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Abstract: Nowadays, one of the important and indispensable conditions for the effectiveness and
competitiveness of industrial companies is the high efficiency of manufacturing and assembly. These
enterprises based on different methods and tools systematically monitor their efficiency metrics
with Key Performance Indicators (KPIs). One of these most frequently used metrics is Overall
Equipment Effectiveness (OEE), the product of availability, performance and quality. In addition to
monitoring, it is also necessary to predict efficiency, which can be implemented with the support of
machine learning techniques. This paper presents and compares several supervised machine learning
techniques amongst other polynomial regression, lasso regression, ridge regression and gradient
boost regression. The aim of this article is to determine the best estimation method for semiautomatic
assembly line and large batch size. The case study presented with a real industrial example gives the
answer as to which of the cumulative or rolling horizon prediction methods is more accurate.

Keywords: machine learning; prediction; OEE; rolling horizon

1. Introduction

Nowadays, various forecasting tools and techniques are playing an increasingly impor-
tant role in industrial manufacturing companies in order to fulfill customer orders on time.
In addition to traditional estimation methods, such as various trends, simulations of more
effective techniques supported by machine learning have also appeared [1–4]. This is also
true for Overall Equipment Effectiveness (OEE), the most frequently used efficiency Key
Performance Indicator (KPI) in the domain of assembly operations [5]. The prediction of
manufacturing and assembly efficiency is relevant, among others, in the fields of production
planning, scheduling, investments and management decisions [6,7]. Accurate forecasting
generates profit, reliability and competitive advantage for industrial enterprises.

Due to the development of information technology, many systems provide support
for the recording, processing and storage of production-related data. The most frequently
applied systems are Manufacturing Execution System (MES), Enterprise Resource Planning
(ERP) and Customer Relationship Management (CRM) [8,9]. Currently, it is a constant
challenge to reveal the patterns and relationships behind the data, which is made more
difficult by the turbulent industrial environment and changes in product variances [10,11].
With the help of machine learning, it is possible to determine the expected and searched
values faster, more efficiently and more accurately, including the OEE percentages. Due
to the huge amount of data, machine learning is one of the best methods for processing
production data.

Overall Equipment Effectiveness is measured by the machines’ capability of perform-
ing a task to produce a finished product as per customer needs in a timely manner. The
prediction of OEE can also be conducted in the case of machine learning in several ways,
even by predicting each component (availability, performance and quality) separately. All
three types of machine learning, such as supervised learning, unsupervised learning and
reinforcements learning, can be used for forecasting in the field of production [12–14].
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The aim of this paper is to determine the best estimation method for semiautomated
assembly line and large lot size by finding out whether cumulative or rolling horizon
forecasting is more accurate. In recent years, this has not been analyzed in detail, so several
machine learning methods are examined and compared in this article. Considering that
there are many machine learning approaches, this paper does not examine all of them but,
rather, tries to outline a general state.

2. Materials and Methods

A production system and, within it, the efficiency of assembly operations can be
evaluated in many ways [15]. The most common method in automotive practice is to use
Key Performance Indicators (KPIs) [16]. Overall Equipment Effectiveness (OEE) as a stan-
dard and best practice indicator was introduced within the Total Productive Maintenance
concept by Nakajima [17]. The original formula for calculation of OEE is written as:

OEE = a p q (1)

where:

a—availability (%);
p—performance (%);
q—quality (%).

At the domain of press-hardening process in manufacturing, Lejon et al. used three
machine learning methods, such as autoencoder neural network (ANN), one-class support
vector machine (OCSVM) and isolation forest (IF), for anomaly detection. The ANN
method was the best performing candidate in a similar dataset based on precision, recall
and accuracy [18]. Fast angle-based outlier detection (FABOD) and K-nearest neighbor
(KNN) methods performed better compared to histogram-based outlier score (HBOD), local
outlier factor (LOF), isolation forest (IF) and one-class support vector machine (OCSVM)
techniques when examining and detecting anomalies occurring on the assembly lines [19].

A quality factor affecting OEE was investigated by Peres et al. with machine learning
classifiers. In the frame of multistage quality control, the following algorithms were
examined: Gaussian naïve Bayes, K-nearest neighbor, XGBoost, random forest, support
vector machine and logistic regression. After the evaluation of accuracy, recall, precision
and F1 score, the XGBoost tuned model performed the best [20].

A hybrid prediction model was proposed to estimate whether the automotive assembly
process is functioning normally or abnormally. The conception utilizes an outlier detection
based on density-based spatial clustering of applications with noise and random forest
classification model. The presented model achieved higher accuracy than other examined
models, such as naïve Bayes, logistic regression and multilayer perceptron [21].

Wang et al. applied support vector machines algorithm to estimate the quality of
welding in a high-power disk layer. The proposed quality control system worked in real-
time mode [22]. Regarding the quality factor, Lee et al. compared four prediction methods
as decision tree, random forest, artificial neural network and support vector machine at the
area of metal casting. The best accuracy was at the ANN with 93.84% [23].

Predicting the OEE value at a production line with six machines, decision tree regres-
sion algorithm was the more robust and had the best result in terms of mean square error
than K-nearest neighbors, support vector machine and artificial neural network [24]. El
Mazgualdi et al. presented the use of various machine learning algorithms under different
configuration to predict OEE of an automotive wiring factory. Support vector regression
(SVR), support vector regression cross-validation (SVRCV), support vector regression ge-
netic algorithm (SVRGA), random forest (RF), random forest cross-validation (RFCV),
extreme gradient boost (XGB), extreme gradient boost cross-validation (XGBCV) and deep
learning (DL) were evaluated based on mean absolute error (MAE), mean absolute per-
centage error (MAPE) and root mean square error (RMSE). It was concluded that neither
method was effective enough due to the small size of training data [25].
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In terms of transmission assembly line predicting OEE, using Bayesian ridge regression
shows higher accuracy (99%) than other machine learning methods among others such
as adaptive naïve Bayes-based algorithm (96%), logistic regression model (84%), support
vector machine (97%) and decision tree (89%) [26,27]. However, it is worth using more
detailed minimum daily or shift-level basic data than the monthly OEE percentages used
here. Martinez et al. attempted to estimate OEE by separately predicting availability,
performance and quality. A new approach was taken in which they tried to combine the
predictions of completely different machine learning algorithms. It was a new ensemble
which combines the best of each method, is able to operate in all the cases, and reduces the
error [28].

Khdoudi et al. compared four machine learning methods to predict welding process
parameters. It was concluded that the convolutional neural network (CNN) was the most
accurate for energy prediction, the support vector regression (SVR) model for amplitude
prediction, and the regression model for pressure prediction. The best prediction method
was a combination of machine learning techniques [29,30].

A deep reinforcement learning framework was proposed using three methods as
deep Q-network, proximal policy optimization and advantage actor–critic algorithms
for ensuring the product quality and minimizing the overall energy consumption of an
industrial glass manufacturing process [31]. In the area of quality forecasting, 14 algorithms
were compared (ridge regression, linear regression, light gradient boosting machine, lasso
regression, random forest regressor, artificial neural networks, gradient boosting regressor,
extra trees regressor, elastic net, Bayesian ridge, K neighbors regressor, AdaBoost regressor,
least angle regression and orthogonal matching pursuit); the ridge regression algorithm
presented the best overall predictive performance for the test examples [32].

Zouhri et al. used polynomial, sigmoid and (radial basic function (RBF) kernels as
genetic-based SVM for chemical and rolling process quality data classification. The RBF
kernel function was the recommended for classification with 87.15% (chemical data) and
99.08% (rolling process data) accuracy [33].

Based on the above-mentioned scientific literature, it can be seen that many methods
can be used to predict OEE percentages; however, rolling horizon and the application of
the cumulative method are not mentioned.

Selection of Independent Variables for Machine Learning

In this article, the authors examine the estimation of OEE from a prediction point of
view, so this is the dependent variable. The basis for the selection of the dependent variables
is a cause-and-effect diagram published in a previous article [34]. The factors affecting OEE
are analyzed according to the following six aspects: man, environment, method, material,
machine and measurement. A total of 150 influencing factors were revealed and described.
Further examining the independent factors, Table 1 as an excerpt shows which can be
measured and recorded with MES, ERP, SQL or log files. In addition to all this, it shows
an example and indicates the effect of the factors on availability, performance and quality.
Appendix A contains more details.

Based on the measurability and occurrence of the factor characteristics of assembly
lines, the following 12 independent variables were selected: process failure downtime,
break downtime, technical downtime, changeover downtime, quality reason downtime,
logistics reason downtime, not planned downtime, other downtime reason, number of
changeover, average cycle time, number of assembled units and number of scrap units.
OEE percentage, availability percentage, performance percentage and quality percentage
are considered as dependent variables. These variables will be used in the next chapters.
The basis for selecting the independent variables was that they should be characteristic of
each assembly line, be objectively measurable and occur in large quantities. In addition, it
was important not to select too many independent variables.
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Table 1. Based on Ishikawa diagram, an excerpt of OEE contributors and measurability of attributes.

Attribution
Can Be Measured
by MES, ERP, SQL

and Log Files
Example A P Q

Qualification Practical experience Yes Variable cycle time per station
per person x

Motivation Goals Yes Availability, performance,
quality, OEE target x

Organization Improvement Yes Trends (OEE, scrap, etc.) x

Production technology Assembly process Yes Manual or nonmanual
(automated) assembly x

Measurement, control Maintenance Yes Downtime, reason: maintenance x
Work process Process parameters Yes Time and duration data x
Material and

information flow Available workforce Yes Staff (operator, setter, etc.) x

Material failure Material quality Yes Downtime, reason: quality
problems x

Material handling Not available, not
accessible Yes Downtime, reason: logistics

problem x

Machine and tool
adjustment SMED, OTED Yes Downtime, reason: changeover x

Product control Sampling frequency Yes Number of checked products x
Checking of assembly

process SPC Yes In MES: SPC report x

The elements of the complete Ishikawa diagram and effects on OEE are presented in Tables A1–A6.

3. OEE Prediction with Machine Learning

After presenting the real work environment and the data used, this chapter exam-
ines the possibilities of OEE prediction using different machine learning methods. The
authors are aware that there are many machine learning techniques; however, the described
elements give a complete picture of the prediction processes.

3.1. The Real Work Environment of Applied Machine Learning

This article illustrates the presented methods through a real industrial example. The
selected semiautomatic assembly line is a metal seat structure assembly line for the auto-
motive industry located in Central Europe. Figure 1 shows the simplified layout of the
hybrid line.
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Figure 1. Semiautomatic assembly line layout with cycle time groups.

The assembly line consists of 16 work stations named with letters from A to P. The
blue arrow shows the direction of material flow. The cycle time of each station is marked
with different colors. Assembly operations are performed by human or machines according
to Table 2.
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Table 2. Human and machine operations at the hybrid assembly line.

Assembly Station Operation by Assembly Station Operation by

A human I human
B human J machine
C human K human
D machine L human
E machine M machine
F human N machine
G human O human
H human P human

This production unit has been operating for more than 10 years and, in two shifts,
produces generally 380–440 products per shift. Since the beginning of the production,
the assembly line has produced the same main product; there is no significant difference
between the product variations.

In order to accurately describe the production environment, it is first necessary to cal-
culate and determine the type of production process based on Equation (2) and Table 3 [35].

Tf =
QT
Ipr

(2)

where:

Tf—production rate;
Q—annual volume of the production task (unit/year);
T—working time requirement of the production task assigned to the production unit
(hour/unit);
Ipr—actually available productive time base (hour/year).

Table 3. Production types and rates.

Types of Production Process Production Rate

Mass production 0.8 < Tf ≤ 1.0
Large batch size 0.6 < Tf ≤ 0.8

Medium batch size 0.4 < Tf ≤ 0.6
Small batch size 0.2 < Tf ≤ 0.4

Job-shop or project production 0 ≤ Tf < ≤ 0.2

Based on these, the analyzed hybrid assembly line with Tf values (0.76, year 2021; 0.78,
year 2022) can be classified as large batch class.

3.2. Production Data for Machine Learning

All the data related to the semiautomatic assembly line mentioned in the previous
subsection are available with the support of the factory MES and the SQL database system.
The production data used are real, accurate and continuous. A set of assembly data can
be considered as Big Data. Every second, hundreds of data are generated on the line,
which are stored in different systems, for example, a separate system handles process data
and a separate system handles product-specific data or logistics barcode data. During the
processing and sorting of the data of these systems, 769 records are created and one record
contains the data of an entire eight-hour shift. Assembly operations run in two shifts, so
that means 10 records per week. The data of the examined period come from the years
2021 and 2022 and are scaled with no factors. In addition, the extreme or outlier values
are not excluded so that the real industrial environment is depicted as well as possible.
In the following, the goal is only to predict the OEE values; the individual components
(availability, performance and quality) are not examined separately. The values of the
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dependent variable are shown in Figure 2. The OEE values are shown on the vertical axis
and the individual records are shown in chronological order on the horizontal axis.
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Figure 2. OEE values as dependent variable.

3.3. Cumulative and Rolling Horizon Prediction

During machine learning prediction of OEE, the following two main cases can be
distinguished according to how the training period is selected:

• Cumulative approach;
• Rolling horizon approach;

# Fix rolling horizon;
# Changing rolling horizon.

In the cumulative case, the amount of training data increases continuously over time
so more and more data are used as part of the training set. This has the advantage that all
occurring data are taken into account; however, overfitting can occur. In the rolling horizon
approach, the selected training data use a different time window for each prediction,
which moves forward continuously. In general, rolling horizon prediction pushes the time
window; cumulative does not.

3.4. Applied Machine Learning Methods

The authors used R and RStudio program for the entire research work. The following
machine learning methods were used for OEE prediction:

• Multiple linear regression (MLR);
• Polynomial regression (simple) (Pol 1);
• Polynomial regression (complex) (Pol 2);
• Lasso regression (Lasso);
• Ridge regression (Ridge);
• Random forest regression (RF);
• Gradient boost regression (GB);
• Mixed GAM computation vehicle with automatic smoothness estimation regression

(MGCV).

The basis of the selection was to choose methods within the R environment that can
also be used in industrial conditions without requiring a large computing capacity. Two
main considerations guided the authors’ choice of machine learning methods. The first
aspect was the selection of the most suitable and widely used learning methods for the
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analysis of production time series. The selection was based on an extensive literature
analysis. The second main criterion was the applicability in an industrial environment;
where possible, the authors preferred procedures with a relatively low computational
demand and a predictable time requirement for their application in industrial practice. A
separate Rstudio program was written for each of the selected machine learning methods,
and these contain the most frequently used settings. The following R packages were used:
xlsx, xml, readxl, tidyverse, ggplot2, readr, openxls, chron, lubridate, dplyr, caTools, cor-
rplot, doParallel, randomForest, MASS, mlbench, Amelia, plotly, reshape2, caret, moments
and mgcv.

In the following chapter, the cumulative and fix rolling horizon approaches were used
for each machine learning method.

4. Discussion

OEE was predicted for two periods (testing set), a shorter period (6 weeks, 60 records),
which is the simulation of production planning, and a longer period (15 weeks, 150 records),
which can help estimate the necessary industrial investments. In the first case, the rolling is
performed on a weekly basis (10 records), while, in the second case, it is performed on a
monthly basis (50 records). These periods are derived from automotive practice, because
assembly plans are reviewed and production scheduling is conducted weekly. On the other
hand, it is sufficient to monitor the OEE data required for industrial investments every
month for the period of the next three months. Industrial investment means whether it
is necessary to convert, rent, build or buy a new machine or production line in order to
meet customer needs. In this article, several training periods were examined; in the case of
production planning, the range is from 10 to 100 in increments of 10, while, in the case of
industrial investment, the range is from 100 to 200 also scaled by 10.

In each case, the evaluation and comparing of the predicted results were carried out
using root mean squared error (RMSE) based on the following equation:

RMSE =

√√√√ n

∑
i=1

(yi − yi)
2

n
(3)

where:

n—number of fitted points;
yi—actual value;
yi—predicted value [36].

For the different regressions applied by machine learning, the RMSE values for pro-
duction planning are shown in Table 4, while Table 5 is for industrial investments.

Table 4. RMSE values for production planning (short time prediction).

RMSE

Step Training Testing MLR Pol 1 Pol 2 Lasso Ridge RF GB MGCV Min

10 10 60 0.3737 0.0587 0.1294 0.0786 0.0721 0.0701 - - 0.0587
10 20 60 0.0881 0.0553 0.0924 0.0682 0.0676 0.0655 - 0.0882 0.0553
10 30 60 0.0635 0.0501 0.0777 0.0569 0.0582 0.0621 - 0.0635 0.0501
10 40 60 0.0545 0.0543 0.0644 0.0519 0.0534 0.0599 - 0.0545 0.0519
10 50 60 0.0516 0.0541 0.0611 0.0513 0.0524 0.0577 - 0.0516 0.0513
10 60 60 0.0493 0.0541 0.0580 0.0498 0.0517 0.0564 0.0587 0.0493 0.0493
10 70 60 0.0490 0.0543 0.0573 0.0489 0.0507 0.0549 0.0570 0.0490 0.0489
10 80 60 0.0489 0.0546 0.0569 0.0489 0.0513 0.0540 0.0559 0.0489 0.0489
10 90 60 0.0510 0.0547 0.0580 0.0497 0.0513 0.0536 0.0540 0.0491 0.0491
10 100 60 0.0514 0.0550 0.0581 0.0505 0.0516 0.0529 0.0524 0.0492 0.0492

Avg. 0.0881 0.0545 0.0713 0.0555 0.0560 0.0587 0.0556 0.0559 0.0545

10 Cum. 60 0.0496 0.0603 0.0604 0.0503 0.0507 0.0498 0.0472 0.0496 0.0472
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Table 5. RMSE values for industrial investments (long time prediction).

RMSE

Step Training Testing MLR Pol 1 Pol 2 Lasso Ridge RF GB MGCV Min

50 100 150 0.0597 0.0573 0.0588 0.0555 0.0593 0.0573 0.0542 0.0597 0.0542
50 110 150 0.0619 0.0576 0.0593 0.0600 0.0631 0.0560 0.0551 0.0619 0.0551
50 120 150 0.0524 0.0565 0.0573 0.0525 0.0567 0.0528 0.0518 0.0524 0.0518
50 130 150 0.0513 0.0570 0.0578 0.0516 0.0557 0.0514 0.0494 0.0513 0.0494
50 140 150 0.0498 0.0563 0.0565 0.0513 0.0539 0.0514 0.0495 0.0498 0.0495
50 150 150 0.0496 0.0571 0.0565 0.0513 0.0540 0.0514 0.0515 0.0496 0.0496
50 160 150 0.0506 0.0585 0.0585 0.0524 0.0546 0.0522 0.0507 0.0506 0.0506
50 170 150 0.0504 0.0576 0.0576 0.0519 0.0540 0.0488 0.0472 0.0504 0.0472
50 180 150 0.0497 0.0571 0.0569 0.0513 0.0531 0.0471 0.0456 0.0497 0.0456
50 190 150 0.0482 0.0562 0.0559 0.0503 0.0512 0.0476 0.0450 0.0482 0.0450
50 200 150 0.0489 0.0570 0.0566 0.0513 0.0522 0.0476 0.0456 0.0489 0.0456

Avg. 0.0520 0.0571 0.0574 0.0527 0.0553 0.0512 0.0496 0.0520 0.0496

50 Cum. 150 0.0544 0.0617 0.0619 0.0562 0.0558 0.0562 0.0562 0.0544 0.0544

The following conclusions can be made about predictions in the case of production planning:

• In terms of the examined training periods, simple polynomial regression (Pol 1)
showed the best average RMSE result with a fix rolling horizon (0.0545), followed by
lasso (0.0555) and gradient boost regression (0.0556), although, with GB, the 10–50
training period cannot be interpreted due to the specificity of the method;

• In the case of a rolling horizon, the lowest RMSE value (0.0489) can be achieved with
lasso regression set to the training parameters 70 and 80;

• Analyzing the cumulative methods, the gradient boost regression showed the best RMSE
result (0.0472), followed by multiple linear regression (0.0496) and MGCV (0.0496);

• Considering the average speed of calculation, the fastest method is simple polynomial
regression (4.7 s), followed by multiple linear regression (5.1 s) and random forest
(9.9 s). The individual values are shown in Table 6. (The laptop used with Intel ®

Celeron ® CPU N2840 @ 2.16 GHz 2.16 GHz, 4.00 GB RAM);
• The RMSE values of the examined cumulated methods are generally better than those

of the fix rolling horizon methods;
• In the case of production planning, the recommended OEE prediction method is the

gradient boost cumulated approach due to the most accurate RMSE value and the
moderately long calculation requirement.

Table 6. Average calculation time of each method.

Applied Regression
Production Planning Industrial Investments

Roll. Hor. Cum. Roll. Hor. Cum.

Multiple linear regression 5.1 s 7.0 s 2.0 s 5.0 s
Polynomial regression (simple) 4.7 s 6.0 s 2.7 s 3.9 s

Polynomial regression (complex) 56.3 s 70.3 s 14.4 s 15.0 s
Lasso regression 546.9 s 765.9 s 86.3 s 117.4 s
Ridge regression 17,727.3 s 18,906.0 s 2758.2 s 3506.2 s

Random forest regression 9.9 s 33.9 s 4.0 s 6.8 s
Gradient boost regression 511.2 s 1016.7 s 94.1 s 152.8 s

MGCV 10.5 s 13.3 s 2.9 s 3.7 s
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The following conclusions can be made about predictions in the case of
industrial investments:

• Regarding the examined training periods, the gradient boost regression showed the
best average RMSE result with fix rolling horizon (0.0496), followed by random forest
(0.0512), multiple linear regression (0.0520) and MGCV with the same result (0.0520);

• In the case of fix rolling horizon, the lowest RMSE value (0.0450) can be achieved with
gradient boost regression set to the training parameters 190;

• Analyzing the cumulative methods, the multiple linear regression showed the best
RMSE result (0.0544), followed by MGCV (0.0544) and ridge regression (0.0558);

• Considering the average speed of calculation, the fastest method is multiple linear
regression (2.0 s), followed by simple polynomial regression (2.7 s) and MGCV (2.9 s);

• The RMSE values of the examined fix rolling horizon methods are always better than
the cumulated approach;

• In the case of industrial investment, the recommended prediction method is the
gradient boost fix rolling horizon approach with 180–200 training sets, due to the most
accurate RMSE value and the medium–long calculation requirement.

The machine learning methods used have the advantage of being able to estimate the
real production time series under study with an average RMSE rate of approximately 4–7%.
Based on our analyses, it is clear that the so-called over-learning does not occur for the
methods under investigation. A weakness identified is the inaccuracy of the ability to react
to sudden changes in the real world, which is an important and pronounced feature in the
real environment. Based on our observations, the range of the appropriate learning set
is quite wide, and it is difficult to clearly determine based on these real-world data sets
how many shift cycles are required for machine learning methods to achieve an RMSE
prediction value of 5% or below.

During the regressions presented so far, in addition to the fix rolling horizon (10
records for production planning, 50 records for investment) and fix testing period (60
records for production planning, 150 records for investment), only the training periods
were modified. It follows that, in addition to these, there are many variation options
and even smaller RMSE values can be achieved if the testing periods are changed. As an
example, for multiple linear regression, Figure 3 shows the additional options.
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The predicted or testing records are shown on the horizontal axis and the RMSE values
on the vertical axis. The different colored lines show the number of used training records.
Figure 3 shows that, in all cases, if the amount of testing data is reduced, the RMSE value
decreases. For production planning, the use of the figure provides guidelines as to how
much prediction accuracy the used training set will result in during the testing period.
Based on Figure 3, the main conclusion is that multiple linear regression fits better with
more training records and less testing data. However, it is important to monitor the RMSE
values, depending on how accurately it is necessary to predict the OEE values.

5. Conclusions

At the area of the manufacturing industry, it is essential that the follow up of assem-
bly operations’ performance and efficiency takes in real-time mode and the estimation
works quickly and reliably. Based on supervised machine learning, assembly efficiency
metrics, e.g., Overall Equipment Effectiveness (OEE) can be predicted, but it is not clear by
which method.

This paper collected and evaluated the factors as initial information or data affecting
OEE from different perspectives. The individual elements were examined according to
whether they affect availability, performance or quality and how they can be measured
by Manufacturing Execution System (MES), SQL query or another way. Based on the
measurability and occurrence of the factor characteristic of assembly lines, 12 independent
variables were selected among others, including process failure downtime, technical down-
time, changeover downtime, average cycle time and number of assembled units. OEE
percentage, availability percentage, performance percentage and quality percentage are
considered as dependent variables.

Based on the selected data, the prediction of OEE was analyzed using different machine
learning methods, such as multiple linear regression, simple and complex polynomial
regression, lasso regression, ridge regression, random forest regression, gradient boost
regression and MGCV regression. Using real industrial assembly line data, each machine
learning method has been demonstrated for production planning and investment. Two
approaches were used, fix rolling horizon and cumulative way. The results were evaluated
using root mean squared error (RMSE) and the computation time.

In the case of production planning, the recommended OEE prediction method is the
gradient boost cumulated approach due to the most accurate RMSE value and the moder-
ately long calculation requirement. In the case of industrial investment, the recommended
prediction method is the gradient boost fix rolling horizon approach with 180–200 training
sets, due to the most accurate RMSE value and the medium–long calculation requirement.
In addition to these, further optimization possibilities were outlined using the extended
testing period, which was demonstrated with multiple linear regression.

The authors plan to examine further machine learning methods and search for ad-
ditional optimization options to predict the dependent variable even more accurately. In
the future, it will be possible to combine the cumulative approach with the fixed rolling
horizon way for a lower value of RMSE.
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Appendix A

Table A1. The Ishikawa diagram “Man” effect on OEE contributors and measurability of attributes.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Qualification

Education No -

Internal training Yes Other downtime, reason: planned
training x

Special knowledge No -

Practical experience Yes Variable cycle time per station per
person x

External training No -

Skills,
abilities

Seeing No -
Hearing No -

Fine movement No -
Stamina No -

Communication skills No -

Personality,
character

Punctuality Yes Number of assembled bad
products x

Speed Yes Variable cycle time per station per
person x

Compliance No -
Monotony tolerance No -
Conscientious work No -

Motivation

Goals Yes Availability, performance, quality,
OEE target x

Expectations of employee No -
Rewards, condemnations No -

Team, company No -
Work conditions No -

Organization

Available staff Yes Other downtime, reason: missing
operator x

Improvement Yes Trends (OEE, scrap, etc.) x
Leading, management No -

Support No -

Planning Yes Production and resource plan,
scheduling x

Table A2. The Ishikawa diagram “Environment” effect on OEE contributors and measurability
of attributes.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Work
environment

Safety No -
Health protection No -

Ergonomics No -
Perceived environment No -

Automatization Yes Manual or nonmanual
(automated) assembly x

Production
environment

Complexity of technology Yes Assembly lines, stations,
products x

5S Yes Downtime, reason: cleaning x
Concerns of technology No -

Production without waste Yes Downtimes, scrap x
Visual support Yes OEE Andon board x
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Table A2. Cont.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Market
environment

Oder Yes Production and resource plan,
scheduling x

Takt time, cycle time feasibility Yes Takt time, cycle time data x

Pull system Yes Production plan, batch size,
changeover, scheduling x

Competition No -
Production plan feasibility Yes Fulfilment of production plan x

Company
environment

Company, team Yes Staff (operator, setter, etc.) x
Shift schedule, breaks Yes Downtime, reason: changeover x

Overtime Yes Production and resource plan,
scheduling x

Motivation, commitment No -
Employee expectations No -

Worker
environment

Social situation No -
Plant availability No -
Social acceptance No -

Benefits No -
Expectations of employer No -

Table A3. The Ishikawa diagram “Method” effect on OEE contributors and measurability of attributes.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Production
technology

Assembly process Yes Manual or nonmanual
(automated) assembly x

Repair, rework process Yes Downtime, reason: quality
problems x

Checking process Yes Cycle time of checking station x
Packaging process Yes Cycle time of packaging station x

Automatization Yes Manual or non-manual
(automated) assembly x

Measurement,
control

Maintenance Yes Downtime, reason: maintenance x
SPC, 100% checking Yes In MES: SPC report x

Six sigma No -
Failure analysis, PDCA, Pareto Yes Pareto analysis x

Poka yoke Yes Downtime, reason: Poka yoke
check x

Work process

Standard operational procedure Yes In MES: documents module x
Process parameters Yes Time and duration data x
Material workflow No -

Best practices Yes In MES: documents module x
Planned cycle time Yes Cycle time data per stations x

Lean methods

Goals Yes Availability, performance,
quality, OEE target x

Expectations No -
Rewards, condemnations No -

Company, team No -
Work conditions No -

Material and
information

flow

Available workforce Yes Staff (operator, setter, etc.) x
Improvement Yes Trends (OEE, scrap, etc.) x

Leading, organization No -
Support No -

Planning Yes Production and resource plan,
scheduling x
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Table A4. The Ishikawa diagram “Material” effect on OEE contributors and measurability
of attributes.

Attribution Can Be Measured by MES,
ERP, SQL and Log Files Example A P Q

Material
failure

Material quality Yes Downtime, reason: quality problems x
Surface Yes Downtime, reason: quality problems x

Deficiency Yes Downtime, reason: quality problems x
Surplus Yes Downtime, reason: quality problems x
Color Yes Downtime, reason: quality problems x

Size
error

Width, length, height Yes Downtime, reason: quality problems x
Diameter Yes Downtime, reason: quality problems x

Out of tolerance Yes Downtime, reason: quality problems x
Deformation Yes Downtime, reason: quality problems x

Position problem Yes Downtime, reason: quality problems x

Quantitative
error

Too much, too little Yes Downtime, reason: logistics problem x
Not available Yes Downtime, reason: logistics problem x
Stuck together Yes Downtime, reason: quality problems x

Mixed Yes Downtime, reason: quality problems x
Batch failure Yes Downtime, reason: quality problems x

Material
handling

Damaged Yes Downtime, reason: logistics problem x
Contaminated Yes Downtime, reason: logistics problem x

Temperature, warranty Yes Downtime, reason: logistics problem x
Not available, not

accessible Yes Downtime, reason: logistics problem x

Not identified Yes Downtime, reason: logistics problem x

Design
failure

Function problem Yes Downtime, reason: design failure x
Comfort problem Yes Downtime, reason: design failure x

Not controllable, not
repairable No -

Not durable No -
Not or difficult to

assemble Yes Significantly different cycle time, takt
time x

Table A5. The Ishikawa diagram “Machine” effect on OEE contributors and measurability
of attributes.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Maintenance

Maintenance plan Yes Downtime, reason: maintenance x
Fulfilment of planned

maintenance Yes Downtime, reason: maintenance x

Assemble ability, repairability,
maintainability Yes Downtime, reason: maintenance x

Standard parts No -
Manuals, drawings No -

Machine and
tool

adjustment

Adjusted, validated Yes Downtime, reason: settings x
Setting documentation No -

Simple, fast, standardized Yes Downtime, reason: settings x
Failure catalogue available No -

SMED, OTED Yes Downtime, reason: changeover x

Stability

Trouble proof No -
Energy supply continuous Yes Downtime, reason: technical issue x
Machine capability, process

capability Yes Significantly different cycle time,
takt time x

Operable Yes Operating and non-operating time x
Reliable PC, PLC network Yes Downtime, reason: technical issue x
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Table A5. Cont.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Standardization

Standard parts, components No -
Spare parts available Yes Downtime, reason: maintenance x
Available documents No -

Parts of MES Yes Assembly line and machines exist
in MES x

Traceable, identifiable Yes In MES: traceability reports x

Safety

Can be stopped, interruptible No -
Ergonomic No -

Free of hazardous materials No -
Easy to handle No -
Not accidental No -

Table A6. The Ishikawa diagram “Measurement” effect on OEE contributors and measurability
of attributes.

Attribution
Can Be Measured by
MES, ERP, SQL and

Log Files
Example A P Q

Material
checking

Quantitative control Yes Number of scrap pieces x
Incoming inspection Yes Number of scrap pieces x

Quality control Yes Number of scrap pieces x
Traceability Yes In MES: traceability reports x

Function checking Yes Number of scrap pieces x

Product
control

Sampling frequency Yes Number of checked products x
Sampling size Yes Number of checked products x

Checking functional operation Yes Scrap or good products x
Sampling place Yes Checking station in MES x

Documentation control Yes In MES: documents module x

Machine,
tool checking

Appropriate frequency Yes Downtime, reason: maintenance x
Machine testing Yes Downtime, reason: maintenance x

Checking maintenance Yes Downtime, reason: maintenance x
Calibration Yes Downtime, reason: maintenance x

Safety control Yes Downtime, reason: maintenance x

Checking of
assembly
process

SPC Yes In MES: SPC report x
Simulation control Yes Downtime, reason: settings x

First and last product control Yes Timestamp data of first and last
products x

Type change checking Yes Timestamp data of changeover x

Poka yoke control Yes Timestamp data of Poka yoke
check x

Measurement
instruments

checking

Functionality Yes Timestamp data of Poka yoke
check x

Reliability No -
Accuracy No -

Frequency Yes Timestamp data of Poka yoke
check x

Documents control Yes In MES: documents module x
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36. Igual, L.; Segui, S. Introduction to Data Science, a Python Approach to Concepts, Techniques and Applications; Springer International

Publishing: Cham, Switzerland, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	OEE Prediction with Machine Learning 
	The Real Work Environment of Applied Machine Learning 
	Production Data for Machine Learning 
	Cumulative and Rolling Horizon Prediction 
	Applied Machine Learning Methods 

	Discussion 
	Conclusions 
	Appendix A
	References

