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Abstract: Face mask detection is a technological application that employs computer vision method-
ologies to ascertain the presence or absence of a face mask on an individual depicted in an image or
video. This technology gained significant attention and adoption during the COVID-19 pandemic,
as wearing face masks became an important measure to prevent the spread of the virus. Face mask
detection helps to enforce mask-wearing guidelines, which can significantly reduce the spread of
respiratory illnesses, including COVID-19. Wearing masks in densely populated areas provides
individuals with protection and hinders the spread of airborne particles that transmit viruses. The
application of deep learning models in object recognition has shown significant progress, leading
to promising outcomes in the identification and localization of objects within images. The primary
aim of this study is to annotate and classify face mask entities depicted in authentic images. To
mitigate the spread of COVID-19 within public settings, individuals can employ the use of face masks
created from materials specifically designed for medical purposes. This study utilizes YOLOv8, a
state-of-the-art object detection algorithm, to accurately detect and identify face masks. To analyze
this study, we conducted an experiment in which we combined the Face Mask Dataset (FMD) and
the Medical Mask Dataset (MMD) into a single dataset. The detection performance of an earlier
research study using the FMD and MMD was improved by the suggested model to a “Good” level of
99.1%, up from 98.6%. Our study demonstrates that the model scheme we have provided is a reliable
method for detecting faces that are obscured by medical masks. Additionally, after the completion of
the study, a comparative analysis was conducted to examine the findings in conjunction with those of
related research. The proposed detector demonstrated superior performance compared to previous
research in terms of both accuracy and precision.

Keywords: object detection; CNN; COVID-19; face mask identification; YOLOv8; deep learning

1. Introduction

“Face mask identification” typically refers to the process of detecting whether a person
is wearing a face mask and, if so, how it is being worn (properly or incorrectly). This
technology is part of the broader category of object detection in computer vision, where
the object of interest is a face with or without a mask. The COVID-19 pandemic had
a profound impact on the global population in the previous year, exhibiting minimal
regard for demographic factors such as age, gender, or geographical boundaries. The
virus caused a temporary cessation of global activities [1,2]. Due to the global outbreak of
COVID-19, several countries have implemented additional regulations on the utilization
of facial coverings as a preventive measure against infection. In the period preceding the
onset of the COVID-19 pandemic, individuals adopted the practice of donning masks as a
preventive measure against the detrimental consequences of air pollution. This behavior
has persisted up to the present time [3,4].

Face mask detection technology offers several benefits, particularly in the context of
public health and safety, especially during situations like the COVID-19 pandemic. Some
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of the key benefits include (1) health and safety: Face mask detection helps to enforce
mask-wearing guidelines, which can significantly reduce the spread of respiratory illnesses,
including COVID-19. Wearing masks in crowded places helps to protect individuals and
prevents the transmission of airborne particles carrying viruses [5]. (2) Disease preven-
tion: During outbreaks of contagious diseases, like the COVID-19 pandemic, identifying
individuals who are not wearing masks in public spaces can help authorities take prompt
actions to mitigate the spread of the disease. This is particularly crucial in controlling
outbreaks and protecting vulnerable populations [6,7]. (3) Reduced manual monitoring:
Automated face mask detection reduces the need for manual monitoring and enforcement,
allowing staff and authorities to focus on other tasks. This is especially important in places
with many people, where manual monitoring might be challenging [8]. (4) Efficiency:
automated systems can process many individuals quickly and accurately, making them
well-suited for environments where efficiency is crucial, such as airports, train stations, and
shopping malls [9]. (5) Consistency: automated systems provide consistent and unbiased
monitoring, ensuring that all individuals are treated equally, and mask guidelines are
enforced without any discrimination. (6) Alerting and reporting: Some face mask detection
systems can generate alerts and reports based on the data collected. This information can
be valuable for health authorities, organizations, and institutions to track compliance rates
and make informed decisions. (7) Public awareness: the presence of face mask detection
technology can increase public awareness of the importance of wearing masks, serving
as a visual reminder for individuals to follow health guidelines [10]. (8) Adaptability:
face mask detection technology can be adapted for various environments and scenar-
ios, making it versatile for different applications, from public spaces to workplaces [11].
(9) Post-pandemic applications: while the initial focus has been on pandemic-related situ-
ations, face mask detection technology can find utility beyond the pandemic, such as in
industrial safety settings or areas where respiratory protection is important [12].

Furthermore, it is imperative to carry out a study on the duration for which face masks
can effectively offer protection [13,14], Additionally, endeavors should be made to extend
the usability of disposable masks, while simultaneously advocating for the development
and use of reusable masks. According to the World Health Organization (WHO), to
effectively address and overcome the COVID-19 pandemic, governments must provide
guidance and supervision to the general population in communal settings, especially in
areas with high population density. The administration will achieve complete success in
this conflict only upon reaching that point. The integration of surveillance systems with
models of artificial intelligence, for instance, could be utilized in this case as an example of
a potential application [15,16].

YOLOv8 represents the latest iteration within the YOLO series, showcasing advance-
ments that build upon the notable attributes that contributed to the widespread acclaim
of its predecessors. This is achieved through the implementation of a novel architecture
that is based on transformer models, resulting in enhanced levels of precision and effi-
ciency [17,18]. The YOLOv8 model is highly efficient at detecting objects because of its
advanced training methodology, which involves the integration of knowledge distillation
and pseudo-labeling techniques [19,20].

Previous studies have introduced LLE-CNNs as a method for detecting masked
faces. The LLE-CNNs consist of three fundamental modules. The suggested module
commences by integrating two pre-trained convolutional neural networks (CNNs) to detect
probable facial regions inside the input image. These regions are subsequently described
using more comprehensive descriptors, which are employed to enhance recommendations.
The generation of a consistency descriptor involves the utilization of the locally linear
embedding (LLE) methodology and dictionaries that have been acquired from a substantial
dataset comprising generated ordinary faces, masked faces, non-faces, and other relevant
methodologies. This process is carried out within the Embedding module [21]. The article
referenced as [22] offers a comparative analysis of face recognition datasets that employ
masked and non-masked images. Additionally, the article presents a detailed exposition of
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Principal Component Analysis (PCA). They discovered statistical approaches that can be
incorporated into methods for both masked and unmasked face recognition as part of their
investigation. Both of these situations may benefit from the application of these methods.

This work presents a description of a facial identification model that utilizes deep
transfer learning techniques for mask detection. The following are the most significant
contributions made by this paper: (1) A novel deep learning detection model has been
built and showcased that can automatically identify and localize a face that is wearing
a medical mask within an image. (2) This study aims to identify and assess the benefits
and drawbacks associated with the utilization of YOLOv8 in facial recognition systems
specifically designed for the detection and recognition of medical face masks and our
experiment combined the Face Mask Dataset (FMD) and Medical Mask Dataset (MMD).
(3) We perform a comparative analysis of the YOLOv8s, YOLOv8n, and YOLOv8m models.

This section contains a paper outline. Section 2 describes and evaluates pertinent
works that came before. Section 3 provides an overview of our proposed methodology.
Section 4 presents the dataset, training data, and system test results. Section 5 concludes
with additional research and development recommendations.

2. Materials and Methods
2.1. Face Mask Identification with Deep Learning

The application of deep learning algorithms and techniques in the context of face
mask identification involves the detection and classification of individuals based on their
adherence to wearing a face mask. Deep learning, specifically convolutional neural net-
works (CNNs), has demonstrated remarkable efficacy in the domain of image recognition,
rendering it well-suited for the task of identifying face masks [23].

In one study, researchers employed a network based on Generative Adversarial Net-
works (GANs) [24]. This network consisted of two discriminators, each serving a distinct
purpose. The first discriminator facilitated the acquisition of knowledge regarding the
overall facial structure, while the second discriminator was afterward incorporated to
specifically target the learning of intricate details within the occluded regions. In [25],
the authors describe a face mask identification model that uses a hybrid approach that
combines deep learning and more conventional machine learning approaches. The model
that is suggested is broken up into two components. The Resnet50 feature extraction
method, which is the first part of this setup, is what it is designed to be used in conjunc-
tion with, so that users may receive the most out of this tool. The authors employed the
Yolo V3 algorithm for face detection, as stated in reference [26]. Moreover, the Yolo V3
model is constructed upon the Darknet-53 architecture, which functions as its foundational
framework. The approach that was suggested achieved a testing accuracy of 93.9%. The
major goal is to achieve proper mask identification while also decreasing the occurrence
of false positive face detections to the greatest extent practicable. This will ensure that
warnings are only activated for medical personnel who are not performing their tasks while
wearing a surgical mask. The proposed system was accurate to a 95% level throughout the
archiving process.

Another research study (Ejaz et al., 2019) [22] implements the Principal Component
Analysis (PCA) algorithm with the Olivetti Research Laboratory (ORL) face dataset and
achieves 70% accuracy. In their work, a statistical procedure is selected, which is applied in
non-masked face recognition and also applied in the masked face recognition technique.
PCA is a more effective and successful statistical technique and is widely used.

Moreover, Ge et al., 2017 [21] employ A Dataset of Masked Faces (MAFA). The author
suggests using LLE-CNNs for detecting masked faces based on the dataset. LLE-CNNs have
three main modules. The Proposal module initially merges two pre-trained convolutional
neural networks (CNNs) to identify potential facial regions within the input image and
encode them using descriptors with many dimensions. Subsequently, the Embedding
module is integrated to transform these descriptors into a similarity-based descriptor
through the use of the locally linear embedding (LLE) technique and the dictionaries
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trained on a substantial collection of synthesized normal faces, masked faces, and non-
faces. By employing this approach, a significant portion of the absent facial signals can
be effectively restored, and the negative effects caused by various masks that introduce
distorted cues can be significantly reduced.

2.2. YOLOv8 Architecture

The core structure of YOLOv8 is quite like that of YOLOv5, except for the C3 module,
which has been replaced with the C2f module. This module is derived from the CSP idea.
YOLOv8’s C2f module was produced by using the ELAN concept from YOLOv7 and
combining it with C3. This was carried out in order to develop the module. This integration
was undertaken to improve YOLOv8’s gradient flow information without jeopardizing its
lightweight design in any way [27]. The dominant SPPF module was used throughout the
entirety of the final stage of the backbone architecture. After this, a sequential application
of three waxpools, each of which had a size of 5 by 5 inches, was carried out. After that, the
output of each layer was concatenated to ensure the accurate detection of objects at various
scales while keeping a lightweight design. This was accomplished without sacrificing
accuracy [28].

Bounding boxes in the form of annotations are widely prevalent in the field of deep
learning, surpassing other types of annotations in terms of frequency [29]. Within the
domain of computer vision, the term “bounding boxes” refers to rectangular shapes utilized
to delineate and specify the precise spatial coordinates of the object under scrutiny. The
coordinates located at both the upper-left and lower-right corners of the rectangle can be
utilized to determine their position regarding the x and y axes. The upper-left corner of
the rectangle and the lower-right corner of the rectangle both contain these coordinates.
In the context of activities involving object detection and localization, bounding boxes are
used quite frequently. To generate a bounding box for each sign, the BBox label tool [30]
is employed.

A total of three distinct kinds of labels—numbered 0, 1, and 2—must be applied to
complete the labeling process. In contrast to the input formats used by other programs,
YOLO does not use object coordinates to express the data in its input values. The coor-
dinates of the object’s center point are included in the YOLO input data alongside the
dimensions of the object’s width and height (x, y, w, h). Common methods of representing
bounding boxes include the use of either two coordinates, (x1, y1) and (x2, y2), or a single
coordinate, (x1, y1), in conjunction with the width (w) and height (h) of the bounding box.
The process of transformation is depicted using Equations (1)–(6).

dw = 1/w (1)

x =
x1 + x2

2
× dw (2)

dh = 1/h (3)

y =
y1 + y2

2
dh (4)

w = (x2 − x1)× dw (5)

h = (y2 − y1)× dh (6)

In these equations, w represents the width of the image, while h represents its height.
Next, we predict the width (w) and height (h) of the boxes x, y, and anchor box (dw and
dh). LabelImg is a software application used for visually marking and identifying objects
within images [31]. The program is implemented in the Python programming language
and utilizes the Qt framework for its graphical user interface. Annotations are stored as
XML files in the PASCAL VOC format, which is the same format utilized by ImageNet.
In addition, it also provides support for YOLO and CreateML formats. We used the
LabelImg to label our images and a corresponding text file with the same name as each
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image file in the same directory will be generated. Each text file includes the object class,
object coordinates, the height and width of the associated picture file, as well as additional
metadata. Convolution, batch normalization, and SiLu activation functions for the YOLOv8
architecture are the three basic components that make up the convolutional neural network
(CNN) that are depicted in Figure 1.
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The loss function used in YOLO is a combination of localization loss and classification
loss. The purpose of this loss function is to measure the difference between the predicted
bounding boxes and class probabilities and the ground-truth annotations. The components
of the YOLO loss are as follows: (1) localization loss: The localization loss evaluates the
accuracy of the predicted bounding box locations. It is often represented using metrics
like MSE or MAE between the predicted box coordinates (center coordinates, width, and
height), and the ground-truth box coordinates. (2) Confidence loss: The confidence loss
measures how well the model predicts the confidence score for each bounding box. It is
computed as the intersection over union (IoU) between the predicted box and the ground-
truth box. The loss could be the binary cross-entropy loss between the predicted confidence
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score and the ground-truth indicator (whether an object is present or not). (3) Classification
loss: The classification loss quantifies the precision with which the model predicts the
class probabilities for each bounding box. The determination of this is achieved through
the computation of the cross-entropy loss, which involves comparing the predicted class
probabilities with the actual class labels represented as one-hot vectors. The overall YOLO
loss value is a weighted sum of these individual loss components. The exact formulation
can be different between YOLO versions, and some versions might include additional
terms or regularization components. Below is the YOLO loss function in Equation (7) [32].

Yolo Loss Function

= λcoord
s2

∑
i=0

B
∑

j=0
l

obj
ij

[
(xi − x̂i)

2 + (y − ŷi)
2
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B
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B
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noobj
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l
obj
i ∑

cϵclasses
(pi(c)− p̂i(c ))

2

(7)

where l
obj
ij indicates whether the object appears in cell i, and l

obj
ij denotes that the jth bound-

ing box predictor in cell i is responsible for the prediction. Next,
(

x̂, ŷ, ŵ, ĥ, ĉ, p̂
)

is
implemented to express the anticipated bounding box’s center coordinates, width, height,
confidence, and category probability. This experiment employed the λcoord to 0.5, demon-
strating that the width and height errors are less useful in the computation. To mitigate the
effect of numerous vacant grids on the loss value, λnoobj = 0.5 is utilized.

In object detection, there can be multiple classes of objects to detect. Next, the mAP
calculates the AP for each class and then computes the mean of these AP values. This
provides an overall assessment of the model’s performance across all classes, accounting
for the varying difficulty levels of detecting different objects. The mAP is described in
Equation (8).

mAP =
∫ 1

0
p(o)do (8)

The variable p(o) represents the precision of the object detection. The intersection over
union (IoU) metric quantifies the degree of overlap between the bounding boxes of the
prediction (pred) and the ground truth (gt), as expressed in Equation (9). Precision and
recall are represented based on [33] in Equations (10) and (11).

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(9)

Precision =
TP

TP + FP
= TP/N (10)

Recall =
TP

TP + FN
(11)

where TP represents true positives, FP represents false positives, FN represents false
negatives, and N represents the total number of objects recovered, including the true
positives and false positives. Another evaluation index, F1 [34], is shown in Equation (12).

F1 =
2 × Precision × Recall

Precision + Recall
(12)

3. Results
3.1. Face Mask Dataset (FMD) and Medical Mask Dataset (MMD)

The research conducted in this study utilized two distinct datasets of medical face
masks, which were publicly accessible. First, the Face Mask Dataset (FMD) in [35] is a



Big Data Cogn. Comput. 2024, 8, 9 7 of 17

publicly available masked face dataset. The FMD dataset consists of 853 pictures, which
are stored in the PASCAL VOC format. The images shown in Figure 2 are samples of the
FMD. Following that, the Medical Mask Dataset (MMD) may be found on Kaggle [36]. In
addition, the MMD collection comprises 682 images, each of which comprises more than
3000 disguised faces that have been medically masked. In this investigation, all participants
gave their informed consent, and Figure 2 provides some samples of pictures in MMD.
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Figure 2. Sample images in the experimental Face Mask Dataset (FMD), and Medical Mask
Dataset (MMD).

The experimental setup involved merging the MMD and FMD datasets to create a
distinct and extensive dataset. A dataset was utilized to gather a total of 1415 pictures,
which underwent a rigorous curation process involving the removal of low-quality images
and duplicates from the original dataset.

Figure 3 illustrates the incorporation of the Medical Mask Dataset (MMD) and Face
Mask Dataset (FMD) into our study. The MMD consists of three unique categories, specifi-
cally bad, good, and none. In contrast, the FMD comprises three distinct classifications de-
noted as mask_weared_incorrect, with_mask, and without_mask. The experiment explains
the three categories in the following manner: the category labeled as “bad” corresponds
to instances where masks were worn incorrectly, the category labeled as “good” corre-
sponds to instances where masks were worn properly, and the category labeled as “none”
corresponds to instances where masks were not worn at all [37]. The class categorized as
“bad” consists of approximately 500 instances, whereas the class categorized as “good”
encompasses more than 4000 occurrences. The “none” class, on the other hand, consists of
over 500 instances. The range of x and y values is from 0.0 to 1.0, while the width varies
from 0.0 to 0.6, and the height is from 0.0 to 0.8. In the absence of immunization, masks
are one of the few preventative measures that can be taken against COVID-19; as a result,
they play an important part in preserving patients’ respiratory health and preventing the
spread of respiratory illnesses. The YOLO format entails the presence of a corresponding
text file with a .txt extension for each JPEG image file. The provided text file contains
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comprehensive data regarding the position of each item inside the image, encompassing its
class and x and y coordinates, as well as its width and height.
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3.2. Training Result

Data augmentation is an approach that is frequently utilized in machine learning
and deep learning to artificially increase the variety of a training dataset by performing
various changes to the original data. By presenting a machine learning model with a wider
variety of training data, the generalization and resiliency of the model can be improved
with data augmentation. During the training process, we will make use of a variety of tech-
niques for augmenting the data, such as padding, cropping, and horizontal flipping, among
others. These techniques are widely employed in the construction of large neural net-
works because of their advantageous qualities. During the training process, we employed
100 epochs, weight_decay = 0.0005, learning rate = 0.001, batch size = 16, an image size of
416, and an IoU threshold value of 0.5. The model converged and achieved satisfactory
performance in our experiments so that there was no significant increase in performance
after the 100th epoch.

In addition, the training model environment comprised an Nvidia RTX3080Ti GPU
accelerator with 11 gigabytes of RAM, an i7 central processing unit (CPU), and 16 gigabytes
of DDR2 memory. Training for the YOLOv8 was carried out on a single graphics processing
unit (GPU), and one of its primary goals was the achievement of real-time detection. While
the remaining thirty percent of the information was used for testing reasons, the remaining
seventy percent was utilized for training purposes. The YOLO algorithm is designed to
forecast various bounding boxes within each grid cell. During the training phase, it is
desirable to assign the responsibility of predicting the bounding box for each item to only
one predictor. The YOLO algorithm designates a single predictor as the “responsible”
entity for object prediction, determined by selecting the prediction with the highest current
intersection over union (IOU) value for the ground truth. This phenomenon results in a
specialization among the bounding box predictors. The performance of each predictor in
predicting specific sizes, aspect ratios, or types of objects leads to an enhancement in the
overall recall score.

Figure 4 provides a visual representation of the steps involved in the training process
for the test batch with 0 labels and the test batch with 0 predictions.
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The human features depicted in the figures were obtained from publicly available datasets (FMD
and MMD).

Figure 5 illustrates the training graph of YOLOv8n, YOLOv8s, and YOLOv8m over
100 epochs. Non-maximum suppression (NMS) is a crucial technique utilized by YOLO mod-
els. During training, the YOLOv8m loss values are as follows: box_loss = 0.38, cls_loss = 0.19,
and dfl_loss = 0.79. The YOLOv8n loss values are box_loss = 0.64, cls_loss = 0.35, and
dfl_loss = 0.84. The YOLOv8s loss values are box_loss = 0.47, cls_loss = 0.25, and dfl_loss = 0.80.
The model reached convergence and demonstrated satisfactory performance in our ex-
periments, with no notable improvement in performance beyond the 100th epoch. NMS
improves object detection after processing. Multiple bounding boxes are often generated
for an image object during object detection. Although these bounding boxes may overlap or
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be in various locations, they all represent the same object. Loss curves depict the temporal
evolution of a model’s performance, specifically the number of iterations or steps executed
by the model. They assist in determining the adequacy of our model in fitting the data,
avoiding overfitting or underfitting, and diagnosing the representativeness of the datasets
and/or the number of training steps. The term “box_loss” refers to the loss function used
for bounding box regression. It quantifies the discrepancy between the predicted bounding
box coordinates and dimensions and the corresponding ground-truth values. A decrease
in box loss indicates an improvement in the precision of the predicted bounding boxes.
The term “cls_loss” refers to the classification loss, which quantifies the discrepancy be-
tween the predicted class probabilities for each object in the image and the corresponding
ground-truth values. A decrease in the cls_loss metric indicates that the model is exhibiting
improved accuracy in predicting the class of the objects.
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The “dfl_loss” refers to the loss function associated with the deformable convolution
layer, which is a novel component incorporated into the YOLO design in YOLOv8. The
loss function quantifies the discrepancy in the deformable convolution layers, which are
specifically engineered to enhance the model’s capability of detecting objects with diverse
sizes and aspect ratios. A decreased dfl_loss value suggests that the model exhibits more
proficiency in managing object deformations and variations in appearance. The aggregate
loss value is commonly computed as a combination of these individual losses, with each loss
being assigned a specific weight. The units on the vertical axis may vary depending on the
individual implementation, but in general, they indicate the size of the error or discrepancy
between the predicted values and the ground-truth values. Figure 5 demonstrates that our
findings do not exhibit signs of overfitting or underfitting.

Table 1 displays the performance of all classes after the training session. The table
shown above offers a comprehensive overview of many performance measures for the
evaluation of a model’s performance. These metrics include the training loss value, mean
average precision (mAP), average precision (AP), precision, recall, F1 score, and intersection
over union (IoU) performance. The metrics are provided for each distinct class. The
YOLOv8m model obtains a maximum average mean average precision (mAP) of 78.4%.
Additionally, it achieves an mAP of 99.1% specifically for the “good” class. Subsequently,
YOLOv8s demonstrates a mean average precision (mAP) of 70.4% for the “good” class,
while achieving a remarkable 99% mAP overall.

Table 1. FMD and MMD training performance for all models.

Model Class Images Labels P R mAP@.5

YOLO V5s all 507 2661 0.639 0.832 0.662
bad 507 260 0.508 0.815 0.492

good 507 2123 0.933 0.945 0.963
none 507 278 0.476 0.736 0.496

YOLO V5m all 507 2661 0.639 0.832 0.672
bad 507 260 0.508 0.815 0.492

good 507 2123 0.933 0.945 0.964
none 507 278 0.476 0.736 0.496



Big Data Cogn. Comput. 2024, 8, 9 12 of 17

Table 1. Cont.

Model Class Images Labels P R mAP@.5

YOLO7x all 456 2154 0.625 0.932 0.635
bad 456 72 0.612 0.944 0.163

good 456 1733 0.942 0.965 0.977
none 456 349 0.772 0.885 0.494

YOLO7 all 456 2154 0.609 0.931 0.632
bad 456 72 0.166 0.941 0.168

good 456 1733 0.939 0.978 0.986
none 456 349 0.722 0.874 0.742

YOLOv8n all 456 2154 0.579 0.834 0.619
bad 456 72 0.142 0.687 0.152

good 456 1733 0.891 0.969 0.982
none 456 349 0.702 0.845 0.723

YOLOv8s all 456 2154 0.651 0.774 0.704
bad 456 72 0.217 0.681 0.367

good 456 1733 0.968 0.975 0.99
none 456 349 0.768 0.754 0.754

YOLOv8m all 456 2154 0.716 0.829 0.784
bad 456 72 0.355 0.681 0.5

good 456 1733 0.983 0.972 0.991
none 456 349 0.811 0.834 0.861

4. Discussions

The testing accuracy for all classes of the MMD and FMD can be found in Table 2.
These classes include bad, good, and none. According to the obtained test results, it was
observed that YOLOv8m achieved the highest mean average precision (mAP) of 78.4% for
the category “good” when compared to the other models utilized in the conducted experi-
ment. Class ID 1, denoted as “good”, exhibited the highest average accuracy, achieving
around 99.1%. This was followed by Class ID 0, referred to as “bad”, which achieved a
comparatively lower accuracy of 50%. Class ID 2, labeled as “none”, achieved an average
accuracy of 86.1%.

The outcomes of the MMD and FMD recognition using YOLOV8m are depicted in
Figure 6. The model we propose has a high level of accuracy at detecting items inside
an image. YOLOV8m is capable of discerning between different classes, namely “bad”,
“good”, and “none”, based on the presence of either a single object or multiple objects
within a given image. The YOLOV8m model demonstrates better performance in medical-
masked face identification, surpassing competing models. The efficiency of the suggested
model in identifying face masks has been successfully introduced.

Table 2. Testing the models’ accuracy with FMD and MMD.

Model Class Images Labels P R mAP@.5

YOLO V5s all 507 2661 0.615 0.837 0.662
bad 507 260 0.475 0.777 0.48

good 507 2123 0.932 0.958 0.97
none 507 278 0.471 0.791 0.522

YOLO V5m all 507 2661 0.626 0.886 0.671
bad 507 260 0.481 0.858 0.523

good 507 2123 0.931 0.957 0.972
none 507 278 0.465 0.845 0.509

YOLO7x all 456 2154 0.625 0.932 0.635
bad 456 72 0.612 0.944 0.163

good 456 1733 0.942 0.965 0.977
none 456 349 0.772 0.885 0.494
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Table 2. Cont.

Model Class Images Labels P R mAP@.5

YOLO7 all 456 2154 0.609 0.931 0.632
bad 456 72 0.166 0.941 0.168

good 456 1733 0.939 0.978 0.986
none 456 349 0.722 0.874 0.742

YOLOv8n all 456 2154 0.579 0.839 0.619
bad 456 72 0.148 0.712 0.152

good 456 1733 0.893 0.969 0.981
none 456 349 0.695 0.836 0.725

YOLOv8s all 456 2154 0.652 0.773 0.706
bad 456 72 0.22 0.681 0.367

good 456 1733 0.965 0.975 0.99
none 456 349 0.77 0.665 0.762

YOLOv8m all 456 2154 0.716 0.829 0.784
bad 456 72 0.355 0.681 0.5

good 456 1733 0.983 0.972 0.991
none 456 349 0.811 0.834 0.861

Table 3 displays the results of the tests that compared the CNN models concerning
GFLOPS, parameters, and layers. Loading 168 layers and 28.4 and 8.1 GFLOPs, respectively,
is accomplished by the YOLOv8n and YOLOv8s. During training, YOLOv8m utilizes a
total of 218 layers and 25,841,497 parameters.

Table 3. A summary of YOLOv8 models utilizing the FMD and MMD.

Process Model Layers Parameters GFLOPs Speed (ms) Inference (ms) Post-Process
Per Image

Train Yolov8s 168 11,126,745 28.4 0.7 85.1 0.3
Train Yolov8n 168 3,006,233 8.1 0.6 36.6 0.3
Train Yolov8m 218 25,841,497 78.227 0.6 178 0.3
Val Yolov8s 168 11,126,745 28.4 1 131.8 0.5
Val Yolov8n 168 3,006,233 8.1 1 62.2 0.5
Val Yolov8m 218 25,841,497 78.7 0.7 210.1 0.3
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A comparison to the preceding study is described in Table 4. Ejaz et al. (2019) [22]
proposed a PCA and exhibited only a 70% mAP in an experiment with the Olivetti Research
Laboratory (ORL) face dataset. Another researcher (Ge et al., 2017) [21] implemented
LLE-CNN and achieved a 76.4% mAP with A Dataset of Masked Faces (MAFA). Our
proposed YOLOv8n method, with 100 epochs, outperforms prior models on the FMD and
MMD in terms of the mAP, with an accuracy of 78.4%. We were able to boost the overall
performance of a recent study on face mask detection in this research. Furthermore, Dewi
et al. (2023) [8] implemented YOLOv5m and achieved a 67.1% mAP. Next, Dewi et al.
(2023) [9] proposed YOLOv7, with a 63.2% mAP. For the good class, our model, YOLOv8m,
achieved the highest accuracy (99.1%) compared to other models in the experiment with
the FMD and MMD.

Table 4. Previous research comparison.

Reference Dataset Methodology Classification Detection Result AP (%)

Dewi et al., 2023 [8] FMD and MMD YOLOv5m Yes Yes All: 67.1%, bad: 52.3%, good:
97.2%, none: 50.9%

Dewi et al., 2023 [9] FMD and MMD YOLOv7 Yes Yes All: 63.2%, bad: 16.8%, good:
98.6%, none: 74.2%

Proposed Method FMD and MMD YOLOv8m Yes Yes All: 78.4%, bad: 50%, good:
99.1%, none: 86.1%

The advantages of YOLOv8 are numerous and varied, and the following is a non-
exhaustive list of some of them: One of YOLOv8’s main advantages over competing
deep learning architectures is the impressive speed it delivers. Ultralytics claims that the
YOLOv8 model’s significant improvement in picture segmentation yields a staggering
throughput of 81 frames per second. When compared to other sophisticated models like
Mask R-CNN, which can only process about six frames per second, this one performs
exceptionally well. Autonomous vehicles, surveillance systems, and video analytics are all
examples of real-time applications where processing speed is of the utmost significance.
Further, YOLOv8 can quickly detect objects and segments in an image while maintaining a
high level of precision in its analysis of those elements. Because they reduce the number of
false positives and negatives, the updated loss function and cutting-edge architecture of
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the model each contribute to the model’s improved accuracy. Moreover, because YOLOv8
provides a unified architecture for training models, it is now possible to carry out a wide
variety of image segmentation tasks with just a single model. This was not possible in
previous versions of the software. Object recognition, instance segmentation, and image
classification are some of the tasks that fall under this category. This allows for flexibility
to be realized. This versatility is vital for applications that need to complete a variety of
activities, such as video surveillance and image search engines. These applications require
the execution of a variety of tasks. One other illustration is the use of self-driving vehicles.

The limitations of YOLOv8 are based on its potential issues: (1) YOLO models, includ-
ing YOLOv8, can struggle with detecting small objects accurately. The model may have
limitations in representing fine details, leading to misidentification or low confidence scores
for smaller objects. (2) Like many object detection models, YOLOv8 might face challenges
when objects are partially occluded. If an object is obscured by another, the model may fail
to detect it accurately. (3) YOLOv8’s performance is heavily reliant on the quality, diversity,
and representativeness of the training data. Inadequate or biased training data can result in
poor generalization of real-world scenarios. (4) Changes in lighting conditions, variations
in background, or different environmental factors may impact YOLOv8’s performance.
The model may not generalize well to scenes that differ significantly from the training
data. (5) YOLOv8 may struggle with class imbalances in the dataset. If certain classes are
under-represented, the model might be less accurate in detecting objects from those classes.
(6) Depending on the application domain, YOLOv8 may require fine-tuning or adaptation
to perform optimally. Using a model that is not tailored to the specific characteristics
of the target domain may lead to misidentification. YOLOv8 has several hyperparame-
ters, and the model’s performance can be sensitive to their values. Selecting appropriate
hyperparameters is crucial for achieving optimal results.

5. Conclusions

This article presents and discusses the findings of research into CNN-based object iden-
tification algorithms, specifically YOLOv8n, YOLOv8s, and YOLOv8m. These algorithms
were developed by YOLO Labs. According to the findings of our tests, the level of precision
offered by YOLOv8m is superior to anything else that is now available. Within the scope
of this research, we provide an original model for medical-masked face recognition that
places primary emphasis on the medical mask object. The transmission of the COVID-19
virus from one individual to another is something that should be avoided at all costs
using this paradigm. In addition, the YOLOv8m technique that we have advocated, with
100 epochs, beats earlier models that have been applied to the FMD and MMD in terms of
the mAP. With an average accuracy of 78.4% and a good classification, obtaining a 99.1%
mAP, this technique exceeds earlier models that have been used for the FMD and MMD.
This is because the YOLOv8m technique achieves a higher level of accuracy than the earlier
models. We have demonstrated that the YOLOv8m model scheme that we have suggested
is an effective model for detecting medical face masks. Additionally, future studies will
investigate the feasibility of using deep learning models to recognize a subset of disguised
faces in both still images and video. In addition, we plan to investigate how medical mask
identification might benefit from the application of explainable artificial intelligence (XAI).
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