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Abstract: Predicting traffic risk incidents in first-person helps to ensure a safety reaction can occur
before the incident happens for a wide range of driving scenarios and conditions. One challenge
to building advanced driver assistance systems is to create an early warning system for the driver
to react safely and accurately while perceiving the diversity of traffic-risk predictions in real-world
applications. In this paper, we aim to bridge the gap by investigating two key research questions
regarding the driver’s current status of driving through online videos and the types of other moving
objects that lead to dangerous situations. To address these problems, we proposed an end-to-end two-
stage architecture: in the first stage, unsupervised learning is applied to collect all suspicious events
on actual driving; in the second stage, supervised learning is used to classify all suspicious event
results from the first stage to a common event type. To enrich the classification type, the metadata
from the result of the first stage is sent to the second stage to handle the data limitation while training
our classification model. Through the online situation, our method runs 9.60 fps on average with
1.44 fps on standard deviation. Our quantitative evaluation shows that our method reaches 81.87%
and 73.43% for the average F1-score on labeled data of CST-S3D and real driving datasets, respectively.
Furthermore, the proposed method has the potential to assist distribution companies in evaluating
the driving performance of their driver by automatically monitoring near-miss events and analyzing
driving patterns for training programs to reduce future accidents.

Keywords: advanced driver assistance systems; traffic-risk prediction; online videos; unsupervised
learning; supervised learning

1. Introduction

The growth of Advanced Driver Assistance Systems (ADASs) has the potential im-
pact to improve the global industries engaged in transportation by generating cheaper,
faster, and safer architecture [1–5]. The ADAS has been a significant automotive industry
focus in recent years. Many researchers developed different problems regarding ADASs,
such as effective learning of driver fatigue [6], enhancing traffic sign recognition [7,8], and
driving behavior [9]. However, ensuring the driver’s safety is a significant challenge, as
the assistance must handle various driving scenarios and conditions. ADAS also requires
extensive testing and validation to ensure the vehicles can operate safely in different sce-
narios. In other words, a key challenge to building ADASs is to safely react and accurately
perceive the diversity of traffic-risk prediction in real-world applications. Nowadays, the
traffic-risk incident is attractive research due to the limitation of data resources and dis-
tributions [5,10,11]. For guaranteeing a safe driving strategy, the driving scenario obeys
all incident cases with a long-tailed distribution, such that a minimal number of common
situations makes up the vast majority of what a driver encounters and a virtually infinite
number of rare scenarios [2].

When discussing traffic risk, it is essential to acknowledge that any traffic incident
can potentially cause harm [12]. Whether it is a minor fender bender or a severe collision,
the outcome can range from minor injuries to life-threatening situations. Furthermore,
accidents result in actual injury or damage, representing instances where undesirable
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consequences have already materialized, leading to varying degrees of harm to the people,
property, or environment [13]. It is an unfortunate event when the potential dangers
inherent in an incident have materialized, leading to actual harm. Accidents testify to the
critical importance of proactive safety measures, as their occurrence highlights the risks
and vulnerabilities within a system. On the other hand, near misses have the potential
to cause harm or damage, narrowly avoiding the catastrophic outcome associated with
accidents [14]. Near misses can be seen as fortunate occurrences where a combination of
factors, including human intervention, luck, or unforeseen circumstances, prevents the
situation from escalating into an accident.

Traffic-risk incidents create dangerous situations that may lead to a collision between
the ego-vehicle and other moving objects without any notice [15]. We suppose an incident
occurs unexpectedly, such as a sudden collision or a pedestrian entering the road. In
that case, it may be more difficult for the driver to respond promptly and effectively.
Analyzing such incidents is a crucial step toward avoiding dangerous situations in ADASs.
In practical application, an incident prediction model aims to tell the driving system if
an incident will happen if there is no action from either the ego-driver or other moving
objects, such as pedestrians, cyclists, or vehicles. Building an incident prediction model is a
more challenging problem due to having to predict what will happen in current driving
situations. There are several ways to predict what will happen, such as generating a future
trajectory for each object [16], using graph relation learning [17], and deep reinforcement
learning [18]. In this paper, we aim to bridge the gap by investigating two key research
questions: is the current status safe for the driver to drive in online videos? What types
of other moving objects lead the ego-vehicle into a dangerous situation? These questions
will lead to a visually explainable model associating the drivers’ visual attention and the
current situation on the road to detect and predict the current driving status and analyze
other moving objects. Unlike other works, we apply the visual attention behavior from
successful object saliency to identify and highlight the most noticeable or relevant objects.

Based on recent works [16–22], detecting and predicting traffic incidents in the first
person is far from being solved due to the following challenges. First, the visual view of
a dashboard-mounted camera’s video gives some clues to train a discrimination model
before accidents happen. In practice, the accident is too difficult to be captured because of
noisy video data and the limited view angle of the dashboard-mounted camera. Previous
works use object detection to learn graph relational learning [17] or explicitly use the visual
attention behavior to look at incidentally risky regions [18]. In this paper, we propose
combining visual attention behavior and object tracking to learn the current driver’s status
on the road using unsupervised learning to address where precisely the accident’s risky
regions will happen.

Secondly, event classification is a challenging problem due to video quality, environ-
mental conditions, and the distance between the ego-vehicle and other moving objects.
Most researchers use supervised learning [23–25] to classify the events in a public dataset.
Other works applied weakly supervised methods [26,27] to detect the abnormality in the
video. In this paper, we follow two stages: in the first stage, unsupervised learning is
applied to collect all suspicious events before incidents happen from dash camera video of
the actual driving. We then use supervised learning to classify the common events before
incidents happen from the first stage, where exploration and exploitation can dynamically
balance a driving environment. The successful research result from supervised learning [24]
can give the advantage of recognizing the class type in the videos. This method transfers
info to the general problem to classify the upcoming traffic-risk incidents and generates
the general model to be tested in real traffic-risk incident collections. Classification of the
common event before near-miss or incidents occur is a crucial problem where we must train
our model with the risk annotation before the incident occurs. To solve this problem, we
used the contribution of [14], which proposed a new definition for annotating the incident
class and annotated the state-of-the-art traffic risk incident dataset [28] using the definition
focused on in first-person to recognize upcoming incidents and explore future possibilities.
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The proposed approach differs from several existing works [24,29,30] formulated
within the unsupervised and supervised learning frameworks. Our proposed system
synchronizes all features from dash camera video to extract object tracking [29] and visual
attention [30]. We then applied supervised learning to classify the common event type to
enrich the classification type. By successfully using supervised learning, our architecture
used the model proposed by [24] to classify the traffic risk incident results list from the
first stage. The minimum safety distance can be obtained by correlating the current speed
estimation from the real-time geographic data and the distance between the ego-vehicle and
other moving objects. In the next stage, we classify the suspicious event before near-miss
or incidents happen. Then, it is mixed with metadata from the first-stage result to enrich
the event classification types. To define the current status of drivers, the safety distance
between the ego-vehicle and other moving objects is used to provide a clue about what
kind of situation it is.

From the following explanation, we summarize the main contributions of this paper
as follows:

• We proposed two-stage algorithms based on unsupervised and supervised learning to
predict traffic-risk incidents from dash camera videos based on the human perception
of driving.

• We extracted the information from dash camera videos based on a combination
of visual driver attention and object tracking of other moving objects appearing
on the video to localize where precisely the accident’s risky regions will happen
and to calculate a safety distance between them for predicting traffic incidents from
a dash camera.

• We classified unsafe event collections produced by the first stage using supervised
learning and mixed them with the metadata to enrich the classification event type
by bringing the metadata from the first stage result for long-term capturing driving
events to handle limited data annotation.

2. Related Works

This section will discuss previous incident detection and prediction research and
the dataset used. The previous research provides a foundation for our research and
has significantly contributed to our understanding of incident detection and prediction.
Research on incident detection and prediction is a crucial issue in improving road safety
and reducing the number of traffic incidents. To deeply understand the current issues
in previous research on developing new technologies and algorithms, we summarize the
recent research and their weaknesses to give insight for future research.

2.1. Incident Dataset

In incident detection and prediction, most previous studies have relied on two types of
datasets, closed-circuit television (CCTV) cameras, and dash camera videos. CCTV camera
video is often used for traffic monitoring and surveillance and can be found in various
settings such as intersections, highways, and bridges. It is used to identify individuals
involved in the incident, provide evidence for legal proceedings, assist in investigations,
monitor traffic flow, and identify congestion points. It can be used in real time to alert
traffic control centers to incidents and adjust traffic signals accordingly. Based on the
CCTV camera dataset, the TAND dataset [22] contains many diverse near incidents and
perspectives of intersection surveillance videos. The dataset includes three types of video
data: drone footage of intersections from a top-down view, real traffic videos recorded
using omnidirectional fisheye cameras, and video data simulated using a game engine.

On the other hand, dash camera video can provide visual evidence of an incident on the
road and capture the footage from the driver’s perspective and the view of the road ahead.
These videos are increasingly popular among researchers to identify individuals involved in
the incident, provide evidence for legal proceedings, and assist in investigations. Recently,
creating a dataset from dash camera video [19,21] has been active research to answer the
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research question of what and where incidents will happen from the driver’s perspective.
Datasets from dash camera videos, such as Driver Anomaly Detection (DAD) [19] and
AnAn Accident Detection (A3D) [21], are available publicly. The DAD dataset contains the
normal driving class and several unseen anomalous driving classes from data training. The
videos in the DAD dataset are recorded with a high frame rate, providing high temporal
resolution and allowing for detailed analysis of driver behavior with different multi-modal
views. The A3D dataset contains accidents and other on-road incidents and is recorded
from the perspective of dashboard cameras in different vehicles. The dataset includes
1500 video clips, each containing an abnormal event at a different point in time. Three
human annotators have labeled the start and end times of the anomalies in each video.
They were instructed to use common sense to determine when the accident was inevitable
and when all participants recovered. Both dash cameras and CCTV videos help to study
incident detection and prediction because they provide a large amount of data that can be
used to train and evaluate deep learning models. In conclusion, dash cameras and CCTV
datasets have been critical in advancing incident detection and prediction research.

2.2. Incident Detection and Predictions

Incident detection and prediction provide early warnings and mitigate the impact of
incidents on people or property. One of the methods to predict the incident is AdaLEA [20],
which enables the model to learn to anticipate accidents earlier as training progresses
by assigning penalty weights based on how early the model can predict the accident.
However, its method did not report their performance by mixing the testing data with
the normal video or real driving scenario with rare incidents. Another method, Future
Object Localization (FOL) [21], used an unsupervised deep learning framework for traffic
accident detection from egocentric videos. Its method detects significant deviations between
the predicted and actual ego-motion as trajectory detection for classifying whether the
ego-vehicle is involved in the accident or is just an observer. By constructing temporal
relationships using the recurrent neural network by considering spatial relationships and
agent-specific features, Ustring [17] integrates Bayesian deep neural networks into the
model to handle predictive uncertainty. The Bayesian formulation leads to a ranking
loss based on epistemic uncertainty, improving the quality of the learned relationship
features and improving performance. Considering the overall guidance of all hidden states
during training, a self-attention aggregation layer provides a video-level loss enhancing the
model’s performance. The Deep Reinforcement Learning (DRL)-based solution proposed
by [18] is superior to supervised learning in that DRL can use current observations to
achieve a long-term objective, such as making early decisions to prevent future accidents.
By detecting vehicle accidents or abnormalities based on a novel frame-level accident
detection method using spatiotemporal feature encoding with a multilayer neural network,
Ref. [31] follows a coarse-to-fine detection process. In this process, the two temporal features
of the frames, a histogram of optical flow and temporal ordinal features, are first encoded
as an earthly coding matrix using a multilayer neural network, which is then used to cluster
the frames. From the resulting frame clusters, the border frames are detected as potential
accident frames. Then, the convolutional neural network features and spatial relationships
of the objects detected in these potential accident frames are used to confirm whether
they are indeed accident frames. Conditional Style Translation-Separable 3-Dimensional
Convolutional Neural Network (CST-S3D) is proposed by [14], where augmented data
from the original video is applied to enhance the performance of the classification method.

Using the CCTV dataset, Ref. [22] proposed a vision-based two-stream system for
detecting near accidents in real-time using real-time object detection and multiple object
tracking. The input video is decomposed into spatial and temporal components. The spatial
stream encompasses the appearance information of scenes and objects in the video, while
the temporal stream holds information on the motion of moving objects. A multimedia
sensing application with alert light and sound systems to detect automobile accidents is
reported in [32]. This method sends alerts to other vehicles using roadside sensors without
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requiring any changes to the vehicles themselves. Research on accident detection using
dashcam video is a more challenging problem based on state-of-the-art results due to
relative motions between the ego-car and other vehicles. Unlike CCTV video, which has
absolute motion patterns, relative motion patterns have the relationship between a pattern
in the camera view causing camera position and driver movement.

3. Methods

The proposed method applies a tracking algorithm with the safety distance estimation
rather than predicting the future bounding box for other moving objects since, unlike
previous work [21], we focus on predicting only the ego-involved and are not concerned
with incidents uninvolving the driver. In our assumption, the safety distance follows the
human perception during driving. When driving faster, the attention of the distance to other
moving objects will be longer so that it is correlated to two different objects since we cannot
decide what will happen if only predicting the future bounding box without focusing
on the current situation of the driver itself. The detailed explanation and formulation of
the proposed framework on traffic-risk incident prediction in first-person dash camera
videos are described in Figure 1, where extraction and combination features such as human
visual thinking while driving will improve the performance of the proposed method to
detect accidents in different conditions. Our framework adopted a heuristic algorithm and
supervised learning to exploit the performance to classify the video before traffic incidents
happen. On the other hand, the output of the first stage is transferred to the second stage,
which is responsible for classifying the event as one of the predefined event types. These
events can be classified into common event types with a combination of the metadata from
the first stage to enrich the classification types.

Figure 1. The proposed method architecture is depicted in this diagram. In this architecture, we have
followed two-stage algorithms for predicting the risky event caused by five types of moving objects
together with common event types.

3.1. Proposed Method Overview

Our formulation is based on a heuristic technique where extracting some standard
features from existing methods [24,30,33] is needed to discover ego-vehicle and other
moving object features and adjust the alarm from the traffic risk prediction model. To
identify other moving objects and understand the surrounding situations, a tracking
bounding box for each object, provided by [33], is required for further processes, where the
x and y position of bounding box with w width and h height for the object id v are defined
as B = (bv, bx, by, bw, bh). This tracking algorithm can be used to record and analyze traffic
pattern data, which can improve traffic flow and safety.
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3.2. Traffic Risk Prediction

Traffic risk prediction is a rapidly growing field using data and analytical models to
estimate the likelihood of various traffic incidents, such as collisions, delays, or congestion.
The advantage of traffic risk prediction using unsupervised learning is that there is data
limitation to train both the common incident types and risky objects. The primary data
source used in our method uses the dash camera video with geographic data. From this
data, we can identify patterns in traffic behavior, which can then be used to predict future
traffic risks. At the end, the output of this process is traffic risk prediction lists and the
metadata of risky objects, which can give useful information or clues to understand how
the events will happen. Given V(1, n) = { f1, f2, f3, . . . , fn} as a raw data source from dash
camera videos with n frames, to find and extract the video before the incident happened
into s snippets is denoted by:

ς(β, s) = {V(β1, β1 + τ1), V(β2, β2 + τ2), . . . , V(βs, βs + τs)} (1)

where βs ∈ [1, n− τs] is traffic risk event time on the s-th snippet, and τ represents the
length of the s-th snippet from traffic risk video V . To get the case of traffic list events, we
create two rules to imitate how human drives by following the two standard rules:

1. The driver’s perspective focuses more on specific areas than others.
2. If one of the moving objects is closer to the driver than their attention, it must be a

near miss or incident if no action is taken.

By following these rules, extracting a snippet of traffic risk V(βs, βs + τs) is denoted by:

Dβ
e ≥Dβr

ok ,

ok ∈ξ
β

Bk ,
(2)

where Dβ
e and Dβ

ok are the safety distance of the driver and the distance of k moving objects

to the driver, respectively. k objects belong to the attention map ξ
β

Bk on frame fβ. By
determining the standard rules of how to drive, the extraction features from the driver and
other moving objects are automatically used to solve the current problems.

3.2.1. Ego-Vehicle Features

Given geographic data Gm with m sequence point locations, normalizing the length to
frame n is the following:

χ = {r : r = 1 + bm
n
c × η , η ∈ n}, (3)

Then, to compute speed estimation ϕn on the n-th frame from the geographic data, Gr
is calculated by:

ϕn =
$(Gr, Gr+1)

ψ
, (4)

where $ is the calculation method provided by [34], ψ is represented in frame per second of
the video, and ϕn is the speed estimation in m/s.

Besides that, safety distance estimation Dn
e is represented by the minimum distance

the driver can reach when other objects have suspicious movements, such as suddenly
stopping. The relationship between ϕn and Dn

e can be explained by the following:

Dn
e =

ϕn
2

2µg
, (5)
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where g is acceleration due to gravity with constant value 9.81 m/s2. µ is defined by
the mean coefficient of friction [35] that can be adjusted as 0.8. From their relation, both
ϕn and Dn

e are the braking distance at a reasonable distance based on an estimate of the
visibility [36]. Several factors related to the vehicle, road, and driver behavior influence a
vehicle’s braking distance. Distance and time of braking are inversely proportional, and
the process behavior changes at various distances, braking times and given powers.

3.2.2. Other Moving Object Features

Two features were extracted from other moving objects: estimation of the distance
from other objects to the driver and the driver’s attention level on the videos. To estimate
the distance Dβr

ok , we calculate the comparison between the actual size and appearing size
of each object by following:

Dβr

ok = Dβp

ok ∗
Sβr

ok

Sβp

ok

, (6)

where Sβr

ok and Sβp

ok are actual and appearing sizes of other moving objects in videos. Dβp

ok is
the distance from these objects to the ego-vehicle in the frame. Then, paying attention to
the potential incidents, such as vehicles entering the driver’s lane or pedestrians crossing
the street, it is a crucial problem to localize what kind of other moving objects can lead
the driver to collision by using the driver’s attention level. The driver’s attention can be
determined through visual saliency prediction.

To estimate attention level ξBk from the highest attention level ξB1 to the lowest atten-
tion level ξBk , we are given the bounding box Bk of k moving objects, which is calculated
by the following:

ξ
β

Bk =
∑bk

x+bk
w

q=bk
x

∑
bk

y+bk
h

r=bk
y

Att( fβ(q, r))

bk
w × bk

h
, (7)

where Att( fβ) is the attention level in a two-dimensional image of frame fβ by computing
from the model provided by [30].

After obtaining the absolute distance between the driver and other moving objects
Dβr

ok and ξ
β

Bk , and attention levels for k moving objects, we adjust how the attention can
be changed simultaneously. Based on the behavior of those perspectives, we have the
changing attention rule:

1. If the attention map indicates the moving object constantly moving away from the
ego-vehicle for a continuous duration of three seconds, there will be a shift in the
focus of attention towards another object. Throughout this period, the driver and
moving object will try to avoid a potential collision, as illustrated in Figure 2, implying
that the object’s movement and trajectory will be monitored. If it is observed that
it is moving away for an extended duration, then it will no longer be considered a
priority for attention. Instead, attention will be redirected toward objects requiring
more immediate attention, such as those closer to the ego-vehicle.

2. The focus of attention will be shifted when the object being monitored by the attention
map is no longer being tracked. This can happen when the object disappears from
the dash camera video view, as shown in Figure 3. In such cases, the attention map
will stop displaying information about the object and instead shift its focus to other
moving objects currently within the camera’s view.
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Figure 2. Illustration of the clipped temporal window during the near-miss with another moving
object. In this situation, the safety distance is lower than the distance of its object to the driver shown
on the red bar, where this situation is risky with a car.

Figure 3. Illustration of the clipped temporal window during the near-miss with another moving
object. In this situation, the safety distance is lower than the distance of its object to the driver shown
on the red bar, where this situation is risky with a car.

3.3. Traffic-Risk and Incident Type Classification

To classify the output generated by the decision process of traffic risk prediction, the
proposed method utilizes supervised learning. The architecture of the second stage can
emphasize understanding of what will happen in the current driving. After obtaining
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the result from the second stage, additional information, such as crossing and hitting, as
suspicious events can be obtained. Fusing the information from both metadata and event
classification then gives rich information on the current driving situation. This approach
enriches the event type by classifying the common event type on traffic risk incidents. The
event type we can define is normal and anomaly, where the anomaly class has sub-classes
for crossing and hitting. To achieve this, our technique is shown in Figure 4, where γtrc and
γitc are the model provided by [24].

Figure 4. The proposed method architecture for the second stage is depicted in this diagram.

To create a robust model through the temporal dimension during training, our model
uses the randomly temporal dimension length by the following.

Ξ ={r : r = 1 + b
random(

ξ

2
, 2ξ)

ξ
c ×v , v ∈ ξ}, (8)

where ξ is defined by 64 frames. As a result, the clipped video V(xs, xs + τs) has different
fps after applying randomly temporal direction.

4. Experimental Results

In this experimental result, we describe the dataset used in this experiment. Then, the
architecture of the proposed model is evaluated using different video classification methods.
After evaluating those methods, the proposed model calculated the computational speed
of our environment to run online.

4.1. Datasets

The experimental dataset used in this study is a contribution from [14] for training,
validating, and testing datasets and a collection of real driving scenarios captured from
various trucks over two months of testing. The explanation for each datapoint is shown by
the following:

4.1.1. Re-Annotated State-of-the-Art Traffic Risk Dataset

In this section, we will delve into the discussion regarding the information of the
dataset used for training, validating, and testing, considering the classification method
constructed by two distinct models: γtrc and γitc. To ensure consistency in dataset an-
notation, we employed the CST-S3D dataset [14]. The original video dataset comprises
704 clips, alongside two additional augmenting videos generated through conditional
style translation. These augmenting videos converted scenes from day to night and vice
versa. Consequently, the combined dataset contains 2112 videos, encompassing both
the original footage and the augmented variations. For a more comprehensive under-
standing of the training models on γtrc and γitc, we provide a detailed explanation in the
subsequent section.
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CST-S3D Dataset to Build the Model of γtrc

The construction of the γtrc model involves utilizing a dataset consisting of 1293 in-
cident cases and 819 normal cases. This dataset is the foundation for training the model
and evaluating its performance. The dataset is further divided into subsets for training,
validation, and testing purposes to provide a more comprehensive breakdown. Specifically,
for incident cases, 837 videos are allocated for training, 324 videos for validation, and
132 videos for testing. On the other hand, normal cases are represented by 612 training
videos, 138 validation videos, and 69 testing videos. A detailed overview of the data
distribution can be found in Table 1. The number of clipped videos is defined as the shifting
of each frame, with the video length being ξ frames as input of the second stage model.

Table 1. The detailed data information used in this experiment for training, validating, and testing
the model of γtrc on both CST-S3D and real driving datasets. The definition of the number of clipped
videos is that we shifted each video frame to 64 frames to be the input of our model.

Dataset
# of Videos # of Clipped Video (s)

Incident Normal Incident Normal

CST-S3D
Training 837 612 26,097 33,060

Validating 324 138 3264 3264
Testing 132 69 7884 8724

Real driving Testing 231 204 5001 5274

CST-S3D Dataset to Build the Model of γitc

The construction of the γitc model relies on a dataset consisting of 528 incidents and
570 normal cases. This dataset is crucial for training and evaluating the performance of the
model. Exploring the specifics, the dataset is divided into two main categories: incident and
normal cases. Among the incident cases, there are 384 videos used for training, 66 videos
for validation, and 132 videos for testing, specifically for hitting incident cases. On the other
hand, for crossing incident cases, the dataset comprises 366 training videos, 54 validation
videos, and 150 testing videos.

The distribution and organization of the dataset are further shown in Table 2, which
provides a comprehensive breakdown of the data distribution. This table is a valuable
resource, shedding light on the specific data used for training, validating, and testing
purposes. Furthermore, it offers detailed insights into the objects involved in the incidents
being tested, encompassing pedestrians, cyclists, motorbikes, cars, and trucks.

By incorporating this diverse dataset, comprising incidents and normal cases, along
with the detailed data distribution provided in Table 2, the γitc model can be built with
a solid foundation. This extensive dataset facilitates the training, validation, and testing
processes, enabling the model to learn and generalize from various scenarios and objects.

4.1.2. Real Driving

Specifically, the data are taken from the first and second months of the recording, with
17 and 5 days’ worth of data, respectively. The dataset comprises 14,527 videos, with a
total duration of 516 h. Each video varies between 2 and 3 min and has a dimension of
1280× 720 pixels. The videos are saved in avi format, with a frame rate of 11 frames per
second (fps).

An initial stage was run to identify potentially dangerous situations in the dataset,
during which all possible hazardous scenarios were collected. Subsequently, the clipped
videos were manually annotated, and the dataset was retested using the testing data with
the number of incident annotation cases being 231 and 204 videos for the incident and
normal cases shown in Table 1. To test the model of γitc, the real driving dataset creates 132
and 150 videos for hitting and crossing shown in Table 2.
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Table 2. The detailed data information used in this experiment for training, validating, and testing
the model of γitc on both CST-S3D and real driving datasets. The definition of the number of clipped
videos is that we shifted each video frame to 64 frames to be the input of our model.

Dataset Object Type
# of Videos # of Clipped Video (s)

Hitting Crossing Hitting Crossing

CST-S3D

Training

All objects

384 366 11,052 9999

Validating 66 54 1602 1335

Testing 132 150 3987 2886

Detail
for
Testing

Pedestrian 6 15 24 156
Cyclist 9 9 309 195

Motorbike 27 48 888 990
Car 15 6 729 174

Truck 75 72 2037 1371

Real driving

Testing All objects 165 66 3885 1116

Detail
for
Testing

Pedestrian 0 0 0 0
Cyclist 0 0 0 0

Motorbike 0 0 0 0
Car 54 39 1254 810

Truck 111 27 2631 306

4.2. Result

This section analyzes the results obtained from the proposed method for predicting
traffic risk incidents. The analysis is conducted from the perspective of the temporal
direction of time and also includes a comparison of the proposed method with different
video classification methods. The result is separated into the output of the first and second
stages for better analysis.

4.2.1. The First Stage Results

To begin the analysis, the results of the proposed method were examined in two
different example driving scenarios as the result of the first stage. The near-miss incident
cases obtained are shown in Figures 2 and 3. These figures visually represent the incident
cases obtained by the proposed method, which can predict and highlight its ability to
predict potential risks in real time.

A detailed analysis of the near-miss incident depicted in Figure 2 was conducted to
better understand the proposed method’s performance. The incident occurred between
frames 271 and 349, as shown in the figure. The first stage result identified this incident
as a near-miss because the car violated traffic rules by changing lanes from the left to the
right side, which posed a potential danger to the driver on the road. From the driver’s
perspective, this event would have been hazardous and required quick reactions to avoid a
collision. The driver in this scenario reacted by frequently braking to decrease the vehicle’s
speed and allow the car to cross safely into its lane.

Another incident analyzed in detail is depicted in Figure 3. This incident occurred
between frames 172 and 195, and it was classified as a near-miss due to the potential danger
it posed to the driver on the road. In this case, the car was stopped in the middle of the lane,
creating a hazardous situation. The driver had to take evasive action to avoid crashing
into the stationary car and could avoid the potential collision by changing lanes to the left.
This situation highlights the importance of situational awareness and quick reactions on
the road.

4.2.2. The Second Stage Result

Table 3 presents the performance metrics, including precision, recall, and F1-score,
for the γtrc and γitc methods on both the CST-S3D and real driving datasets. For the γtrc
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method, on the CST-S3D dataset, it achieved a precision of 90.99%, indicating that most of
the predicted positive instances were true positives. The recall score was 86.98%, implying
that the model successfully identified a high proportion of the actual positive instances in
the dataset. The F1-score, which balances precision and recall, was calculated at 88.94%,
representing a harmonic mean between the two metrics. This suggests that the γtrc method
identifies true positives and minimizes false positives on the CST-S3D dataset.

Table 3. The performance of γtrc and γitc methods on testing data for both CST-S3D and real driving
datasets.

Model Dataset Precision Recall F1-Score

CST-S3D 90.99 86.98 88.94
γtrc Real driving 75.37 77.63 76.48

CST-S3D 95.5 96.3 95.9
γitc Real driving 89.25 98.21 93.52

However, the γtrc method demonstrated slightly lower performance on the real driving
dataset since the video quality and dashcam point of view differ from the CST-S3D dataset.
It achieved a precision of 75.37%, implying a relatively higher number of false positive
predictions. The recall score of 77.63% indicates that the model identified a significant
portion of the actual positive instances. The F1-score of 76.48% suggests that the γtrc
method’s overall performance on the real driving dataset was moderate, balancing precision
and recall.

Turning to the γitc method, on the CST-S3D dataset, it exhibited a high precision of
95.5%, indicating a high number of correct positive predictions. The recall score was 96.3%,
suggesting that the model successfully captured a large proportion of the true positive
instances. The resulting F1-score of 95.9% demonstrates the robust performance of the γitc
method, striking a good balance between precision and recall on the CST-S3D dataset.

Similarly, the γitc method demonstrated strong performance on the real driving dataset.
It achieved a precision of 89.25%, indicating a relatively low number of false positive
predictions. The recall score of 98.21% suggests that the model successfully identified
almost all of the actual positive instances in the dataset. The resulting F1-score of 93.52%
shows that the γitc method’s overall performance on the real driving dataset was high,
reflecting a strong balance between precision and recall. The γtrc method performed well
on the CST-S3D dataset, with high precision, recall, and F1-score. These results indicate
that the γitc method is more robust and reliable than the γtrc method, as it consistently
performs well across different datasets.

Detailed performance for each classification class for 10 classes is shown in Table 4.
The table presents the detailed performance of the mixed γtrc and γitc video classification
models on both the CST-S3D and real driving datasets. The performance metrics measured
include precision, recall, and F1-score for different object types, categorized into hitting
and crossing incident cases.

For the CST-S3D dataset, the precision, recall, and F1-score are reported for five object
types: pedestrian, cyclist, motorbike, car, and truck. In the hitting incident case, the
pedestrian class achieved a precision of 82.42%, recall of 78.79%, and F1-score of 80.56%.
Similarly, for the crossing incident case, the pedestrian class obtained a precision of 86.68%,
recall of 82.86%, and F1-score of 84.73%. The other object types, including cyclist, motorbike,
car, and truck, also exhibited similar performance trends, with F1-scores ranging from
80.75% to 84.09% in the hitting incident case and from 81.27% to 82.95% in the crossing
incident case. When considering the average performance across all object types, the mixed
model achieved an average precision of 82.84%, recall of 79.19%, and F1-score of 80.97% in
the hitting incident case. In the crossing incident case, the average precision was 84.68%,
the recall was 80.95%, and F1-score was 82.77%.
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Table 4. The detailed mixed performance of the γtrc and γitc models on testing data for both CST-S3D
and real driving datasets.

Dataset Object Type
Hitting Crossing

Precision Recall F1-Score Precision Recall F1-Score

CST-S3D

Pedestrian 82.42 78.79 80.56 86.68 82.86 84.73
Cyclist 83.19 79.52 81.31 83.14 79.48 81.27

Motorbike 82.61 78.97 80.75 86.03 82.23 84.09
Car 82.20 78.57 80.35 84.87 81.13 82.95

Truck 83.79 80.10 81.90 82.7 79.05 80.83

Average 82.84 79.19 80.97 84.68 80.95 82.77

Real
driving

Pedestrian n/a n/a n/a n/a n/a n/a
Cyclist n/a n/a n/a n/a n/a n/a

Motorbike n/a n/a n/a n/a n/a n/a
Car 66.93 67.17 67.05 74.37 76.98 75.65

Truck 75.37 75.63 75.5 75.58 75.46 75.52

Average 71.15 71.4 71.28 74.98 76.22 75.59

Moving on to the real driving dataset, the precision, recall, and F1-score were only
reported for the car and truck object types since other objects had no incident. Consequently,
the metrics were unavailable for the pedestrian, cyclist, and motorbike classes. In the hitting
incident case, the car class achieved a precision of 66.93%, recall of 67.17%, and F1-score
of 67.05%. Similarly, in the hitting incident case, the car class obtained a precision of
74.37%, recall of 76.98%, and F1-score of 75.65%. The truck class exhibited slightly better
performance, with an F1-score of 75.5% and 75.52% in the hitting and crossing incident
cases, respectively. When considering the average performance for the available object
types, the mixed model achieved an average precision of 71.15%, recall of 71.4%, and F1-
score of 71.28% in the hitting incident case. In the hitting incident case, the average precision
was 74.98%, the recall was 76.22%, and F1-score was 75.59%. From the above analysis,
the mixed γtrc and γitc video classification models demonstrated promising performance
on both the CST-S3D and real driving datasets. They achieved high precision, recall, and
F1-score across different object types and scenarios. These results indicate the potential of
the mixed model in accurately classifying objects and distinguishing between hitting and
crossing incidents in various driving scenarios.

4.3. Computational Time

To evaluate the efficiency of the proposed methodology, a computational time analysis
was performed by randomly selecting a video containing 2110 frames. This analysis was
conducted to measure the performance of the proposed method in terms of computational
complexity and execution time. It showed that the proposed method has an average frame
rate of 9.60, with a standard deviation of 1.44. In addition to the average frame rate, the
analysis also yielded information on the maximum and minimum fps that the proposed
method can achieve. The maximum fps reached by the method was 14.28, while the
minimum fps was 7.35. These values indicate the range of performance expected from the
proposed method under different circumstances. Ensuring the results of the computational
time analysis were reliable and accurate, detailed information was provided regarding the
hardware and software environment used to run the proposed method. This information
was presented in Table 5 and included details about the type and specifications of the
computer used and the software programs and libraries utilized in the analysis. Based
on the current computational speed of the proposed algorithm, it is possible to use the
online version of the method. The proposed method can be implemented in real-time
applications such as surveillance system predictions on the dash camera. The ability to
run the method online indicates that it is efficient and can process data quickly, which is
essential in applications where time is critical.
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Table 5. Hardware and software environment for running proposed method.

Spesifications

Hardware
CPU 11th Gen Intel(R) Core(TM) i9-11900K @

3.50 GHz
RAM 64 GB
GPU NVIDIA GeForce RTX 3090

Software

OS Windows 11 Pro 22H2
IDE Microsoft Visual Studio Enterprise 2019
Language Python 3.9.7
DL tools Torch 1.10.1 + CUDA 11.3

5. Theoretical and Managerial Implication

This research proposed a faster and more accurate algorithm for predicting traffic risk
incidents and monitoring near-miss events with limited data annotation, where our system
archives the evaluation performance on both CST-S3D and real driving datasets. The study
utilized unsupervised and supervised learning techniques to identify high-risk incidents in
online videos. This approach aims to improve the accuracy and efficiency of identifying
potential risks and help prevent future incidents. Furthermore, the proposed method has
the potential to assist distribution companies in evaluating the driving performance of their
employees. By monitoring near-miss events and analyzing driving patterns, companies can
identify areas for improvement in their driver training programs and reduce the likelihood
of future accidents. In other words, the proposed method enhances the classification process
with data limitations in the first-person dashcam video. Since our method successfully
classified the traffic risk incident prediction, it can be useful to give feedback or evaluation
the drivers’ performance and how safe they drive. By automatically predicting the risky
event, the company does not need to monitor its drivers by manually checking how well
they drive.

6. Conclusions and Discussion

In this paper, we proposed two-stage approaches based on unsupervised and super-
vised learning for predicting the incidental scenario running on the online version. Our
approach relied on the human perception of driving to anticipate and identify risky events
on the road. However, one primary challenge is creating an algorithm to produce an end-to-
end online version of traffic risk prediction. To address this challenge, we incorporated two
critical pieces of information into our prediction algorithm: the safety and real distances
that should be maintained between the driver and other moving objects. By leveraging
these two pieces of information, we could accurately predict when a potentially risky
event might occur and localize the object most likely to cause a safety violation. To further
improve the accuracy and reliability of our predictions, we also utilized the classification of
incident cases on different types of incidents using supervised learning. This learning in-
volved using models explicitly designed to classify the output generated by our prediction
algorithm from the first stage to enrich the types of incidents. By applying these techniques,
we achieved high accuracy and provided a more reliable tool for predicting and mitigating
traffic risk with various incident classification types.

The proposed method was able to predict and classify the near-miss incident accurately.
It addresses several challenges to mitigating the traffic risk incident by providing early
warning and classifying it into common incident types and risky objects. Providing early
warning gives significant advantages to giving the driver evaluation and recommendation
feedback based on event collections. Analyzing the event in detail makes it possible to gain
a deeper understanding of the proposed method’s performance and its ability to predict
potential risks on the road. These types of incidents can have severe consequences if there
is no action from the driver or other moving objects, including injury or loss of life, making
it crucial to develop effective methods for predicting and preventing accidents on the road.
The proposed method has the potential to play a significant role in improving road safety
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by identifying potential risks in real time and alerting drivers to take appropriate action.
This incident analysis provides valuable insight into the proposed method’s performance
and ability to accurately predict potential road risks based on safety distance.

The effectiveness of traffic risk classification can be attributed to successfully utilizing
the supervised learning model by transferring metadata to enrich the classification type.
This learning allows for more efficient and accurate incident classification instead of relying
solely on collecting huge amounts of video annotations, which can be time-consuming and
prone to error. Evaluating these methods highlights the importance of utilizing advanced
machine-learning techniques for traffic incident classification. More efficient and accurate
incident prediction can be achieved by leveraging these techniques, improving road safety.

7. Limitation and Future Works

Even though the proposed method’s computational time can run through an online
version, its use has certain limitations, which are currently restricted to dashcam attach-
ments on trucks with high vision capabilities. However, despite these limitations, the
proposed method has shown promising results in terms of its ability to process data from
dashcams in real time, making it a valuable tool for enhancing the safety and efficiency of
truck operations.

To further expand the capabilities of the proposed method, future research will focus
on creating an algorithm that can be adapted for use on different types of ego-vehicles, such
as passenger cars, buses, and even autonomous vehicles. This will involve extensive testing
and optimization to ensure the algorithm can accurately process and analyze data from
various video perspectives for each ego-vehicle. Additionally, the research will explore the
possibility of integrating the proposed method with other existing technologies, such as 5G
networks, Internet of Things (IoT) devices, and vehicle-to-vehicle communication systems,
to enhance the overall performance and effectiveness of the method. This could enable the
algorithm to leverage additional data sources and improve its decision-making capabilities,
improving safety, efficiency, and traffic management results. These integrating systems
could enable the algorithm to operate in real time with reduced latency, enabling faster and
more accurate detection and prediction of potential hazards and obstacles on the road.

Furthermore, the research will also investigate the potential of leveraging machine
learning techniques further to enhance the accuracy and reliability of the proposed method.
By collecting large datasets of real-world driving data and training the algorithm on
them, we aim to improve its ability to accurately detect and predict potential hazards and
obstacles on the road and optimize its decision-making capabilities in complex driving
scenarios. Another important aspect of the future research direction will be integrating
the proposed method into existing transportation infrastructure and regulations. This
will involve working closely with industry stakeholders, policymakers, and other relevant
parties to ensure the algorithm complies with safety standards, privacy regulations, and
ethical considerations. This may also involve developing guidelines and best practices
for using the algorithm in different settings, such as urban environments, rural areas,
and highways.

Moreover, the research will explore the potential of the proposed method for use in
other related domains, such as smart city applications, intelligent transportation systems,
and fleet management. This could involve adapting the algorithm for use in different
contexts, such as public transportation, delivery trucks, and emergency vehicles, to further
enhance the safety and efficiency of these operations. The research will also focus on
evaluating the economic and societal impacts of the proposed method. This will involve
conducting cost-benefit analyses, evaluating the potential savings in reduced accidents,
improved traffic flow, and enhanced fuel efficiency, and assessing the potential social and
environmental benefits of safer and more efficient road transportation. These evaluations
will help inform decision-makers and stakeholders about the potential value and viability
of implementing the proposed method on a larger scale.



Big Data Cogn. Comput. 2023, 7, 129 16 of 17

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving:

State-of-the-art and future research directions. Transp. Res. Part Emerg. Technol. 2015, 60, 416–442. [CrossRef]
2. Sahoo, G.K.; Patro, S.A.; Pradhan, P.K.; Das, S.K.; Singh, P. An IoT-Based Intimation and Path Tracing of a Vehicle Involved in

Road Traffic Crashes. In Proceedings of the 2020 IEEE-HYDCON, Hyderabad, India, 11–12 September 2020 ; pp. 1–5. [CrossRef]
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15. Zámečník, P.; Havlíčková, D.; Gregorovič, A.; Trepáčová, M. Blind Spot in DUI Countermeasures-Dependent Drivers Are Out
of Traffic Safety System Measures. In Proceedings of the Advances in Human Aspects of Transportation; Stanton, N., Ed.; Springer
International Publishing: Cham, Switzerland, 2021; pp. 54–62.

16. Zeng, K.H.; Chou, S.H.; Chan, F.H.; Carlos Niebles, J.; Sun, M. Agent-Centric Risk Assessment: Accident Anticipation and Risky
Region Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017.

17. Bao, W.; Yu, Q.; Kong, Y. Uncertainty-Based Traffic Accident Anticipation with Spatio-Temporal Relational Learning. In
Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; Association for
Computing Machinery: New York, NY, USA, 2020; pp. 2682–2690.

18. Bao, W.; Yu, Q.; Kong, Y. DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation. arXiv 2021, arXiv:2107.10189.
19. Chan, F.H.; Chen, Y.T.; Xiang, Y.; Sun, M. Anticipating accidents in dashcam videos. In Proceedings of the Asian Conference on

Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 136–153.
20. Suzuki, T.; Kataoka, H.; Aoki, Y.; Satoh, Y. Anticipating Traffic Accidents With Adaptive Loss and Large-Scale Incident

DB. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

21. Yao, Y.; Xu, M.; Wang, Y.; Crandall, D.J.; Atkins, E.M. Unsupervised Traffic Accident Detection in First-Person Videos.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
4–8 November 2019; pp. 273–280. [CrossRef]

http://doi.org/10.1016/j.trc.2015.09.011
http://dx.doi.org/10.1109/HYDCON48903.2020.9242698
http://dx.doi.org/10.3390/electronics11172676
http://dx.doi.org/10.3390/en15207457
http://dx.doi.org/10.1109/ICE/ITMC52061.2021.9570269
http://dx.doi.org/10.1109/TVT.2021.3130152
http://dx.doi.org/10.1007/s00521-021-05982-z
http://dx.doi.org/10.1007/s11042-022-12962-5
http://dx.doi.org/10.3390/app12105259
http://dx.doi.org/10.1007/s00779-020-01442-y
http://dx.doi.org/10.1109/TENSYMP54529.2022.9864419
http://dx.doi.org/10.3390/s23115324
http://www.ncbi.nlm.nih.gov/pubmed/37300051
http://dx.doi.org/10.3390/app13074189
http://dx.doi.org/10.1109/DICTA56598.2022.10034630
http://dx.doi.org/10.1109/IROS40897.2019.8967556


Big Data Cogn. Comput. 2023, 7, 129 17 of 17

22. Huang, X.; He, P.; Rangarajan, A.; Ranka, S. Intelligent Intersection: Two-Stream Convolutional Networks for Real-Time
Near-Accident Detection in Traffic Video. ACM Trans. Spatial Algorithms Syst. 2020, 6, 1–28. [CrossRef]

23. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks.
arXiv 2014, arXiv:1412.0767.

24. Xie, S.; Sun, C.; Huang, J.; Tu, Z.; Murphy, K. Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video
Classification. arXiv 2017, arXiv:1712.04851.

25. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. arXiv 2017, arXiv:1705.07750.
26. Tian, Y.; Pang, G.; Chen, Y.; Singh, R.; Verjans, J.W.; Carneiro, G. Weakly-supervised Video Anomaly Detection with Robust

Temporal Feature Magnitude Learning. arXiv 2021, arXiv:2101.10030.
27. Wu, J.C.; Hsieh, H.Y.; Chen, D.J.; Fuh, C.S.; Liu, T.L. Self-Supervised Sparse Representation for Video Anomaly Detection. In

Proceedings of the ECCV, Tel Aviv, Israel, 23–27 October 2022.
28. Fang, J.; Yan, D.; Qiao, J.; Xue, J.; Wang, H.; Li, S. DADA-2000: Can Driving Accident be Predicted by Driver Attentionƒ Analyzed

by A Benchmark. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand,
27–30 October 2019; pp. 4303–4309. [CrossRef]

29. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]

30. Min, K.; Corso, J.J. TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection. In
Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 2394–2403.

31. Zhou, Z.; Dong, X.; Li, Z.; Yu, K.; Ding, C.; Yang, Y. Spatio-Temporal Feature Encoding for Traffic Accident Detection in VANET
Environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19772–19781. [CrossRef]

32. Mateen, A.; Hanif, M.Z.; Khatri, N.; Lee, S.; Nam, S.Y. Smart Roads for Autonomous Accident Detection and Warnings. Sensors
2022, 22, 2077. [CrossRef] [PubMed]

33. Brostrom, M. Real-Time Multi-Object Tracker Using YOLOv5 and Deep Sort. 2020. Available online: https://github.com/mikel-
brostrom/Yolov5_DeepSort_Pytorch (accessed on 30 June 2022).

34. GitHub—Geopy/Geopy: Geocoding Library for Python.— github.com. Available online: https://github.com/geopy/geopy
(accessed on 23 January 2023).

35. Mackenzie, J.; Anderson, R. The Potential Effects of Electronic Stability Control Interventions on Rural Road Crashes in Australia:
Simulation of Real World Crashes. 2009. Available online: https://trid.trb.org/view/1151354 (accessed on 18 January 2023).

36. Sabri, M.; Fauza, A. Analysis of vehicle braking behaviour and distance stopping. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309, 012020.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3373647
http://dx.doi.org/10.1109/ITSC.2019.8917218
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1109/TITS.2022.3147826
http://dx.doi.org/10.3390/s22062077
http://www.ncbi.nlm.nih.gov/pubmed/35336248
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
https://github.com/geopy/geopy
https://trid.trb.org/view/1151354
http://dx.doi.org/10.1088/1757-899X/309/1/012020

	Introduction
	Related Works
	Incident Dataset
	Incident Detection and Predictions

	Methods
	Proposed Method Overview
	Traffic Risk Prediction
	Ego-Vehicle Features
	Other Moving Object Features

	Traffic-Risk and Incident Type Classification

	Experimental Results
	Datasets
	Re-Annotated State-of-the-Art Traffic Risk Dataset
	Real Driving

	Result
	The First Stage Results
	The Second Stage Result

	Computational Time

	Theoretical and Managerial Implication
	Conclusions and Discussion
	Limitation and Future Works
	References

