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Abstract: At present, the design of modern vehicles requires improving driving performance while
meeting emission standards, leading to increasingly complex power systems. In autonomous driving
systems, accurate, real-time vehicle speed prediction is one of the key factors in achieving automated
driving. Accurate prediction and optimal control based on future vehicle speeds are key strategies
for dealing with ever-changing and complex actual driving environments. However, predicting
driver behavior is uncertain and may be influenced by the surrounding driving environment, such as
weather and road conditions. To overcome these limitations, we propose a real-time vehicle speed
prediction method based on a lightweight deep learning model driven by big temporal data. Firstly,
the temporal data collected by automotive sensors are decomposed into a feature matrix through
empirical mode decomposition (EMD). Then, an informer model based on the attention mechanism is
designed to extract key information for learning and prediction. During the iterative training process
of the informer, redundant parameters are removed through importance measurement criteria to
achieve real-time inference. Finally, experimental results demonstrate that the proposed method
achieves superior speed prediction performance through comparing it with state-of-the-art statistical
modelling methods and deep learning models. Tests on edge computing devices also confirmed that
the designed model can meet the requirements of actual tasks.

Keywords: speed prediction; deep learning; big temporal data; empirical mode decomposition (EMD);
edge computing

1. Introduction

Nowadays, as a key component of smart cities, smart transportation systems have
attracted widespread attention from researchers around the world. Intelligent trans-
portation systems (ITSs) [1–3] can optimize the organization and management of urban
road network traffic, improve the efficiency of urban road network traffic, and are also
the most effective measures to alleviate urban road traffic congestion without changing
existing road facilities. Moreover, the development of intelligent transportation systems
not only facilitates people’s travel, but also effectively solves environmental pollution
and reduces the occurrence of accidents [4,5]. With the development of intelligent
transportation systems, the autonomous driving of cars has become a key development
direction for the future, and it is inseparable from the accurate automatic prediction of
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car speed. The accurate modelling and prediction of vehicle speeds in urban traffic are
crucial to urban intelligent transportation systems and have been widely used, such as
driving safety warning [6–8], automatic driving [9,10], vehicle navigation [11–13], traffic
management [14–16], etc.

Vehicle speed prediction [17] refers to the estimation and inference of vehicle speed
sequences in the future period based on historical data and environmental modelling to
help realize vehicle safety-assisted driving [18] and intelligent vehicle behavior decision
analysis [19]. Therefore, it is necessary to collect and analyze historical vehicle driving
data to develop a corresponding strategy. The earlier and more accurate the data are
acquired, the better the decision will be. Through speed prediction methods, a future
period of driving data can be transmitted to the vehicle decision-making system for
analysis, so as to develop the best behavior strategy which is an indispensable part
of the intelligent transportation system coordination and arrangement process [20]. In
addition, predicting vehicle speeds in advance can reduce the fuel consumption of the
vehicle and traffic accidents during vehicle driving and improve the stability and safety
of the automatic driving system. Traffic management departments can use vehicle speed
prediction methods to predict vehicle speeds, thereby optimizing the timing of traffic lights
and reducing congestion and traffic accidents. In the field of logistics delivery, vehicle
speed prediction can be used to predict the travel time and arrival time of delivery vehicles,
thereby assisting enterprises in optimizing logistics and distribution plans, improving
efficiency, and reducing costs. In short, vehicle speed prediction plays an important role in
real life, helping us better manage traffic, improve road safety, optimize logistics delivery,
and ensure driving safety.

Vehicle speed prediction in urban traffic [21] is different from traditional time series
analysis and is influenced by time, space, and many other external factors, such as road
conditions, traffic flow status, weather conditions, etc. The speed signals received by
sensors have complex dynamic spatial and temporal correlations, which make accurate and
real-time prediction of vehicle speeds in urban traffic challenging. Currently, the following
four main categories of approaches are classified to solve the vehicle speed prediction
task: global positioning system (GPS)-based methods, visual perception methods, vehicle
dynamics methods, and machine learning methods. The GPS-based methods [22–24]
use sensors such as GPS and inertial measurement units (IMUs) to measure the speed
and position of a vehicle in real time to complete speed prediction. This type of method
requires the usage of high-precision GPS instruments, which can achieve high accuracy
while incurring expensive costs. However, the positioning accuracy of GPS data may not
necessarily meet complex location conditions. Visual perception methods utilize [25–28]
devices like cameras to obtain information about the vehicle’s surroundings and combine
them with machine learning methods to perform speed prediction. This kind of method can
predict the speed and direction of the vehicle but can be more influenced by factors such
as weather and lighting intensity. Vehicle-dynamics-based methods [29–32] use vehicle
dynamics to build a prediction model to predict the future speeds of vehicles, in which
a large number of factors such as vehicle dynamics parameters and road conditions are
required to be considered. Machine learning methods [33–35] are one of the most commonly
used techniques for vehicle speed prediction. Through developing models such as deep
neural networks (DNNs) [36], support vector machines (SVMs) [37], and random forests
(RFs) [38], features are extracted from sensor data to build a speed prediction system. When
current data are fed into the model, it can accurately predict the future vehicle speeds.
Machine learning methods are the most mature and widely used vehicle speed prediction
techniques, but they still face problems such as insufficient generalization ability across
scenarios, limited inference efficiency, and long-term data dependence. The focus of the
four categories of methods is different and there are also connections between them. The
first two focus on the sources and modalities of data used for predicting vehicle speeds,
while the latter focus on modelling methods.
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In this paper, we propose a real-time vehicle speed prediction method based on
a lightweight deep learning model driven by big temporal data. Firstly, the temporal data
collected by automotive sensors is decomposed into a feature matrix through empirical
mode decomposition (EMD). Then, an informer model based on the attention mechanism
is designed to extract key information for learning and prediction. During the iterative
training process of the informer, redundant parameters are removed through importance
measurement criteria to achieve real-time inference. Finally, experimental results demon-
strate that the proposed method achieves superior speed prediction performance through
comparing it with state-of-the-art statistical modelling methods and deep learning models.
As a regression task, both accuracy and inference time pose challenges to the model. The
design of a lightweight model structure helps to achieve vehicle speed prediction while
being deployed in practical scenarios. To the best of our knowledge, this is the first attempt
to develop and deploy a lightweight deep learning model specifically for temporal fea-
ture learning and real-time prediction of vehicle speeds and has been tested on the edge
computing device EAIDK-310.

The remainder of the paper is organized as follows. In Section 2, we describe the related
work of vehicle speed automatic prediction from two perspectives: traditional modelling
methods and modern deep learning models. In Section 3, we introduce the lightweight
informer model. The experimental results and analysis are reported in Section 4. Finally,
we conclude with achievements, shortcomings, and future research directions in Section 5.

2. Related Work

In this section, we introduce the main related work used for the automatic prediction
of vehicle speeds. The development trend is shown in Figure 1.
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2.1. Traditional Modelling Methods

Shin and Sunwoo [39] proposed a vehicle speed prediction method based on a random
model, which uses a Markov chain with speed constraints to generate speed trajectories
under speed constraints. Experimental results illustrate that this method achieved a root
mean square error of 3.8 km/h within a prediction range of up to 200 m. Jiang and
Fei [40] used hidden Markov models (HMMs) to characterize the statistical relationship
between vehicle speed and traffic flow and applied the forward–backward algorithm on
HMMs to predict individual vehicle speeds. Jing et al. [41] utilizes an auto-regressive (AR)
model to obtain the short-term dynamics of vehicle speed data and classifies the data into
multiple acceleration states through fuzzy membership. During the prediction process, the
acceleration measurement values are mapped to the Markov state through fuzzy coding,
and the future acceleration state can be predicted through Markov transition. The Markov
chain assumes that the probability distribution of the future state only depends on the
current state, and has nothing to do with the past state, which is not satisfied with the
long-term dependence in the time series data. Li et al. [42] demonstrated that combining the
niche immunogenetic algorithm–support vector machine (NIGA-SVM) regression method
on urban roads with the genetic algorithm–support vector machine (GA-SVM) regression
method on suburban roads and highways can significantly improve the accuracy and
timeliness of vehicle speed prediction. Since SVM is used to optimize the loss function
through minimizing the edge interval and penalty factor, noise in the training dataset
may have a drastic effect on the performance of the model. In addition, SVM is sensitive
to parameters, such as kernel function type, kernel function parameters, and penalty
factors. Amini et al. [43] proposed a comprehensive speed prediction framework based
on historical traffic data classification and real-time V2I communication for the efficient
energy management of electrified CAVs. To solve the problem of strong correlation factors
being ignored in the context, Lv et al. [44] proposed an improved extreme gradient boost
(XGBoost) speed prediction method. Shin et al. [45] proposed a speed prediction method
based on a fuzzy Markov chain, which randomly predicts the speed of self-vehicles in
the constrained region and solves the problem of increasing the model size when adding
various input data. Rasyidi et al. [46] extracted features from real traffic data through
considering adjacent links. After obtaining candidate features, linear regression, model
tree, and k-nearest neighbor (K-NN) are all used for feature selection and speed prediction.
However, traditional machine learning models such as K-NN and XGBoost simply classify
or regress based on the characteristics of the data, so they may not be able to fully utilize
the sequential information of the data.

Currently, a large number of modelling algorithms have been studied and developed
for predicting vehicle speeds. Although multiple types of methods are considered in various
scenarios, they all face the problem of insufficient generalization performance. In other
words, once the application scenario becomes too complex (i.e., drivers exhibit unusual
driving behavior when facing complex road conditions), the predictive performance of the
algorithm significantly degrades. The parameter space and the corresponding decision
boundary formed simply cannot cope with increasingly big data.

2.2. Modern Deep Learning Methods

Yan et al. [47] designed a deep neural network driven by five types of data (including
historical vehicle speed, corresponding acceleration, steering information, position, and
driving date) to predict future short-term vehicle speeds. Park et al. [48] proposed a speed
prediction method based on neural network traffic modeling (NNTM-SP), which uses
historical traffic data for training and predicts vehicle speed distribution driven by current
traffic information. But they overlooked the potential impact of data type and structure
on the prediction results. Lemieux [49] adopted deep learning technology to predict the
specific speed curve of a single driver’s repeated driving cycle to minimize the fuel energy
used during the journey. During the experiment, this work did not take into account com-
plex driving behaviors and road conditions. Li et al. [50] proposed a novel speed prediction
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method based on the BP-LSTM model for long-term single speed prediction on a planned
route. In addition, the Pearson correlation coefficient is used to analyze the correlation of
historical feature parameters between driver vehicle road traffic and improve the computa-
tional efficiency of the model. Han et al. [51] combined a one-dimensional convolutional
neural network with a bidirectional short-term memory network (CB-LSTM) and used
the information provided by vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications to complete the prediction of vehicle speeds. Shih et al. [52] designed
a model consisting of an encoder, LSTM, and attention module to predict the movement
of nearby vehicles through observing their movements in the last few seconds. Actually,
multi-model fusion requires a large amount of computing resources; especially in cases
with large amounts of data, the computational complexity will be higher, which will affect
the real-time prediction ability of the model. In addition, the structure of the fusion model
is relatively complex, making it difficult to explain the predicted results of the model, which
may not be suitable for some application scenarios that require transparency.

Madhan et al. [53] established the architecture of a modular neural network (MNN)
and obtained improved algorithms and corresponding parameters through training the
dataset to improve the accuracy of vehicle speed prediction. Niu et al. [54] combined the
U-Net and LSTM structures to construct a new spatio-temporal model L-U-Net, which
can effectively predict the speed of urban-scale traffic conditions. Using spatio-temporal
visual information and vehicle motion status, Zhang et al. [55] proposed an inflated 3-D
inception LSTM network to predict short-term future vehicle speeds. Li et al. [56] proposed
a method based on convolutional neural networks (CNNs) to better predict vehicle speeds.
Jeong et al. [57] used a gated recursive unit (GRU) neural network driven by digital
tachograph data (DTG) to predict vehicle speeds on highway. Three-dimensional deep
learning models typically have high complexity and are prone to overfitting, resulting
in poor generalization ability of the model. In general, 3D deep learning models require
more feature engineering and higher requirements for data preprocessing. Considering
the problem of data loss caused by device failures or abnormal data elimination, as well
as the problem of data sparsity caused by small sample sizes, Zhao et al. [58] proposed
a blank filling method based on historic trends to improve speed prediction performance.
Compared with linear interpolation, this can better reflect the change trend of the signal.
Maczyński et al. [59] developed an artificial neural network with radial neural functions
driven by group parameters (i.e., average hourly traffic, the percentage of vehicles in
free-flow traffic, geometric parameters of the road section (lane and hard shoulder width),
and type of day and time) for predicting vehicle speeds. To reduce the errors of existing
methods in short-term speed prediction and be able to predict medium- to long-term traffic
speeds, Zhang et al. [60] proposed a traffic speed prediction method named ASTCN that
combines attention and spatio-temporal features. The fusion of spatio-temporal features is
of great help in characterizing the changing patterns of car speed, but accurately extracting
spatio-temporal features separately is a challenge.

At present, a large number of deep learning models have been developed for vehicle
speed prediction, with a focus on model structure and optimization methods, lacking
targeted analysis of sensor signals. In fact, the effective extraction and learning of spatio-
temporal features is the key to model generalization across different scenarios. Most work
neglected data preprocessing, resulting in imprecise short-term vehicle speed prediction
and failure of long-term predictions.

3. EMD-Based Informer for Vehicle Speed Prediction

In this section, we introduce the proposed EMD-based informer for vehicle speed
prediction. Historical speed data is first decomposed into an intrinsic mode function (IMF)
matrix via EMD to enhance its representativeness and then fed into the informer to extract
critical features and make predictions for future vehicle speeds. The overall processing
flow of the proposed method is shown in Figure 2.
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3.1. EMD Analysis
3.1.1. Signal Decomposition

Considering a historical velocity dataset x(t)∈R1×T that captures T moments, we first
find all the maximum points and minimum points, and then fit the corresponding envelope
emax(t) and emin(t) using the cubic spline function. The mean value of the upper and lower
envelope can be calculated as follows:

e1(t) =
emax(t) + emin(t)

2
(1)

A new signal that removes low-frequency components can be obtained using the
formula below:

p1
1(t) = x(t)− e1(t) (2)

Then, Equation (2) is iterated k times until the IMF conditions (i.e., the difference in
the number of extreme points and zero crossing points in the entire data length should
not exceed one; the average value of the upper and lower envelope determined by the
maximum and minimum points of cubic spline fitting is 0) are met, and the first-order IMF
component can be expressed as follows:

IMF1(t) = pk
1(t) (3)

In the subsequent decomposition process, a signal with the individual IMF components
removed is continued iteratively through executing Equation (2) until the stopping criterion
is satisfied:

SC =
∑

∣∣∣pk−1
J (t)− pk

J(t)
∣∣∣2

∑ [pk−1
J (t)]

2 ≤ ε (4)

where ε is an artificially constrained small constant, such as 0.2. J represents the number of
times the original signal is decomposed.
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In other words, the signal after EMD can be represented as follows:

x(t) =
J

∑
j=1

IMFj(t) + rJ(t) (5)

where rI(t) is the residual component with monotonicity.
To mitigate the mode mixing problem of EMD, we adopted multiple EMD decomposi-

tions with different noise introduced in the decomposition process to form a series of IMF
sequences {S1, S2, . . . , SI} where I is the number of introduced noises.

As a time-frequency domain signal processing method, EMD performs signal decom-
position based on the time scale characteristics of the data itself, without any predefined
basis functions. EMD has obvious advantages in processing non-stationary and non-linear
data and is suitable for analyzing non-linear and non-stationary signal sequences with high
signal-to-noise ratio (SNR).

3.1.2. Representation Construction

To improve the expressiveness of the signals, we combine multiple IMF sequences to
form new signal representations that are used to guide the learning of deep learning models.
Through adaptively weighting each IMF, a weighted three-dimensional IMF matrix can be
obtained as the input, which is given by

X = [λ1S1; λ2S2; . . . ; λISI ] ∈ RJ×I (6)

where [λ1, λ2, . . . , λI] are a set of learnable weighing parameters that determine the
importance of each IMF sequence. The weighting parameters [λ1, λ2, . . . , λI] are usually
initialized as average weighting factors, i.e., [1/I, 1/I, . . . , 1/I], to prevent learning with
bias. As shown in Figure 3, the first and second dimensions of the constructed 3D IMF
matrix reflect the time-domain and frequency-domain information, respectively, while the
third dimension reflects the information at different scales.
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The weighting feature allows each IMF to adjust the weighting factor to fit the model
according to its importance. The advantage of this approach is that it can overcome the
problem of different IMF scales while controlling the degree of contribution of each IMF
to the features. Compared to treating each IMF as a feature vector, the IMF matrix can be
constructed to fully utilize the information of each IMF. The problem of feature scaling
imbalance that may result from the different scales of IMFs is avoided. In the constructed
features, each IMF corresponds to a different time scale, which can capture the signal
features on different time scales, thus improving the accuracy of timing prediction. Since
each IMF is independent, even if some IMFs contain noise or outliers, other IMFs can still
provide valid information, thus enhancing the robustness of the features. Features fused
using multiple IMFs can characterize the signal more comprehensively, thus improving the
generalization capability of the model and making it more capable of predicting vehicle
speed in complex application scenarios.
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3.2. Informer Model
3.2.1. Model Structure

The informer model consists of an encoder, a decoder, and a fully connected layer
output. The specific model structure is shown in Figure 4. The encoder receives a long
sequence input and obtains feature representations through a ProbSparse self-attention
module and self-attention distillation module. The decoder receives the long sequence
input and completes the learning and semantic understanding of encoded features through
a multi-head attention module. Finally, the target is predicted and output directly through
the fully connected layer.
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Figure 4. Model structure of informer.

In the encoder, the distilling operation is used to assign higher weights to dominant
features with dominant attention, and a focus self-attention feature map is generated in the
next layer, as given by

yt
i+1 = MaxPool(ELU(Conv(

[
yt

i
]

AB))) (7)

where MaxPool(·), ELU(·), and Conv(·) denote the max-pooling, exponential linear unit
activation function, and convolution operation, respectively. yi and yi+1 represent the
feature map at i-th and (i+1)-th layer. [·]AB is the attention block, in which the ProbSparse
self-attention is defined as

A(Q, K, V) = Softmax(
QKT
√

d
)V (8)

where the attention function on a set of queries simultaneously is packed together into
a matrix Q, and the keys and values are packed together into matrices K and V, respectively.
d is the dimension of queries and keys.

In the decoder, a structure composed of two identical multi-head attention layers is
used to attempt predictive inference for long sequences. Input is implemented through
concatenation, as given by

Xt
de = Concat(Xt

token, Xt
0) (9)

where Xtoken and X0 are the start token and placeholder, respectively. The final output is
obtained through a fully connected layer. Through jointly calculating the output through
multiple heads, the output efficiency problem of the transformer in the long-term sequence
prediction task can be solved.
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In general, the informer model employs a multi-layer self-attentive mechanism that
is able to reduce the dimensionality of time series data without losing information, thus
improving the efficiency of the model. The self-attentive mechanism explicitly models
the importance of each time step in the model and can provide interpretability. Moreover,
the simultaneous consideration of features at different time scales makes it possible to
model the time series more accurately. In practice, the informer model can automatically
handle missing data and is flexible enough to cope with time series of different lengths and
dimensions, making it suitable for various types of scenarios.

3.2.2. Parameters Learning

The principle of parameter importance is introduced to iteratively remove redundant
parameters and perform fine-tuning, ensuring that the balance between parameter size
and training loss meets the requirements. The final parameter scale is less than 1/10 of the
original. The mean square error (MSE) is used as the loss function for measuring prediction
performance on the target sequences, and the loss is propagated back from the decoder’s
outputs across the entire model. The final output of the model is the vehicle speed at
the next moment in the input sequence. During the training process of the informer, the
parameters can be updated using the asynchronous stochastic gradient descent (SGD)
method, as given by

θt+1 = θt − γt∇ fθt , X (10)

where

θ1 = θ0 −
M

∑
m=1

γnext(1, m)∇ f (θ0, X0) (11)

γt = γnext(t+1, mt) (12)

In the above equations, θt is the learnable parameters at the t-th training iteration, γ
denotes the step size, mk is the delay of the gradient at the t-th training iteration, and5f is
the gradient. Unlike the naive SGD, the algorithm eventually performs an overall update
due to asynchronous updates, where different layers are estimating the gradients of the
outdated parameters in progress. During the training process, although a few severely
outdated gradients are not enough to destroy the SGD’s performance, an asynchronous
SGD performs better in this case. The pseudo-code of the asynchronous SGD optimization
algorithm is shown in Algorithm 1.

Algorithm 1 Asynchronous SGD optimization process.

Input: Data sequence X
Initialization: Step size, initial parameters, and batch size.

Compute the batch gradient of D0.
for t = 1, 2, . . . do

Gradient arrives from batch set Dt;
Update the parameters;
Send θt to batch set Dt;
Compute the batch gradient of Dt.

end for
Output: Convergent deep learning model.

When using SGD-based optimization algorithms to update the parameters of deep
learning models, the following aspects need to be taken into account to ensure good
convergence and generalization:

• The learning rate controls the magnitude of parameter updates at each step; too fast of
a learning rate may lead to model oscillation and non-convergence, while too slow of
a learning rate will make the model converge slowly.
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• The batch size controls the amount of data for each parameter update. Too large of
a batch size may lead to insufficient memory, and too small of a batch size may make
the model converge slowly.

• The SGD algorithm is sensitive to parameter initialization. Different initialization
methods may lead to differences in model convergence speed and location. Consider-
ing that data from multiple scenarios are used for the experiments, random samples
obeying a standard normal distribution were used to export the model parameters.

• Gradient explosion or gradient disappearance is a common problem faced by deep
learning, which can be mitigated using gradient cropping techniques.

3.2.3. Vehicle Speed Prediction

Through continuous training iterations, when the converged lightweight deep learning
model is obtained, it can be used to predict future vehicle speeds at T+1 moment driven by
signals in the current time period T, as given by

YT+1 = f ∗[X(t)] (13)

where f * represents the convergent deep learning model. The pseudo-code of the entire
process is shown in Algorithm 2.

In the application phase of the model, the trained model is converted to a format
suitable for edge computing devices, and the model is deployed to edge computing devices.
The vehicle speed sensor is built to collect the current speed of the vehicle in real time,
input the collected historical vehicle speed data into the edge computing device, and use
the deployed model to predict the future speed. Finally, the predicted results are fed back
to the vehicle control system for adjusting vehicle speed and achieving intelligent control.
It should be noted that the accuracy of the model and the real-time prediction of speed are
key factors that need to be fully considered in the model design and deployment process.
At the same time, the computing performance of edge computing devices also needs to
be fully evaluated to ensure that the model can run on the device and achieve real-time
prediction. In addition, the quality and real-time nature of data are also key factors affecting
the accuracy of prediction, and sufficient preprocessing and cleaning of the data are needed
to ensure the reliability of the prediction results.

Algorithm 2 Entire process for vehicle speed prediction.

Input: Data sequence X.
Initialization: The number of EMD, step size, initial model
parameters, and batch size.

Construct the 3D IMF matrix.
Initialize the deep learning model.
Train the model using the asynchronous SGD.
Crop the model to the lightweight structure.
Reasoning based on the forward propagation.

Output: Predicted vehicle speed at T + 1 moment.

4. Experimental Results and Analysis

In this section, we present the experiments conducted and report the corresponding
results and analysis.

4.1. Experimental Settings
4.1.1. Experimental Data

The experiment used car driving data from three different scenarios, with a total of
60 h of speed signals. The signal acquisition process covers different time periods and road
conditions to ensure the comprehensiveness and representativeness of the experimental
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data. Complex urban road conditions, rural roads, and rugged paths are considered in the
experiments. Driving behavior is usually continuous to ensure predictability. Specifically,
to ensure the accuracy and reliability of the data, the sampling frequency is set to 1 Hz,
which means a total of 216,000 driving sample points have been collected. The driving
signal categories include velocity, average velocity, idling time ratio, and accelerated velocity.
Some examples of feature distributions in the vehicle motion process are shown in Figure 5.
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The correlation between feature distributions is shown in Figure 6. Linear and nonlinear
correlations, including Pearson, Spearman, and Kendall correlations, are calculated to observe
the interrelationships between features. It can be observed that almost all the correlation
measures among the features do not exceed 0.5 except for the autocorrelation on the diagonal,
which shows a weak overall correlation. This means that the redundancy of feature is not
significant and thus does not require the use of dimensionality reduction methods such as
principal component analysis (PCA) for preprocessing. In contrast, the correlation under
nonlinear measures like Spearman is more pronounced than that under linear measures. The
vast majority of features between signals are not directly related, and deep learning models
are needed to mine the underlying expert knowledge and construct potential mappings.
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4.1.2. Experimental Hyper-Parameters

The hyper-parameters that need to be set manually during the experiments are sum-
marized in Table 1, including decomposition times I and series J in EMD, and initial step
size, batch size, L2-regularization intensity, and dropout rate in the informer. The decompo-
sition times in EMD are empirically set to enhance decomposition stability while avoiding
unnecessary computational complexity. Decomposing sequences are to ensure consistency
in feature representation and avoid dimensional inconsistencies. The step size and batch
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size in deep learning have a significant impact on the training effectiveness and speed of the
model. If the step size is too small, it will lead to slow model training speed and easily fall
into local optimal solutions; excessive step size can lead to unstable model training, which
may skip the optimal solution and cause oscillations. If the batch size is too small, it will
lead to an inaccurate direction of model parameter updates and a poor training effect; too
large of a batch size will lead to a slower training speed and increased memory occupation,
which may lead to overfitting of the model. Generally, we conduct experiments to find the
appropriate initial step size and batch size for the current model. L2-regularization is used
to reduce the structural complexity of the model and improve its generalization ability.
Dropout achieves the goal of improving generalization capability through suppressing the
number of parameters in the last fully connected layer.

Table 1. Hyper-parameter settings of EMD-based informer.

Hyper-Parameters Values

EMD
decomposition times I 6
decomposition series J 5

Informer

step size 0.01
batch size 16

L2-regularization 0.0005
dropout rate 0.5

4.1.3. Experimental Platform

Under the condition of limited computational resources of vehicles, the capability
to meet the performance requirements of inference accuracy and efficiency is the key to
deciding whether the model can be deployed in practical applications. Experiments are
performed using a workstation deployed in the cloud for training and the edge computing
platform is deployed at the terminal for testing. The workstation consists of an NVIDIA
RTX-3090 GPU, Intel I9-10920X CPU, 32 GB memory, 1 TB hard drive, and X299-Deluxe
Prime. The EAIDK-310 is a powerful and easy-to-use AI development suite, which is
suitable for various edge computing and AI application scenarios. The EAIDK-310 is
powered by a Cortex-A53 CPU, Mali-450 MP2 GPU, 1 GB RAM, Bluetooth 5.0, 4× USB,
and 1×Micro USB, as shown in Figure 7. The main chip of the EAIDK-310 is RK3228H
equipped with a heterogeneous computing library, i.e., Arm SoC and HCL developed by
OPEN AI LAB and Tengine, and can further accelerate mainstream neural networks.
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4.1.4. Evaluation Metrics

To comprehensively evaluate the predictive performance of various methods, two
types of evaluation metrics are counted. For predicting the vehicle speeds in the future T
seconds, the absolute error (AE) and mean square error (MSE) of the method are defined as

AE(Xi) =
1
T

T

∑
j=1

∣∣∣Yj − Ŷj
∣∣∣ (14)
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MSE(Xi) =
1
T

T

∑
j=1

(Yj − Ŷj
)

2
(15)

where Yj and Ŷj are predicted and ground-truth vehicle speeds at the j-th future second.
The MSE is usually used to evaluate the accuracy of predictive models, as it considers the
distance between each predicted value and the true value. By contrast, the AE is usually
used to evaluate the magnitude of measurement errors because it provides the average of
all errors.

4.2. Prediction Performance

We first demonstrate the iterative training process of the objective function of the
informer model, as shown in Figure 8. The optimization results of the original time-
series-data-driven model and the 3D IMF matrix driven model are shown in Figure 8a,b,
respectively. Both the models can converge to a stable position within 10 training epochs
with a loss of less than 10−2. It is worth noting that although the convergence iteration cycle
of the 3D IMF driven model is longer, its corresponding loss value is smaller, which means
that the corresponding model converges to a better location. Then, we report the changes
in gradients and parameters during the optimization process to observe the convergence
of the model under different drivers, as shown in Figure 9. In both cases, the gradient
values gradually decrease with parameter updates, indicating that the models gradually
converge to the position with a more refined loss landscape. The variance µ that gradually
decreases during the whole training process reflects the stability of the optimization. When
the loss of the validation set no longer decreases within six training epochs, the model of
the current iteration period is used as the convergence model for testing. The vehicle speed
prediction results of the convergence model are reported in Figure 10. Most prediction
errors are concentrated within the range of −0.00883 to 0.02034. The error and response
curves of prediction results are shown in Figure 11. It can be seen that significant changes
in speed can easily lead to a decrease in prediction accuracy. To observe the predictive
performance of the EMD-based informer more intuitively, we have sampled and compared
the actual vehicle speeds with the predicted results, as shown in Figure 12. The method
only experienced observable prediction errors at certain speed peaks.
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Then, we compare the performance of a series of methods for predicting the vehicle
speeds, in terms of inference accuracy and efficiency, including XGBoost [44], fuzzy Markov
chain [45], NARX [61], LSTM [50], 1D CNN [56], and CNN-LSTM hybrid model [54]. The
XGBoost [44], fuzzy Markov chain method [45], and NARX [61] use the default parameter
settings of the machine learning toolbox. LSTM [50] is composed of an input gate, forget
gate, cell, and output gate. Traffic congestion degree, road type, single travel distance,
and speed limit are fed into the input gate, while the historical state information is fed
into the forget gate. The hyper-parameter settings include: a dropout rate of 0.5, learning
rate of 0.001, MAE loss, Adam optimizer, epoch of 100, and batch size of 1734. The 1D
CNN model consists of one input layer, three convolutional layers, three max-pooling
layers, one fully connected layer, and one output layer; all the convolution kernels are set
to one dimension. The number and size of convolution kernels in the three convolutional
layers are 256 × 1 × 3, 128 × 1 × 3, and 64 × 1 × 3, respectively. The hyper-parameters
adopt the default settings under the classic AlexNet architecture. In CNN-LSTM, a spatial
convolution model and an LSTM are connected in parallel, in which the CNN is composed
of a contracting path, following the typical architecture of a convolutional network, and
an expansive path. The learning rate equals 0.003, the L2 regularization coefficient equals
0.001, and other parameters are default parameters.

According to the results in Table 2, although 1D CNN achieved the most advanced
inference speed (0.22 s per signal), the EMD-based informer has achieved the best prediction
accuracy with an AE of 0.094 and MSE of 0.021. The inference speed of 0.96 s per signal
on edge devices of the EMD-based informer is able to meet the real-time requirements
of practical applications. By comparison, LSTM performs better than CNN because the
temporal information is more critical than the spatial information. The fusion of the two
models can take into account the information of both, but it will lead to an increase in
computational complexity with an inference time of 1.78 s. In addition, the performance
of traditional modelling methods like XGBoost and Markov on complex temporal data
is unsatisfactory, although they typically have lower structural complexity and higher
inference speed.

Table 2. Performance comparison of various vehicle speed prediction methods.

Methods AE MSE Speed (s)

XGBoost 0.144 0.090 0.20
Markov 0.157 0.097 0.14
NARX 0.133 0.057 0.83
LSTM 0.118 0.039 1.30

1D CNN 0.127 0.052 0.22
CNN-LSTM 0.113 0.035 1.78

EMD-Informer 0.094 0.021 0.96
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4.3. Ablation Studies

In this section, we observed the vehicle speed prediction performance of the EMD-
Informer model driven by different inputs through ablation studies, as shown in Table 3.
Three types of inputs, including time series, single IMF, and 3D IMF matrix, are used for
testing. Since the time series is not subjected to any pre-processing to help extract implicit
expert knowledge, it requires the least amount of inference time (0.15 s per signal) but
the lowest prediction accuracy (AE of 0.133 and MSE of 0.069). The single IMF input can
effectively reduce the speed prediction error while bringing a small amount of inference
time consumption. The 3D IMF matrix is able to achieve the best speed prediction accuracy
while meeting the real-time requirements.

Table 3. Performance comparison of EMD-based informer driven by different inputs.

Input Types AE MSE Speed (s)

Time series input 0.133 0.069 0.15
Single IMF input 0.107 0.026 0.24

3D IMF matrix input 0.094 0.021 0.96

4.4. Robustness Analysis

Hyper-parameters determine the robustness of deep learning models for practical
applications in a variety of different contexts. Therefore, we observed the speed prediction
accuracy of the EMD-based informer under different hyper-parameter settings, including
decomposition times I, decomposition series J, step size, and batch size, as shown in Table 4.
The number of decomposition times and decomposition series determine the size of the
3D IMF matrix, which also affects the speed prediction accuracy and inference efficiency
of the informer. It can be seen that the prediction error gradually decreases as the values
of both I and J increase. The step size and batch size affect the predictive performance
of the converged model through influencing the optimization process. According to the
experimental results, the effect of these hyper-parameters on the prediction error can
be almost negligible. In practical applications, reasonable hyper-parameters can be set
according to prior information to avoid their impacts as much as possible. Even if step
size increases from 0.001 to 0.05, the changes in AE and MSE do not exceed 0.025 and 0.04,
respectively. As batch size increases, the model prediction error gradually decreases, but
this performance improvement is not significant. On the other hand, the optimization
process caused by the increase in batch size increases the impact on memory.

Table 4. Performance comparison of EMD-based informer under different hyper-parameters.

Hyper-Parameters
AE MSE

Types Values

Decomposition times I

3 0.112 0.034
4 0.110 0.032
5 0.103 0.027
6 0.094 0.021

Decomposition series J

2 0.104 0.024
3 0.101 0.023
4 0.096 0.021
5 0.094 0.021

Step size

0.001 0.103 0.024
0.005 0.092 0.019
0.01 0.094 0.021
0.05 0.128 0.060

Batch size

8 0.113 0.034
16 0.094 0.021
32 0.098 0.022
64 0.090 0.017
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5. Conclusions

Nowadays, automatic vehicle speed prediction based on artificial intelligence plays
a positive role in promoting traffic safety, improving energy efficiency, promoting intelligent
transportation, and achieving precise road condition monitoring. It is of great significance
for accelerating transportation modernization, improving social and economic benefits,
and promoting sustainable development. In this paper, we propose a real-time vehicle
speed prediction method based on the lightweight deep learning model informer driven
by big temporal data. To the best of our knowledge, this is the first attempt to develop
and deploy a lightweight deep learning model specifically for temporal feature learning
and real-time prediction of vehicle speeds and has been tested on the edge computing
device EAIDK-310. For the regression task of predicting vehicle speed, we have taken
into account both the prediction accuracy and inference speed of the deep learning model
and verified its effectiveness through the actual collection of time series data in multiple
scenarios. Compared with a series of deep learning models, the experimental results
illustrate its superiority. Moreover, ablation studies have demonstrated its robustness in
practical applications.

In fact, different road conditions, such as highways and rural roads, may lead to
completely different driving patterns, which pose even greater challenges to predicting
vehicle speed. The introduction of more types of sensor data helps to model driving
behaviors under different road conditions. In the future, we plan to test the effectiveness of
the proposed method on more complex road conditions (e.g., complex terrain like curves
and rugged mountain roads, and varying degrees of traffic congestion) and improve the
prediction accuracy of vehicle speeds through introducing more modal sensor data, such
as vision and GPS. Detailed information about the test section, such as the speed limits of
the area and the speed range recorded for each coordinate, will also be considered during
the experimental process.
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