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Abstract: Developing a spiking neural network architecture that could prospectively be trained on
energy-efficient neuromorphic hardware to solve various data analysis tasks requires satisfying the
limitations of prospective analog or digital hardware, i.e., local learning and limited numbers of
connections, respectively. In this work, we compare two methods of connectivity reduction that
are applicable to spiking networks with local plasticity; instead of a large fully-connected network
(which is used as the baseline for comparison), we employ either an ensemble of independent small
networks or a network with probabilistic sparse connectivity. We evaluate both of these methods with
a three-layer spiking neural network, which are applied to handwritten and spoken digit classification
tasks using two memristive plasticity models and the classical spike time-dependent plasticity (STDP)
rule. Both methods achieve an F1-score of 0.93–0.95 on the handwritten digits recognition task and
0.85–0.93 on the spoken digits recognition task. Applying a combination of both methods made it
possible to obtain highly accurate models while reducing the number of connections by more than
three times compared to the basic model.

Keywords: spiking neural networks; neuromorphic computing; spike timing-dependent plasticity;
memristive plasticity; sparse connectivity; sound classification; image classification

1. Introduction

Neural network-based intelligent systems are widely employed in a wide range of
tasks, from natural language processing to computer vision and signal processing. In edge
computing, however, the use of deep learning methods still poses a variety of challenges,
including latency and power consumption constraints, both during training and inference.

Neuromorphic computing devices, in which the information is encoded and pro-
cessed in the form of binary events called spikes, offer a prospective solution to these
problems. Modern neuroprocessors, e.g., TrueNorth [1], Loihi [2], or Altai https://motivnt.
ru/neurochip-altai (accessed 8 February 2024), have been shown to achieve power con-
sumption at the order of milliwatts [3]. Thus, these devices offer a powerful inference
interface, and they can be used to deploy spiking neural networks (SNNs), thereby allowing
both inference and training directly on the neurochip. This can be extremely useful for
edge computing applications by reducing power consumption and latency.
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In turn, memristor-based training poses its own unique set of challenges and limi-
tations. The most prominent one arises from the hardware implementation of synapses,
where every neuron can have only a limited amount of synapses [4–6], thus imposing limi-
tations on the number of weights that a given network may have. In this regard, sparsely
connected spiking networks, where the connectivity can be reduced depending on the
hardware specifications, are a plausible solution.

In this study, we compared two methods of reducing connectivity in memristive
spiking neural networks: a bagging ensemble of spiking neural networks and a probabilistic
sparse SNN. Using a three-layer SNN with inhibitory and excitatory synapses, we solved
the handwritten and spoken digits classification tasks, as well as compared the outcomes
for the proposed connectivity reduction types and three plasticity models. The main
contributions of this work are as follows:

– We design a probabilistic sparse connectivity approach to creating a two-layer spiking
neural network (achieved by implementing a bagging ensemble of two-layer SNNs)
and then compare these two methods.

– We propose an efficiency index that facilitates comparisons between different methods
of connectivity reduction, and we will look to apply it to the SNNs used in the study.

– We demonstrate that both connectivity reduction methods achieve competitive results
on handwritten and spoken digit classification tasks, and that it can be used with the
memristive plasticity models.

– We show that the model that uses both connectivity reduction techniques simul-
taneously outperforms both methods in terms of the accuracy-per-connection effi-
ciency metric.

The rest of the study is structured as follows: In Section 2, we provide a brief overview
of the existing connectivity reduction methods for SNNs. In Section 3, we describe the
datasets we use, the plasticity models, the base spiking neural structure, and the sparsity
methods (which we utilized for comparison). In Section 4, we provide the accuracy
estimations for the proposed approaches and discuss the obtained results in Section 5.
Finally, we detail our conclusions in Section 6.

2. Literature Review

Connectivity reduction concerning spiking and artificial neural networks has been
studied in several existing works.

A number of works have proposed to use a probabilistic coefficient to form connections
between neurons in a spiking neural network. For example, the work of [7] used a network
that consists of three layers of neurons. The first layer is responsible for encoding the input
samples (images) into Poisson spike sequences. The second layer consists of 4000 excitatory
and 1000 inhibitory leaky integrate and fire neurons. The output layer also consists of
LIF neurons, the number of which corresponds to the number of classes in the selected
dataset (EMNIST [8], YALE [9], or ORL [10]). The connections within the second layer are
formed in accordance with the selected probability of 0.2. In this case, the weights of the
synapses change depending on the spatial location of neurons and the dynamics of spike
activity. The connections between the encoding layer and the second layer of neurons are
excitatory without exhibiting plasticity. Probabilistic linking and changing weights using
spatial location can achieve high classification accuracy on the image datasets.

Another approach to connectivity reduction that is present in the literature is based on
designing locally connected SNNs, the weights in which are created in a sparse fashion
according to a certain rule. In [11], for example, a routing scheme that used a hybrid of short-
range direct connectivity and an address event representation network was developed.
Without providing any benchmark results, the authors focused on the details of mapping
a given SNN to the proposed architecture, and they showed that it yielded up to a 90%
reduction in connectivity. The authors of the [12] study proposed a way through which to
reduce connectivity in a three-layer network operating on the Winner Takes All principle.
The input image, encoded by the first layer using frequency coding, was divided into small
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fragments that were then sent to individual neurons in the excitation layer. This made
it possible to reduce the number of connections with local plasticity by up to 50% while
maintaining the accuracy on the MNIST dataset at approximately 90%. The authors of [13]
proposed a joined connectivity and weight learning approach inspired by the synapse
elimination and synaptogenesis in biological neurons. The gradient in this work was
redefined as an additional synaptic parameter, thereby facilitating a better adaptation of
the network topology. A multilayer convolutional SNN trained using a surrogate gradient
approach and pruned according to the designed method demonstrated an accuracy of about
89 and 92%, with less than 5% connectivity in the whole SNN for the MNIST and CIFAR
datasets, respectively. Increasing the proportion of connectivity to 40% improved the quality
of solving classification problems to 98.9 and 92.8%. The possibility of a sharp decrease
in the number of connections can be caused by a large number of layers and neurons in
the original network. Overall, this work demonstrates the fundamental applicability of the
approaches used in classical machine learning for spiking neural networks.

In [14], a two-stage pruning method for on-chip SNNs was developed. The pruning
was first performed during training based on weight update history and spike timing.
After training, it was then via weight thresholding. By training a deep SNN with time-to-
first-spike coding using the proposed approach, the authors decreased latency by a factor
of 2 and reduced the network connectivity by 92% without accuracy loss. Another example
can be found in [15], where the authors used a method of zeroing weights above a given
threshold and achieved a 70% reduction in connectivity. In this paper, the network consists
of a mixture of formal and spiking convolutional layers, and the resulting sparse hybrid
network achieved more than 71% accuracy on the IVS 3cls [16] dataset. In [17], sparsity
in a multilayer convolutional spiking network is achieved by limiting the number of
connections associated with each neuron, and this is based on calculating the contribution
of a neuron to the operation of the entire network. The proposed approach is shown
to achieve high accuracy on such classical datasets as DVS-Gesture [18] (98%), MNIST
(99%), CIFAR-10 (94%), and N-MNIST [19] (99%), with a 50% reduction in the number of
connections. Finally, in [20], a sparse SNN topology was proposed, where the connectivity
reduction was performed via a combination of pruning and quantization based on the
power law weight-dependent plasticity model. Connectivity reduction was performed
based on a threshold value at which the weights become zero. After training, the three-layer,
fully connected SNN designed in the study achieved a classification accuracy of 92% on the
MNIST dataset.

Thus, currently employed methods of reducing the connectivity in spiking neural
networks are mostly encompassed by pruning, quantization, and local connectivity. How-
ever, ensemble learning, where multiple smaller networks are used together to form a
stronger classifier, can be also viewed as a single sparse network. In this work, we explored
this path to connectivity reduction and compared it to a probabilistic, locally connected
SNN topology that was proposed in the work of [21], and which was investigated in our
previous research with different types of plasticity models [22–24].

3. Materials and Methods
3.1. Datasets and Preprocessing

To train and evaluate the proposed methods, we used two benchmark datasets: the
scikit-learn Digits (Digits) [25] and Free Spoken Digits Dataset (FSDD) [26]. The first
consists of 1797 8 × 8 images of handwritten numbers, and the second contains 3000 audio
recordings of spoken numbers from 0 to 9 in English. The choice of these datasets over
larger and more widely used classification datasets such as MNIST, CIFAR-10, or N-MNIST
was motivated by computational requirements. The training process for spiking neural
networks when using local plasticity rules requires extensive computational experiments
to select the combination of hyperparameters. We automated this process (see Section 4
for details), thereby placing a limit on the time required to train the network. The Digits
dataset was quite difficult in comparison to MNIST due to containing less information
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about the handwritten digits in terms of image size and dataset volume (see the examples
in Figure 1).

Digits

MNIST

Figure 1. Averaged samples by each class of handwritten digits from the Digits and MNIST datasets.

Both datasets had 10 classes, which could be broken down as 180 samples per class for
Digits and 300 samples per class for FSDD. Additionally, the samples in FSDD varied by
speaker as follows: 6 speakers in total and 50 recordings for each digit per speaker with
different intonations.

The raw data were preprocessed as follows:

(1) Feature representation: For Digits, their original vector representation in the form
of pixel intensities was used without changes; for FSDD, a vector representing an
audio sample was obtained by splitting the audio into frames, which was achieved by
extracting 30 Mel-frequency cepstral coefficients [27] (MFCCs) and then averaging
them across frames.

(2) Normalization: Depending on the type of plasticity, the input vectors were normalized
either by reducing to a zero mean and one standard deviation (standard scaling) or by
L2 normalization.

(3) Gaussian Receptive Fields (GRFs): This step was intended to increase the separability
of the data by transforming it into a space of higher dimension. At this stage, the range
of each of the normalized feature vectors was divided into M equal intervals. At each
interval j = 1, . . . , M, a Gaussian peak was constructed with a center µj and standard
deviation σ (see Equation (1), Figure 2). The value of each component xi of the input
vector was replaced by a set of values Gj(x), which characterized the proximity of
xi to the center of the j-th receptive field. Thus, the dimension of the input vector
increased by the factor of M.

(4) Spike encoding: To convert the normalized and GRF-processed input vectors into
spike sequences, we used a frequency-based approach. With this encoding method,
each input neuron (spike generator) emits spikes at a frequency ν during the entire
sample time te, where ν = νmax · k. Here, νmax is the maximum frequency of spike
emission and k is the value of the input vector component. After time te has passed,
the generators do not emit spikes for tp = 50 ms to allow for the neuron potentials to
return to their original values.

Gj(xi) = exp
(
(xi − µj)2

σ2

)
. (1)

To illustrate the relative complexity of both datasets, we performed dimensionality
reduction using principal component analysis (PCA) on both datasets after the feature
engineering stage. This method allows us to reduce the feature space to two dimensions
and visually assess the degree of nonlinear separability of the samples. Its results are shown
in Figure 3.

It can be clearly seen that the classification boundaries for the MFCC-encoded FSDD
dataset have to be much more complex in order to achieve high accuracy. In other words,
in this work, the handwritten digits dataset acts as a weak baseline, and it was used to
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assess the general capability of the sparsity methods under consideration, while the spoken
digits dataset played the role of a more challenging benchmark.

Figure 2. An example of Gaussian receptive fields with the number of fields being equal to 5.
The input feature xi was intersected with overlapping Gaussian fields to produce a vectorized feature
representation: Gj(xi), j ∈ [0, 5) ∩N.

Figure 3. Principal component analysis for the Digits and FSDD datasets.

3.2. Synaptic Plasticity Models

In this work, we considered two memristive plasticity models: nanocomposite (NC) [28]
and poly-p-xylylene (PPX) [29]. These models were proposed to approximate the real-world
dependence of synaptic conductance change ∆w on the value of the conductance w and on
the time difference ∆t between presynaptic and postsynaptic spikes, and they are defined in
Equations (2) and (3).

∆w(∆t) =

A+ · w ·
[
1 + tanh

(
−∆t−µ+

τ+

)]
if ∆t > 0;

A− · w ·
[
1 + tanh

(
∆t−µ−

τ−

)]
if ∆t < 0.

(2)
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In Equation (2), A+ = 0.074, A− = −0.047, µ+ = 26.7 ms, µ− = −22.3 ms, τ+ = 9.3 ms,
τ− = 10.8 ms.

∆w(∆t) =


|∆t|

τ α+e−β+( wmax−w
wmax−wmin

)e−γ+( ∆t
τ )2

if ∆t > 0;
|∆t|

τ α−e−β−(
w−wmin

wmax−wmin
)e−γ−( ∆t

τ )2
if ∆t < 0.

(3)

Here, τ = 10 ms, α+ = 0.316, α− = −0.011, β+ = 2.213, β− = −5.969, γ+ = 0.032,
γ− = 0.146, wmax = 1, and wmin = 0.

Both memristive plasticity rules are shown in Figure 4. It can be seen that the models
differ both in their dependence on the initial weight and in their spread along the ∆t
axis: NC plasticity is localized within the [−25, 25] ms range and is relatively symmetric,
while the PPX plasticity covers a much larger ∆t range and exhibits asymmetric behavior
depending on the initial weight and the sign of ∆t. Due to these differences, the training
process differed for both rules, thus facilitating a broader study of the capabilities and
limitations of the proposed methods.

Figure 4. NC and PPX memristive plasticity curves for different values of the initial weight w0.

Additionally, we considered a classical additive spike timing-dependent plasticity
(STDP) [30] model to study the impact of sparcity on the memristor-based network in
relation to the simpler synapse models.

3.3. Spiking Classification Models

Within the framework of the frequency approach to encoding input data, we consid-
ered a hybrid architecture consisting of a three-layer Winner Takes All (WTA) network [21],
and this serves as a feature extraction module in combination with a formal classifier.

The WTA network is based on three layers (see Figure 5). The input layer consists of
spike generators that convert input vectors into spike sequences according to the algorithm
described above. The size of the input layer corresponds to the size of the input vector
after preprocessing steps. The generated spike sequences are transmitted to the layer of
leaky integrate-and-fire (LIF) neurons with an adaptive threshold (excitatory layer). This
layer is connected to the input via trainable weights with one of the previously described
plasticities according to the “all-to-all” rule. The number of neurons in the excitatory layer
can be optimized depending on the complexity of the problem being solved. In turn,
the excitatory layer is connected to the third layer of non-adaptive LIF neurons of the same
size, which is called the inhibitory layer. Connections from the excitatory to the inhibitory
layer are not trainable and have a fixed positive weight wsyn, exc > 0. In this case, each
neuron in the excitatory layer is connected to a single neuron (partner) in the inhibitory
layer. The connections directed from the inhibitory layer to the excitatory layer are called
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inhibitory connections. These connections are static and have a weight wsyn, inh < 0. Each
neuron in the inhibitory layer is connected to all neurons in the excitatory layer except to its
partner. Finally, the generators in the input layer are also connected to inhibitory neurons
by randomly distributed static links with a weight wsyn, gen > 0. In all our experiments,
the number of such connections was equal to 10% of the number of connections between
the input and excitatory layers.

Figure 5. WTA spiking neural network topology. Poisson generators, adaptive excitatory LIF neurons,
and inhibitory LIF neurons are shown in yellow, green, and red, respectively. Trainable synapses are
depicted in blue, excitatory-to-inhibitory connections are shown in green, and inhibitory-to-excitatory
connections are denoted in red. Finally, generator-to-inhibitory connections are expressed using a
dashed green arrow.

The spiking neural network was implemented using the NEST simulator [31].
We chose logistic regression (LGR), which was optimized for multi-class problems,

and we used the one-versus-all (OVR) scheme as the formal classifier [32].
In this work, we considered two methods for reducing the connectivity in the WTA

network: an ensemble of several classifiers trained using the bagging technique and sparse
connectivity between layers.

3.3.1. Classification Ensemble

The bagging method was chosen as an ensemble creation technique; several identical
classifiers were trained on subsets of input data, after which their predictions were then
aggregated by voting. This method has several advantages compared to using a single
larger network; in particular, it reduces the total number of connections within the net-
work and increases the classification speed due to parallelization. In addition, it allows
you to break unwanted correlations in the training dataset, thus resulting in improved
architecture stability.

Connectivity within an ensemble is controlled using the following parameters:

– nestimators: Defines the number of models within the ensemble.
– max_features: Determines the proportion of input features that are passed to the input

of each of the models in the ensemble.

In addition, the bagging architecture allows one to regulate the number of examples
on which each network is trained using the max_samples parameter.
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The ensemble was implemented using the BaggingClassifier method of the Scikit-
Learn [25] library. In all experiments, which were based on the preliminary empirical
observations, the parameters max_ f eatures = 1.0 and max_samples = 0.7 were fixed.

3.3.2. Sparse Connectivity

Another way through which to reduce the connectivity of a spike network is to
set a rule that allows you to regulate the number of connections and their organization.
To this end, we formally placed the neurons of the excitatory and inhibitory layers on
two-dimensional square grids of a 1 mm × 1 mm size (the dimension was chosen for the
convenience of further presentation), and these were oriented mirror-image relative to each
other. The neurons on the grids may be arranged irregularly. The initialization of sparse
connections occurred according to the following algorithm:

(1) The presynaptic neuron projects onto the plane of the postsynaptic neurons.
(2) The projection of the presynaptic neuron becomes the center of a circular neighbor-

hood, and all postsynaptic neurons within which will be connected to this presynaptic
neuron with some probability.

This process is shown schematically in Figure 6.

Figure 6. Sparse connectivity: neuron projection. The projection neighborhood is shown in red; all
postsynaptic neurons inside it will be connected to the projected presynaptic neuron.

Thus, connectivity within the network is regulated using two parameters:

– Probability P of connection formation between pre- and post-synaptic neurons.
– The radius of the circular neighborhood is R. This parameter is defined only for

connections between the inhibitory and excitatory layers since neurons in the input
layer do not have a spatial structure.

Both methods, as well as their combination, are expressed in a generalized form
in Algorithm 1. This algorithm can be used for both proposed methods, as well as
their combination, since the behavior of the network is determined by the parameters
nestimators, Pgen-exc, Pinh-exc, and Rinh-exc. In the case of a sparse WTA network, an ensemble
consists of one network (nestimators = 1); furthermore, in the case of a bagging ensem-
ble of fully-connected WTA networks, randomized sparse connectivity is not applied
(Pgen-exc = Pinh-exc = Rinh-exc = None). A combined approach, therefore, requires speci-
fying all four parameters. The generalized decoding procedure using a logistic regression
approach is detailed in Algorithm 2.
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Algorithm 1 SNN learning process

Input: training data matrix Xtrain with dimensions (M, N) of the preprocessed input vectors
xi of each sample in the dataset, neuron parameters, plasticity parameters, and synapse
parameters
Training parameters: epochs = 1.
Sparsity parameters: nestimators, max_features, max_samples, nneurons, Pgen-exc, Pinh-exc, and
Rinh-exc
Network parameters: Table 1
Output data: An ensemble containing nestimators spiking neural networks, which are vectors
of neuron activity frequencies in the excitatory layer for each example of the training
set vi.

1: Generate weights
2: if Pgen-exc or (Pinh-exc and Rinh-exc) then
3: Generate randomized sparse weights based on the provided sparsity parameters.
4: else
5: Generate fully connected initial weights.
6: end if
7: Neural network initialization: neurons, synapses, and initial weights.
8: Bagging: randomly attribute at most max_samples · M samples with max_ f eatures · N

features to each of the networks in the ensemble.
9: for k in epochs do

10: for each xi in Xtrain do
11: for each kij in xi do
12: Generating spikes sequences xseq

ij with length te and frequency fij.
13: end for
14: Simulating all SNNs in the ensemble that are bound to xi during te time steps

using spike sequences array xseq
i .

15: Simulating SNN without input signal during tp time steps for membrane potential
to relax to initial value.

16: end for
17: end for
18: Stop updating weights.
19: Collecting and saving frequency vectors of excitatory neuron layer activities fi during

presenting samples of input data.
20: Return An ensemble of SNN models; vectors of neuronal spiking frequencies fi.

Algorithm 2 SNN decoding process
Input: a collection F containing output frequencies of the excitatory layers of SNNs in the
ensemble corresponding to each sample in the dataset, where each element fi contains Ki
frequency vectors obtained from the Ki SNNs in the ensemble. Output data: a vector C of
predicted class labels for each sample in the dataset.

1: for each fi in F do
2: for each fik in fi, where k ∈ [0, Ki] do
3: Applying the logistic regression model to predict the class label cik for the sam-

ple vi.
4: end for
5: Apply the most common element voting scheme to the obtained collection of class

labels cik: the final predicted class is determined as the most frequently occurring
class.

6: Record the resulting class label to the vector C.
7: end for
8: Return a vector of predicted class labels C.

The classification process is additionally visualized in Figure 7. Depending on the
experimental settings, the number of the models in the ensemble may be equal to one (base
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WTA and sparse WTA), and the weight initialization may be performed in accordance with
the sparse connectivity approach or in a fully connected manner.

Figure 7. The testing pipeline for the proposed approach. It is depicted for both audio and image data:
the former requires MFCC preprocessing, while the latter does not. After preprocessing, the resulting
feature vectors were normalized and analyzed by each model in the ensemble.The predictions of
multiple estimators were aggregated via voting, thus producing the final class label.

Table 1. Experimental settings for the WTA network.

Digits FSDD
Reduction Type Parameter STDP NC PPX STDP NC PPX

Base

norm L2 STD STD L2 STD L2
nfields 5 5 5 10 10 10
nneurons 550 550 550 550 550 550
nestimators 1 1 1 1 1 1
τm, exc 130 130 130 130 130 130
τm, inh 30 30 30 30 30 30
frequency 600 350 450 800 800 800
tref, exc 5 4 6 5 4 4
tref, inh 3 3 3 3 3 3
wsyn, exc 18 20 20 20 20 20
wsyn, inh −13 −15 −15 −13 −15 −13

Sparse Conn.
Pgen_exc 0.4 0.4 0.4 0.4 0.4 0.4
Pinh_exc 0.4 0.4 0.4 0.4 0.4 0.4
Rinh_exc 0.9 0.9 0.9 0.9 0.9 0.9

Bagging nneurons 50 50 50 50 50 50
nestimators 11 11 11 11 11 11

Bagging + Sparse

nneurons 50 50 50 50 50 50
nestimators 11 11 11 11 11 11
Pgen_exc 0.7 0.7 0.7 0.7 0.7 0.7
Pinh_exc 0.7 0.7 0.7 0.7 0.7 0.7
Rinh_exc 0.9 0.9 0.9 0.9 0.9 0.9

4. Experiments and Results

Experiments on the Digits dataset were conducted using hold-out cross-validation;
then, 20% of the training examples were used for testing. On FSDD, a fixed testing dataset
was used. For all experiments, such parameters as the number of neurons in the networks,
the number of receptive fields, and the number of networks in the ensemble were selected
for each plasticity and for each dataset by maximizing the training classification accuracy.
The selection was performed automatically using the tree-parzen estimator (TPE) algorithm
implemented in HyperOpt [33] (an open-source Python package). For all of the three
methods under consideration, the parameters across plasticity models and datasets were
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fixed, thus ensuring a fair comparison. The source code of all the connectivity reduction
methods is available in our repository (see Funding information below).

In Table 1, we present the hyperparameters of SNN that were used for each of the
considered datasets and plasticity models:

– norm—the input normalization method: L2 or standard scaling (STD);
– nfields—the number of Gaussian receptive fields (GRFs);
– nneurons—the number of excitatory neurons in the network;
– nestimators—the number of networks in the bagging ensemble (for the ensemble ap-

proach specifically, everywhere else it is equal to 1);
– τm,exc and τm,inh—the characteristic time of the membrane potential decay for the

excitatory and inhibitory neurons in milliseconds;
– frequency—the maximal spiking frequency of the Poisson generators;
– tref,exc and tref,inh—the refractory time for the excitatory and inhibitory neurons

in milliseconds;
– wsyn,exc and wsyn,inh—the synaptic weights of the excitatory-to-inhibitory and inhibitory-

to-excitatory connections, respectively;
– Pgen-exc—the probability of forming a connection between an input and an excitatory

neuron in the sparse WTA network;
– Pinh-exc—the probability of forming a connection between an inhibitory and an excita-

tory neuron in the sparse WTA network;
– Rinh-exc—the projection radius for inhibitory-to-excitatory connections in the sparse

WTA network.

In all experiments, the time for submitting one example to the WTA network te was
350 ms, which was followed by a relaxation period tp of 50 ms, thereby resulting in a
processing time of te + tp = 400 ms per sample, where learning took place over one
epoch. As a baseline, we conducted an experiment using the classical WTA network (see
Section 3.3).

Additionally, we presented the number of connections within the network with a
breakdown by type of the pre- and postsynaptic neurons. Table 2 demonstrates the connec-
tivity within the base WTA network. The connections for the base network and the bagging
ensemble were calculated, as shown in Equation (4). In the equations, Ninp is equal to the
number of input features, Nexc denotes the number of excitatory neurons, pGen-to-Inh = 0.1
is a fraction of the inhibitory neurons connected to the generator layer, Nens is the number
of estimators within the ensemble, and Nens = 1 is for the base WTA network. For the
sparse WTA network, the connections were counted manually from the weight checkpoints
due to their stochastic nature.

NGen-to-Exc = Ninp · Nexc · Nens,

NExc-to-Inh = Nexc · Nens,

NInh-to-Exc = Nexc · (Nexc − 1) · Nens,

NGen-to-Inh = pGen-to-Inh · Ninp · Nexc · Nens.

(4)

Here, Ninp is equal to the number of input features, Nexc denotes the number of
excitatory neurons, pGen-to-Inh = 0.1 is a fraction of the inhibitory neurons connected to
the generator layer, Nens is the number of estimators within the ensemble, and Nens = 1 is
for the base WTA network. For the sparse WTA network, the connections were counted
manually from the weight checkpoints due to their stochastic nature.

After applying the considered methods for reducing the number of connections in
the WTA network, the connectivity of the resulting models was obtained, as presented
in Table 3.
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Table 2. Connectivity within the base WTA network.

Connection Digits FSDD

Gen-to-Exc 176,000 165,000
Exc-to-Inh 550 550
Inh-to-Exc 301,950 301,950
Gen-to-Inh 17,600 16,500

Table 3. Connectivity within the sparse WTA network.

Reduction Type Connection Digits FSDD
STDP NC PPX STDP NC PPX

Bagging

Gen-to-Exc 176,000 176,000 176,000 165,000 165,000 165,000
Exc-to-Inh 550 550 550 550 550 550
Inh-to-Exc 26,950 26,950 26,950 26,950 26,950 26,950
Gen-to-Inh 17,600 17,600 17,600 16,500 16,500 16,500

Sparse Conn.

Gen-to-Exc 70,400 70,503 70,495 65,929 65,739 66,651
Exc-to-Inh 550 550 550 550 550 550
Inh-to-Exc 113,041 112,294 112,282 112,207 112,499 112,522
Gen-to-Inh 17,600 17,600 17,600 16,500 16,500 16,500

Bagging + Sparse

Gen-to-Exc 123,112 124,300 123,750 116,006 115,258 115,214
Exc-to-Inh 550 550 550 550 550 550
Inh-to-Exc 17,732 18,502 17,996 18,161 18,106 17,886
Gen-to-Inh 17,600 17,600 17,600 16,500 16,500 16,500

The experimental results for applying different types of reduction methods are pre-
sented in Table 4, and they are also expressed using the F1-score metric, which is defined in
Equation (5).

F1_score =
2 · Precision · Recall
Precision + Recall

. (5)

Table 4. Experimental results for the WTA network. The maximum F1-scores for each experiment are
highlighted in bold.

Reduction Type Digits FSDD
STDP NC PPX STDP NC PPX

Base 0.85 0.95 0.91 0.93 0.92 0.84
Bagging 0.95 0.94 0.94 0.93 0.89 0.90
Sparse Conn. 0.94 0.93 0.94 0.84 0.85 0.92
Bagging + Sparse 0.87 0.93 0.94 0.91 0.88 0.89

The obtained accuracies are consistent with and superior to the results reported in
our previous works on spiking neural networks with memristive plasticity and without
sparse connectivity:

Digits 0.83–0.86 F1 from the article [23]. The best performance was obtained by a one-layer
SNN with 1600 neurons and 2,660,800 connections (vs. the bagging WTA SNN model
with 550 neurons and 221,000 connections)

FSDD 0.81–0.93 F1 from the article [34], where the best scores were achieved by WTA
SNN with 400 neurons and 243,600 connections. For comparison, the proposed sparse
bagging WTA SNN model containing 550 neurons and 151,217 connections achieved
the same performance (F1: 0.93).

It also follows from Table 5 that the resulting SNN models with sparse connectivity
and memristive plasticity demonstrated high accuracy compared to the other algorithms,
including non-spiking ones.



Big Data Cogn. Comput. 2024, 8, 22 13 of 17

Table 5. Comparison of results for both of the classification tasks. * indicates the accuracy metric. The
maximum performance scores for our experiments and literature sources are highlighted in bold.

Method Spiking Performance
Scores

Digits

RandomForest [35] No 0.98 *
Quantum neural network [36] No 0.93 *
Decision Tree [37] No 0.86 *
One-layer SNN with frequency encoding [23] Yes 0.86
Ours (Bagging STDP) (this paper) Yes 0.95
Ours (Bagging + Sparse PPX) (this paper) Yes 0.94

FSDD

Two-layer convolution neural network (CNN) (eight classes) [38] No 0.80 *
Hopf reservoir computer with a CNN readout [39] No 0.97 *
Liquid state machine [40] Yes 0.88 *
WTA SNN with frequency encoding [34] Yes 0.93
Ours (Bagging STDP) (this paper) Yes 0.93
Ours (Sparse PPX) (this paper) Yes 0.92

5. Discussion

To evaluate the effectiveness of the connectivity reduction methods, we introduced
the connectivity index κ, as defined in Equation (6):

κ =
Nsparse

Nbase
. (6)

Here, Nsparse and Nbase are the total number of connections in the sparse network
and the equivalent fully connected WTA network, respectively. Based on this definition,
the efficiency of the connectivity reduction method can be assessed by calculating the
ratio of the classification accuracy to the connectivity index (see Equation (7), where the
efficiency is represented by the index η).

η =
F1_score

κ
. (7)

The values of the connectivity and efficiency indices for different datasets, plasticities,
and network types are presented in Table 6. The motivation for the proposed indices lies in
assessing the accuracy-per-connection ratio, which is a more robust comparison metric for
the proposed methods compared to raw accuracy.

From the table above, it follows that, in our experiments, the relative efficiency of
spike networks with sparse connectivity in comparison to ensembles of spike networks
was found to be slightly higher; on average, across plasticities and datasets, the efficiency
of the sparsely connected WTA network was 2.2, while the efficiency of bagging was, on
average, equal to 2.1. However, due to the small scale of this difference, we concluded that
both methods can be effectively used to reduce connectivity depending on the specifics of
the problem and the hardware requirements. If the experimental setting facilitates only
the reduction in static connections and supports ensembles, bagging is a preferable option,
while sparse connectivity may be used in situations where only a single larger network
is feasible.

The combination of these two methods yielded the highest efficiency of 2.8, on average,
with an average connectivity index equal to 0.32. Therefore, if combining both approaches
is possible for a given problem, the resulting accuracy-per-connection efficiency will be
the highest.
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Table 6. Efficiency estimation of the different sparsity types. The best η values are marked in bold.

Reduction Type Plasticity Dataset κ η

Bagging

STDP
Digits

0.45 2.13
NC 0.45 2.11
PPX 0.45 2.11

STDP
FSDD

0.43 2.15
NC 0.43 2.06
PPX 0.43 2.08

Sparse Conn.

STDP
Digits

0.41 2.31
NC 0.41 2.30
PPX 0.41 2.29

STDP
FSDD

0.40 2.08
NC 0.40 2.11
PPX 0.40 2.28

Bagging + Sparse

STDP
Digits

0.32 2.71
NC 0.33 2.80
PPX 0.32 2.92

STDP
FSDD

0.31 2.91
NC 0.33 2.68
PPX 0.31 2.86

6. Conclusions

In this work, we compared two approaches to connectivity reduction in memristive
spiking neural networks: the bagging ensemble technique and probabilistic sparse connec-
tivity. Using a three-layer WTA network, we demonstrated that both methods achieved
competitive performance on the handwritten digits and spoken digits classification tasks,
with a combination of both approaches achieving the highest efficiency. On the Digits
dataset, the bagging ensemble yielded an F1-score of 0.95, 0.94, and 0.94 for the STDP, NC,
and PPX plasticity rules, respectively, while the sparse WTA network achieved 0.94, 0.93,
and 0.94, respectively; furthermore, a combined Bagging + Sparse model, in turn, yielded
F1-scores of 0.87, 0.93, and 0.94, respectively. On FSDD, the F1-score values lay within the
0.89–0.93 range for the ensemble of WTA networks, within the 0.84–0.92 interval for the
sparse WTA network, and within the 0.88–0.91 range for the combined model. The result-
ing models were found to be superior in accuracy to well-known spiking neural network
solutions, and they also corresponded to the level of other non-spike algorithms. Addition-
ally, by studying the ratio between the proposed connectivity index and the F1-score, we
showed that the bagging ensemble and the sparse WTA network achieved an almost equal
efficiency, while the combination of both methods yielded a 20% higher average efficiency
coefficient value.

Thus, the created combination of methods can be used as a computational technology
for creating spike neural network models for implementation on neurochips in inference
mode. Also, the developed architectures of spiking neural networks can be used for the
subsequent implementation of online learning on neuromorphic chips with memristive con-
nections. In our future research, we plan to expand the scope of the classification problems
for image and audio data that can be solved using the proposed methods (e.g., the CIFAR-
10, Google Speech Commands dataset, etc.), as well as work on hardware implementations
of the designed networks.
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