatted string) [45].
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Thus, the REST protocol is more suitable in the case of Online Roadshow data exchange.
The requirement of the CEP paradigm allows for information from the event to flow through
IT architecture, makes the data available for processing in real-time prior to storage [46–48].
This provides data transformation or data pre-processing to increase the efficiency of
message processing.

2.4. Message Broker

A message broker module provides great help in the asynchronous conversation for in-
memory data storage processes such as continuous-site following, information examination,
IOT data handling, and data logging [49]. The message broker involves two parties: the
sender (producer)—who produces the data sent to the message channel—and the receiver
(consumer)—who listens to the specific “topic” on the message channel. The four widely
used message broker approaches (Apache Kafka, RabbitMQ, NATS/NATS Streaming, and
Redis) are listed in Table 3 to summarize their differences in terms of throughput, latency,
data persistence, delivery guarantee, and order guarantee [49–51].

Table 3. Comparison among existing message broker approaches.

Author Bhat, P. J., and D, P. (2020) [49] Hegde, R. G., and S, N. G. (2020)
[50] P. Dobbelaere and K. S. Esmaili. (2017) [52]

Domain Messaging System Messaging System Publish/Subscription System
Approach RabbitMQ NATS/NATS Streaming Apache Kafka Apache Kafka Apache Kafka RabbitMQ Redis

Throughput Medium To High High High High High Medium To High Very High

Latency Low-Medium Higher than RabbitMQ
and NATS Streaming Low Low Low Low-Medium Very Low

Data Persistence In-memory/Disk Depends on configuration OS Cache OS Cache OS Cache In-memory/Disk In-memory
Delivery Guarantee Yes Yes Yes Yes Yes Yes No

Order Guarantee Yes Yes Yes Yes Yes Yes Yes

In a typical message broker scenario, a request will be sent to a specific consumer that
is awaiting incoming requests from the producers. It consistently handles the message
by storing them into an intermediate storage (e.g., disk or memory cache) rather than
following the traditional message-processing scenario of directly disposing the message.
This eliminates the inefficiency of traditional polling-based communication and eases
the message exchange process, increasing the reliability of the web application’s request
handling of incoming messages (e.g., job request).

Apache Kafka could be introduced as the message broker to properly handle the data.
It processes data in the Kafka topic sequentially over the distributed nodes and handles
incoming data with high fault-tolerance. Research conducted in [49,50] indicates that
Apache Kafka has a higher throughput and lower latency when configured correctly (e.g.,
appropriate number of topic and replication). Moreover, Apache Kafka keeps messages in
the OS cache to offer a message delivery guarantee. Additionally, messages ingested by
Apache Kafka will remain in a specific sequence in each topic to guarantee the order of the
messages.

On the other hand, RabbitMQ could be introduced as a message-queuing approach
for the message broker. It leverages Advanced Message Queuing Protocol (AMQP) to
send or receive data from one or more queues, empowering stable and non-concurrent
message exchange between applications. RabbitMQ is expected to have medium to high
performance in terms of throughput as it relies on acknowledgement (ACK) handshakes
and message replication. Message (data) are stored in either memory or disk without
steadiness guarantee for message persistence. As RabbitMQ implies optional acknowledge
handshakes, it offers delivery guarantee over queue setup [49,50,53].

NATS is an open-source centralized and lightweight message broker that is designed
for message exchange between PC applications and administrations. It offers very high
throughput performance as it is an elite local application. Moreover, NATS has a higher
latency compared to RabbitMQ due to its high idleness. Regarding message persistence,
it offers strong storage ability with configurable settings. NATS supports both message
delivery guarantee and message order guarantee.
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Last but not least, Redis is a message broker that supports in-memory data storage,
implementing the publish/subscribe paradigm. It relies on Redis channel, an intermediate
storage space, to store published data from the publisher and to allow consumers to
consume data from it. Redis has very high throughput performance and a relatively
low latency as it stores data in cache memory for rapid access. Redis also supports the
configuration of storage, where data persistence can be achieved through in-memory cache
or the order of disks, providing a message order guarantee. However, Redis does not offer
a message delivery guarantee [50].

Thus, Apache Kafka is considered a better option regarding Online Roadshow imple-
mentation. It provides high flexibility in fine-tuning for better performance and integration
configuration (e.g., intermediate storage space, message delivery, and sequence guarantee)
in big data processing.

2.5. Data Processing Approaches

As listed in Table 4, there are two common data processing approaches: batch pro-
cessing and stream processing (micro-batch processing). The batch processing approach is
efficient in processing high volumes of data collected from time to time. On the other hand,
the stream processing approach performs data processing with a small window of recent
data at one time. This approach can be real-time or near-real-time when there are delays
between the time of transaction and changes are propagated [54].

A batch processing approach processes stored data collected from time to time and
commonly used Hadoop MapReduce to cluster data into categories, resulting in a longer
and more relaxed time interval (e.g., seconds, minutes, or even hours) [10]. The stream data
processing, which is a micro-version of the batch processing approach, processes a small
window of data immediately and is expected to perform significantly faster than its batch
processing counterpart [55]. However, the stream data processing approach (e.g., Spark
Stream) is computationally constrained (by resource utilization and configurations, etc.)
and is clearly characterized by real-time operation. The stream data processing approach
can perform statistical analytics on the fly, which is a particularly important characteristic
for streaming data such as user-generated content (in the form of routine user interactions)
because the data is arriving continuously at high speed.

Table 4. Characteristics of batch and stream processing.

Batch Processing Stream Processing

Data Source [10] Huge amounts of data being
stored in the data warehouse.

Real-time streaming data or
micro-batch data.

Processing Time
[56]

Longer processing times (e.g.,
seconds, minutes, hours, or days).

Respond interval [57]
(e.g., milli-, micro-, or nano seconds).

Scenario [56] Historical data. System requires low latency (e.g., IOT
with sensor, etc.).

Examples Hadoop, Traditional
Programming Model. Apache Spark, Apache Storm.

Apache Hadoop, Apache Spark, and Apache Storm are three popular data processing
approaches. Apache Hadoop was introduced by Google and involves the use of a paral-
lel programming framework [58,59] to perform batch-processing with a Map-Reducing
programming model. It provides data storage solutions with distributing capabilities.
However, Apache Hadoop can only process stored data and does not support real-time
data processing. Therefore, approaches that perform real-time data processing, such as
Apache Spark and Apache Storm, have been subsequently introduced.

Apache Spark allows for the implementation of a data processing module in various
languages, significantly boosting the flexibility of framework development. It offers a data
processing performance that is 10–100 times faster than Apache Hadoop [60], providing
more responsive processing results. Aside from its data processing capabilities, Apache
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Spark also provides data visualization through Graph X and machine learning capabilities
when using the Spark MLib plugin. Thus, it is more functional than Apache Hadoop.
Additionally, Apache Spark also supports a variety of data from different file systems,
while Apache Hadoop only supports the HDFS. Moreover, Apache Spark is likely to be
more suitable than Hadoop in performing iterative tasks due to the latter’s performance
limitations (for more details, see Aziz et al. [61]).

Apache Storm is introduced by the Apache foundation to support real-time computing.
It consists of multiple components that allow for the transfer of data from one data stream
to another in a distributed and relatively reliable manner using the directed acyclic graph
(DAG) that is topologically ordered. The edges are the data flows, and the vertices are the
components. The Spout refers to the data stream source that allows the topology to retrieve
data from external data publishers. They are transformed into tuples to emit streams
along edges of the directed graph. After that, the processing nodes (called the Bolts) will
receive the Spout tuples, consuming input streams to perform further data processing,
consequently creating new streams [62–64].

For Online Roadshows, Apache Spark is the most suitable data processing approach,
as the Online Roadshow deals mainly with past data (historical data) rather than real-time
data streams. Although Spark Stream performs micro-batching rather than actual real-time
processing, it is convenient for the Online Roadshow as it can perform data visualization
and use machine learning through the plugin available in the Apache Spark environment
(e.g., GraphX and SparkML) to better support the interpretation of low-level data analysis.

2.6. Data Storage

Relational databases, such as MySQL and Oracle DB [65], are being used in traditional
data processing frameworks to store data for effective data centralization and efficient
storage management [65]. However, as the huge amount of data goes beyond a certain size,
the capabilities of the relational database in collecting, storing, and analyzing the data in
the traditional structure become inefficient [66]. It is no longer sufficient for processing the
huge amount of data, and the data integrity in the relational manner is compromised [65].
Therefore, Google proposed the Apache Hadoop (HBase) to parallelize the data processing
capability of big data by distributing the load to accelerate the computation and reduce
latency inefficiencies [67].

A distributed file system with HDFS is a flexible, adaptive, and clustered method of
managing the data files in a big data environment with a NoSQL solution. It is a data service
that offers the unique set of capabilities required for handling large volumes of data with
a high velocity [64]. In HDFS, files and directories are represented as the NameNodes. It
records the metadata attributes, such as access permission, modification details, namespace,
access histories, and disk space quota, acting as the first contact for allocating the data
blocks containing the file. It will then read the respective blocks from the DataNode closest
to the client [68]. On the other hand, the DataNode that stores the data sends heartbeats
to the NameNode to ensure the DataNode is alive, and the replicated data is available
over the cluster [68]. Data Nodes are replicated over multiple nodes and accessed under
the control of the NameNode to ensure data integrity over the cluster and prevent file
corruption during failure [67].

On the other hand, Apache Cassandra offers high scalability, availability, and fault
tolerance through its replicational characteristics. It is designed to handle various types
of unstructured, structured, and semi-structured data. Apache Cassandra provides a
relational data storage design to allow key value storage, similar to the SQL relational
database with foreign key joins. In a Cassandra cluster, nodes are interconnected, and data
are distributed and communicated across each independent node in the cluster regardless
of its location. The data model of Cassandra is significantly distinct from other relational
database management models due to the fact that it supports key values stored in the
storage space [69].
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In the case of Online Roadshow implementation, a distributed file system is more
reliable since the data does not require key value storage and is expected to have higher
efficiency in data reading latency and data writing capability. Research conducted by
Jakkula et al. [69] indicates that Apache Cassandra can achieve slightly better performance
in the operation of updates involving small amounts of data; however, this results in a
higher latency when the amount of data increases significantly.

In this section, a comprehensive review of the big data processing framework for On-
line Roadshows was discussed, covering the functional modules and associated capabilities.
With these in mind, the next section presents the proposed framework in detail.

3. Proposed Framework

The main purpose of developing the proposed framework is to facilitate personalized
participant engagement in the Online Roadshow using dual-mode big data processing.
The proposed framework, as illustrated in Figure 2 consists of four mains components:
The Application Controller module, the Message Broker module, the Big Data Processing
module, and the Data Storage module. These modules are designed to improve the
processing of participant engagement data for the Online Roadshow.
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A big data processing framework for the Online Roadshow should be capable of
working in dual-mode (red line is the Historical Data Processing scenario and green line
is the Real-time Data Processing scenario) to analyze responsive (real-time) and batch
(historical) data concurrently. It needs to serve different purposes that require faster and
slower responses. For example, real-time big data processing provides a more accurate
personalized targeted advertising experience, while historical data processing provides
highly efficient trend analyses. For real-time data processing, the proposed framework
leverages Apache Kafka as the message broker to handle the large amount of incoming
data on the participant’s preference. Apache Spark is used as the data processor.

By implementing the real-time data processing, web personalization can be used
to deliver a customized web experience based on the past user behaviors [20], allowing
advertisers to deliver more personalized and targeted advertisements. This practice gives
a great opportunity for advertisers to iterate messages and disseminate content that is in
alignment with the customer’s tastes [21,22]. Furthermore, the historical data processing
capabilities of the proposed framework provide quantitative feedback for the Online
Roadshow event, offering a clearer understanding of the effectiveness of advertisements
and the efficiency of the overall marketing strategy. For instance, analyzing the historical



Big Data Cogn. Comput. 2023, 7, 123 11 of 24

data helps businesses to identify strategic advertisement spaces and content that may
generate higher traffic flow.

Considering the CEP, the proposed framework leverages Spring MVC as its Applica-
tion Controller module, which provides high-level big data processing system manipulation.
It is highly important to improve its system capabilities to process a variety of data types
(e.g., JSON String, files, etc.) and for its data processing manipulation. At the same time,
it also provides module integration capabilities (e.g., approach configuration, loggings,
and multiple methods of data feeding), making the connection between the models imple-
mented in the proposed framework highly flexible and providing API with REST protocol,
which supports a variety of data-over-client-server message communication. In order
to ingest, process, store, and retrieve the data produced during the Online Roadshow
event, four models, consisting of the Online Roadshow Data Processing API, Data Analysis
Historical Data Request API, Data Transformation algorithm, and Data Storage API are
incorporated into the Application Controller module.

In the Online Roadshow, web engagement and interactive game data such as page visit,
gameplay preferences, and gameplay performance data are collected during participant
interaction sessions. Thus, the Online Roadshow Data Processing API provides data feed
ingestion from the Online Roadshow to the Message Broker module for real-time data
input and further processing. The pseudocode of the Online Roadshow Data Processing
API is shown in Figure 3. It consumes the data from the message broker and validates
the data to ensure a valid semi-structured JSON data format before processing them via
the Data Transformation Algorithm, as shown in Figure 4, to transform the data into a
key-value pair for the subsequent data extraction process. Invalid data will be ignored and
the next record will be processed instead. Then, the pre-processed data will be processed by
the Data Processing module and further broadcast to the message broking channel, which
allows subscribers in the message broker to retrieve the real-time data processing result
while storing the data in the Data Storage module in the background.
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At the same time, historical data ingested from the Message Broker will be stored into
the Data Storage module through the Data Storage API, as shown in Figure 5. By analyzing
the historical data, advertisers can enhance decision-making efficiency by fine-tuning
advertising strategies in the Online Roadshow to facilitate better engagement through
providing a personalized web experience. In the case of the historical data retrieval,
the Data Analysis Historical Data Request API, as shown in Figure 6, will retrieve the
data within the specific requested time frame from the Data Storage module to analyze
the overall participant preferences in terms of the sequence of page visit and gameplay
behavioral characteristics. After that, the data retrieved will be pre-processed by the Data
Transformation Algorithm for further processing by the big data processing module. Finally,
the processed data will be returned through the Data Analysis Historical Data Request API
to the Data Analytics Dashboard in the Online Roadshow for visualization.
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The Message Broker module in the proposed framework leverages the Apache Kafka
as the request handler. Apache Kafka is used to construct the real-time data streaming
pipelines that function as a reliable data handling stream of records from the client applica-
tions, such as the sequence of page visit and the game play behavioral characteristics.

There will be two models in the Request Handler module that process the real-time
data processing requests. The Receiver (Consumer) model is the data entry point and the
Sender (Producer) model returns the processed result.

As a result, the proposed framework can process multiple streams of data on the back-
ground in the multi-threaded manner without interrupting the user processes, effectively
enhancing the user experience.

The Data Processing module intends to analyze the audience preference data in a
more responsive manner to allow the system to achieve higher accuracy in the targeted
content of the dynamic advertising of the Online Roadshow implementation. For instance, a
responsive analysis increases the efficiency of the product/service promotion because it can
deliver preferable content to the audience, potentially influencing the consumer’s idea of
brand preference and their intention to purchase the product or service. The Data Processing
module in the proposed framework implements the Apache Spark with a MapReducing
approach. Figure 2 illustrates a Spark Cluster that allows the spark application to run sets
of processes independently. For resource optimization, the Spark Cluster can connect to
various types of resource managers to optimize the resource allocation process.

During an Online Roadshow event, personal preference data, such as user’s page visits,
gameplay behavioral characteristics, and gameplay performance, are collected accordingly
for each participant. Thus, the Data Storage module is able to store and retrieve the data of
a high volume and velocity while maintaining the data integrity, data persistence, and fault
tolerance capability, lowering the risk of losing valuable participant information.

4. Experiment and Results
4.1. Experiment Setup

As discussed in the previous section, the proposed framework aims to provide a
personalized participant Online Roadshow engagement by utilizing a dual-mode big data
processing module. In this section, the experiments we performed and their corresponding
results will be presented. The experiments involved simulating the real-time (via the
Message Broker module) and historical data (via the Data Storage module) processing
scenarios. This section presents the experimental evaluation of the proposed framework in
terms of throughput, latency, and scalability. This section also provides a detailed analysis



Big Data Cogn. Comput. 2023, 7, 123 14 of 24

of the experimental results, highlighting the strengths and weaknesses of the proposed
framework and identifying areas for future improvement.

Specifically, this study aims to evaluate the performance of the proposed framework
in comparison to 10 existing combinations of big data processing approaches, as listed
in Table 5. Among them, combination #1 to #3 simulated the Historical Data Processing
scenarios, where data are retrieved from Data Storage module and processed in batches
within the specific time range. Apache HDFS and Apache Cassandra were implemented
as the Data Storage module. Data were retrieved from the Data Storage module in the
different throughputs and passed to the Data Processing module (e.g., Apache Spark and
Apache Storm).

On the other hand, combination #4 to #10 simulated the Real-time Data Processing
scenario, where data are ingested and processed within the Data Processing module
through the message broker to the message subscribers. Four message brokers (e.g., Redis,
RabbitMQ, Kafka, and NATS) were leveraged as the data source. Data were ingested from
the Message Broker module and processed by the Big Data Processing module (e.g., Apache
Spark and Apache Storm) accordingly with specific data throughput broadcasted via the
Message Broker module for message topic/channel subscribers in real-time. Kafka API
was not used in the experiment as it does serve the RESTful API.

The experiments were conducted on a standalone device with Intel Core i5-8250U
@1.6 Ghz and 12 GB 2666 Mhz DDR4 memory running on Windows 10. The average result
of the commonly used metrics (listed in Table 6) were computed for each combination.
These evaluation metrices include the execution time, memory usage, CPU usage, and
throughput. These measures assessed the performance of the data processing mechanism
and their resource consumption requirements.

Table 5. Combinations of existing big data processing frameworks.

Module Scenario
Application
Controller

Module
Message Broker Module Data Processing

Module Storage Module

Experiments Real-Time Historical Spring MVC Kafka RabbitMQ Redis NAT/NATS Spark Storm HDFS Cassandra

#1
√ √ √ √

#2
√ √ √ √

#3
√ √ √ √

#4
√ √ √ √

#5
√ √ √ √

#6
√ √ √ √

#7
√ √ √ √

#8
√ √ √ √

#9
√ √ √ √

#10
√ √ √ √

Table 6. Commonly used performance metrices.

Metrices Description Formula

Execution time [61,70–72] - A period in which an event is actively operating. Start time of request–End time of request.

Memory Usage [70,72–75] - Memory consumption during task execution. N/A

CPU Usage
[61,70,74–76]

- The identical CPU performance scale.
- The system spent in different modes of the execution since boot.

- How much CPU time is used per minute to process a job in
percent.

N/A

Throughput
[61,70,77,78]

- Units of information that can be processed in a given amount of
time.

T = n
time

Where:
n = number of nodes running

time = predefined period (typically seconds)
Or

T = Total Byte process
Test execution time

Data were collected for the Online Roadshow in two sessions between 5 July 2021
to 31 August 2021 and 12 July 2022 to 21 July 2022, with a total of 504 participants. A
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total of 1.97 Gb of Online Roadshow records comprising the participant information,
timestamps, gameplay details (e.g., accuracy of the kinesthetic-oriented gameplay and
words being used in the audio-oriented game that would help to identify one’s personal
preferences) was collected in both campaigns of the Online Roadshow. A snippet of the
dataset used in the experiment is illustrated in Figure 7, containing 12 fields that provide a
comprehensive view of the game results within the Online Roadshow. These fields include
Game_Result_ID, Result, Game, Result_create_time, Result_update_time, Campaign_ID,
Activity_ID, Participant_ID, User_ID, game_data, device, and type.
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The Game_Result_ID serves as a distinctive identifier for each game session, ensur-
ing easy tracking and identification. The Result field denotes the game score achieved
during the session, quantifying the participant’s performance. The Game field, currently
reserved for future utilization, holds potential for additional game-related information.
Timestamps are captured through the Result_create_time field, indicating the precise mo-
ment of recording the game session result. The Result_update_time, currently reserved for
administrative purposes within an associated portal, remains slated for future implementa-
tion. To establish a connection with the Online Roadshow campaign, the Campaign_ID
field associates each game session with a specific campaign. The Activity_ID field signifies
the type of game played during the session, enabling categorization and differentiation.
Participant-related information is captured through the Participant_ID and User_ID fields.
Participant_ID represents the user name or identifier, while User_ID provides a unique
identifier for individual tracking. The game_data field holds intricate details of the game
session, encompassing a blend of unstructured and semi-structured data. It includes com-
ponents such as body coordination matrices, game performance metrics, and play attempts,
providing comprehensive insights into participant gameplay behavior and performance.
Additional fields in the dataset include device—which indicates the type of device used
during the game session (e.g., desktop or mobile)—and type—a reserved field intended for
potential future use.

During the experiments, the message broker acted as the entry point to access and
trigger a processing request in the proposed framework. Data collected in the Online
Roadshow were fed into the message broker programs (e.g., Kafka, Redis, RabbitMQ, and
NAT) in different volumes, ranging from 100 to 2567 records, to simulate the scenario of
real-time data processing. On the other hand, data were retrieved from the Data Storage
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module (e.g., HDFS and Cassandra) to simulate the Historical Data Processing scenario.
The data ingested were then processed by the data processing module (e.g., Spark and
Storm). Since Apache Storm does not support batch processing, the Data Storage module
was used as the data source (instead of the Message Broker module) for the Historical Data
Processing scenario.

To accurately evaluate the performance of the proposed framework and the other
combinations, it is essential to use reliable tools to capture and monitor the usage data.
In this paper, Glowroot, a Java Virtual Machine (JVM) performance monitoring tool, was
utilized to capture the resource consumption and task execution data in a 5-s interval. This
allowed for a detailed review of the memory and CPU usage during task execution. The
captured data were then used to generate comprehensive performance comparison charts
among the big data processing framework combinations, with CPU usage, execution time,
and memory usage being among the key measures captured. The results of the performance
evaluation are presented in the next section.

4.2. Result

In this section, we present the results from our experiment to help facilitate a com-
parison between the combinations of the existing big data processing frameworks and
the proposed framework. The average time and resource consumption of the execution
of different throughputs from 100 to 2567 records for the two different scenarios were
measured in each experiment. The combinations that leveraged the Data Storage module
were categorized into the Historical Data Processing scenario, while the combinations that
involved the Message Broker module were categorized into the Real-time Data Processing
scenario.

4.2.1. Historical Data Processing Scenario

Figure 8 shows a comparison of the execution times for the proposed framework
and combinations #1, #2, and #3. The lower execution time indicates that this specific
combination can process the historical data from the Data Storage module quicker that
the others. Among the four frameworks shown in Figure 8, combination #2 (gray triangle)
presents the lowest time consumption (0.1468 s) when the throughput is 1500 and below.
However, the proposed framework (blue diamond) overtakes combination #2 when the
throughput is higher than 1500. The performance of the remaining combinations #1, #2,
and #3 shows insignificant changes in execution time when the throughput is lower than
1000, but significant changes occur when the throughput reaches 1000 and above.
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Figure 9 presents the results of the performance evaluation for the proposed framework
and the other combinations in terms of throughput and CPU usage. The lower CPU
consumption indicates better resource utilization, and the proposed framework (blue
diamond) demonstrates moderate CPU usage compared to the combinations (ranging from
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2.4% to 25.6%). Combination #2 (gray triangle) has the lowest CPU usage most of the time,
but when a higher data throughput of 2000 is tested, the proposed framework shows the
lowest CPU usage overall (18%). However, the proposed framework is found to have
higher CPU usage at a throughput of 2567 (25.6%). In contrast, combination #1 (orange
box) consumes the highest CPU usage most of the time. At a lower throughput of below
1000, there is no significant difference between the proposed framework and combinations
#1 and #3, but the difference becomes more noticeable at higher throughput levels (e.g.,
1000, 1500, 2000, and 2567).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 17 of 25 
 

 

Figure 8. Execution time comparison between combinations #1, #2, and #3 and the four frame-
works. 

Figure 9 presents the results of the performance evaluation for the proposed frame-
work and the other combinations in terms of throughput and CPU usage. The lower CPU 
consumption indicates better resource utilization, and the proposed framework (blue di-
amond) demonstrates moderate CPU usage compared to the combinations (ranging from 
2.4% to 25.6%). Combination #2 (gray triangle) has the lowest CPU usage most of the time, 
but when a higher data throughput of 2000 is tested, the proposed framework shows the 
lowest CPU usage overall (18%). However, the proposed framework is found to have 
higher CPU usage at a throughput of 2567 (25.6%). In contrast, combination #1 (orange 
box) consumes the highest CPU usage most of the time. At a lower throughput of below 
1000, there is no significant difference between the proposed framework and combina-
tions #1 and #3, but the difference becomes more noticeable at higher throughput levels 
(e.g., 1000, 1500, 2000, and 2567). 

 
Figure 9. CPU usage comparison between combinations #1, #2, and #3 and the four frameworks. 

Subsequently, the memory utilization of the proposed framework and the other com-
binations are compared in terms of their throughput. As shown in Figure 10, the proposed 
framework demonstrates moderate memory consumption, indicating better efficiency in 
memory utilization. Combination #3 is found to have almost similar memory consump-
tion to the proposed framework at certain throughputs, while combination #1 shows the 
lowest memory consumption at lower throughputs but consumes the highest amount of 
memory at higher throughputs. 

Figure 9. CPU usage comparison between combinations #1, #2, and #3 and the four frameworks.

Subsequently, the memory utilization of the proposed framework and the other com-
binations are compared in terms of their throughput. As shown in Figure 10, the proposed
framework demonstrates moderate memory consumption, indicating better efficiency in
memory utilization. Combination #3 is found to have almost similar memory consumption
to the proposed framework at certain throughputs, while combination #1 shows the lowest
memory consumption at lower throughputs but consumes the highest amount of memory
at higher throughputs.
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4.2.2. Real-Time Data Processing Scenario

Figure 11 illustrates a comparison regarding execution time for the Real-time Data
Processing scenario. A lower execution time indicates that the specific combination can
process data quickly before broadcasting the information into the Message Broker module
to its subscribers. It can be observed that the proposed framework has the shortest execution
time most of the time, except at lower throughputs of 100, 300, and 500 (0.63 s to 6.69 s).
However, combination #5 (gray triangle, from 1.06 s to 28.293 s) and #9 (blue plus, 1.64 s
to 7.65 s) have the longest and the second longest execution time most of the time (for all
throughputs). Aside from the proposed framework, combinations #5 and #9 showed a less
significant difference in terms of time consumption compared to combinations #1, #2, #3,
#4, #6, #7, #8, and #10.
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Figure 12 illustrates the relationship between throughput and CPU usage (in percent-
age) for the eight real-time data processing approaches. The proposed framework has
the second lowest CPU usage most of the time, and the lowest (10.15%) at the highest
throughput (2567). On the other hand, combination #4 (orange box) has the highest CPU
usage most of the time (e.g., at throughputs of 100, CPU usage is 4.9%, 300—7.9%, and
1000—18.64%). This is followed by combination #7 (blue star), which has the second highest
CPU usage most of the time (e.g., at throughputs of 1000, 1500, and 2000) and has the
highest CPU usage at the highest throughput (2567). CPU usage starts to show significant
changes when the throughput hits 500 and above.

Figure 13 illustrates the relationship between throughput and memory usage, mea-
sured in Mega Bytes (MB), for the eight real-time data processing approaches. Most of the
time and when throughput is higher than 1000, the proposed framework has the lowest
memory (from 664 MB to 958 MB). However, combination #10 (red dash) has highest
memory usage among the combinations (1951 MB to 2403 MB) almost all of the time.
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5. Discussion

After evaluating the performance of the Historical Data Processing scenario, it is clear
that the proposed framework outperforms all existing data processing frameworks in terms
of execution time. In the CPU usage, the proposed framework shows moderate CPU usage
among all the combinations when the throughput is low. However, it consumes the second
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and third highest memory among all other combinations, and the highest at a throughput
of 2567.

On the other hand, the experimental results clearly demonstrate that the proposed
framework has the potential to provide a highly efficient and effective solution for real-time
data processing in web personalization. The combination of Apache Kafka and Apache
Spark has proven to be highly effective in reducing latency and improving performance,
resulting in better resource utilization in terms of CPU and memory usage. The ability to
handle multiple streams of data in parallel processing has made the proposed framework
highly responsive and capable of providing a more personalized web experience. The
caching of persisted data in memory also improves the efficiency of the analysis, allowing
the framework to perform more efficiently when more data is being fed into the system.
Overall, the proposed framework shows great promise for enabling personalized advertis-
ing and targeted product recommendations, which can greatly enhance the user experience
and improve customer satisfaction.

Although the proposed framework did not perform as well as expected in all aspects
during the Historical Data Processing scenario, it demonstrated outstanding performance
in terms of execution time, outperforming all other combinations. This can be attributed to
the utilization of Apache Spark’s Resilient Distributed Datasets (RDD), which leverages
more CPU and memory usage to cache a large amount of data in a distributed manner,
resulting in higher efficiency in the Map-Reduce operation.

On the other hand, the proposed framework performs the best among all other combi-
nations in the Real-time Data Processing scenario. Although Apache Storm is commonly
used for real-time data processing, it may not be suitable for batch processing scenarios
since it cannot identify the final tuple in a queue or indicate the range of data indices
for further processing. Hence, these findings highlight the significance of the proposed
framework in supporting dual-mode data processing (both real-time and historical data)
for optimal performance.

In an Online Roadshow event, the dual-mode processing capability provides con-
current real-time and historical data processing. This allows the proposed framework to
process a massive volume of game page visits, gameplay behavioral characteristics, and
gameplay performances for each participant. The real-time data processing capability
is essential for providing responsive feedback, such as web personalization, while the
Data Storage module is capable of storing and retrieving data of a high volume and veloc-
ity while maintaining the data integrity, data persistence, and fault tolerance capability,
lowering the risk of losing valuable participant information.

At the same time, the historical data processing capability of the proposed framework
analyzes the overall trend of the advertisement, leading to a higher attention rate, which
consequently leads to a higher engagement level. With the aforementioned enhanced
data processing capabilities, a truly customer-centered Online Roadshow can be realized,
revolutionizing digital advertising practices.

6. Conclusions

The ever-growing volume of data production in this present era of technology has led
to massive amounts of data being generated. Providing higher efficiency in real-time big
data processing for Online Roadshows enables one to perform responsive decision-making
and allows for more effective real-time targeting and overall trend forecasting (via historical
data analysis) for an enhanced advertising experience. This is obviously very valuable for
businesses, particularly in terms of digital marketing, as it could influence the planning
of business strategies. This paper proposed a new dual-mode (real-time and historical)
big data processing framework to allow the Online Roadshow to provide more responsive
feedback and more efficient targeted advertising.

From the experimental results for the Historical Data Processing scenario, it was
revealed that the proposed framework achieved a lower execution time for processing
historical data at higher throughputs (0.1468 s). It also demonstrated moderate CPU usage
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(ranging from 2.4% to 25.6%) but higher memory consumption amidst higher throughputs.
Overall, the proposed framework is the most time-efficient.

On the other side, the performance analysis for the Real-time Data Processing scenario
revealed that the proposed framework exhibited a lower execution time, ranging from 0.63
s to 6.69 s at lower throughputs (100, 300, and 500). It demonstrated efficient CPU usage,
with the lowest usage being at the highest throughput of 2567 (10.15%). Additionally, the
proposed framework showcased lower memory usage, ranging from 664 MB to 958 MB,
compared to most combinations.

Looking towards the future, there is potential to expand the framework’s capabilities
so that it can support more formats and handle a wider range of data types generated in the
Online Roadshow, including raw media data such as image, video, and audio data. This
would involve enhancing the framework in terms of its functionality to process and analyze
the different data formats, allowing for more complex personal audience preferences to be
recognized and a more sophisticated level of personalization within the Online Roadshow.

Moreover, addressing security and privacy concerns related to engagement data is
essential. Implementing robust measures to ensure data confidentiality and integrity, such
as encryption, access controls, and secure storage mechanisms, should be a priority. This
safeguards the sensitive information of the participants and promotes trust in the platform.
Therefore, future work may include integrating these security and privacy concerns into
the framework’s data processing capabilities.
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