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Abstract: Convolutional neural networks (CNN) have provided great advances for the task of sign
language recognition (SLR). However, recurrent neural networks (RNN) in the form of long–short-
term memory (LSTM) have become a means for providing solutions to problems involving sequential
data. This research proposes the development of a sign language translation system that converts
Panamanian Sign Language (PSL) signs into text in Spanish using an LSTM model that, among
many things, makes it possible to work with non-static signs (as sequential data). The deep learning
model presented focuses on action detection, in this case, the execution of the signs. This involves
processing in a precise manner the frames in which a sign language gesture is made. The proposal
is a holistic solution that considers, in addition to the seeking of the hands of the speaker, the face
and pose determinants. These were added due to the fact that when communicating through sign
languages, other visual characteristics matter beyond hand gestures. For the training of this system, a
data set of 330 videos (of 30 frames each) for five possible classes (different signs considered) was
created. The model was tested having an accuracy of 98.8%, making this a valuable base system
for effective communication between PSL users and Spanish speakers. In conclusion, this work
provides an improvement of the state of the art for PSL–Spanish translation by using the possibilities
of translatable signs via deep learning.

Keywords: hand gesture recognition; sign language recognition; convolutional neural networks;
object detection; transfer learning; machine learning; deep learning; convolutional neural network;
recurrent neural network

1. Introduction

Modern information and communication technologies (ICT) have solved a myriad of
problems. For instance, long-distance communication and, more importantly, the commu-
nication between two people who do not speak the same language can both be experienced
in real-time. However, there is still a debt with regards to the inclusion of people with dis-
abilities. This is especially true when it comes to hearing impairments and for non-English
speakers. One aspect that could potentially make a difference for this technologically under-
privileged community would be a system capable of recognizing signs from a visual input
and presenting a text with the corresponding translation into the user’s respective language.

There is a wealth of information and studies about sign recognition developments
with machine learning methods [1] and especially with deep convolutional neural networks
(DCNN) [2–4] . However, implementations have seldom been made with recurrent neural
networks (RNN), in comparison to other structures. Our hypothesis and motivation for
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making a development under this approach is quite simple. It boils down to the fact that
although it is true that CNNs are notoriously good at processing visual data (such as the
image of a sign), they have limitations in processing groups of data as a single element. On
the other hand. RNNs specialize in recognizing the sequential data set and are geared to
find the characteristics of this kind of data. This type of network facilitates the processing
of groups of visual data as a single element of the sign. This is particularly true for sets of
poses and hand signs that correspond to a specific meaning.

In this work, the development of a system capable of recognizing signs from the
Panamanian Sign Language (PSL) with deep neural networks in continuous capture is
proposed. The main objective is to have PSL signs translated into their Spanish written text
format. This will help establish an effective communication channel between people with
hearing disabilities and those who are not PSL users.

For this, the proposed solution first goes through a general design of the project, the
development of a model that translates static signs from an object detector, followed by a
design of the model for the translation of dynamic signs, which implies the construction of
an action detector and the development of the model itself. This will be the center of the
(PSL–text) sign translation system, which must be optimized in terms of computational
resources and precision during recognition.

2. Related Work
2.1. SLR Using Deep Learning Methods

The field of computer vision has made significant progress given a mass amount of
research and practical projects. The publications that are most related to this project involve
the use of the convolutional neural network, more precisely, focusing on sign translation
(sign language recognition or SLR). SLR is usually associated with translation between
American Sign Language (the one used in the United States and Canada) and English, due
to the research volume coming from the countries in which these languages coexist.

Inspecting the available literature, at least two ASL solutions caught our attention: a
hand gesture recognition model trained with a data set created for that specific purpose [5]
and a digital read number-sign classifier, where special preprocessing is implemented to
enhance accuracy in translation [6]. In both these cases, CNN architectures are used for
sign translation, something that despite having been tried on several occasions, continues
to prove its applicability due to the marked need of the ASL users.

Deep learning has revolutionized SLR, particularly for isolated signs. Convolutional
neural networks (CNNs) have achieved significant accuracy, as demonstrated by the work
of Marjusalinah et al. (2021) on finger spelling recognition with 99% accuracy [7]. The recent
advancements explore recurrent neural networks (RNNs) and transformers to capture the
temporal dynamics of continuous signing, like the work of Ariesta et al. (2018), who
achieved a word error rate of approximately 90% accuracy for sentence-level recognition
using a 3D CNN and LSTM combination [8]. However, challenges remain, including
robustness to variations in sign styles, backgrounds, location, and characteristics that are
unique to the signer [9,10].

2.2. SLR with Traditional Analysis Methods

Without a doubt, one can say that deep learning dominates and is the go-to method
to analyze the data in SLR. However, there are other methods that play a crucial role
in SLR. Efforts are still being made to attack this problem from an important variety of
perspectives, and it turns out that CNNs are leading the advances in the field. In addition
to this first type of neural network, there is the recurrent neural network. These have been
presented to propose novel solutions to new problems while simultaneously acting as an
alternative to the previously addressed problems (up to a certain point, at least). Some
current works supported by RNNs are related to sentiment analysis (also known as opinion
mining), an approach to natural language processing (NLP). In fact, there are projects that
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work together with CNN [11] or time-series classification (an area within ML) and ML
forecasting, as in [12].

It is worth mentioning the approaches that existed at the time or that have coexisted
with those of deep learning (particularly with CNN). Among them, those of machine
learning, such as the one evidenced in [13] that worked with ML, are based on models
and characteristics according to the linguistic composition of the lexical signs, and others
continue to be under the umbrella of artificial intelligence, such as the use of radio frequency
sensors to generate synthetic data [14].

For instance, hidden Markov models (HMMs) offer efficient recognition for well-
defined sign features, as is shown by Zhang et al. in their work on Chinese Sign Language
recognition [15]. Traditional machine learning approaches, like support vector machines
(SVMs), offer interpretability and efficiency for smaller data sets [16,17]. Finally, com-
bining traditional methods with deep learning can lead to improved performance and
robustness [18–20].

2.3. SLR for Other Languages (Beyond ASL)

Other than for ASL, there exists relevant documentation on SLR applied to different
languages. There is, for instance, a sign language semantic translation system (from Arabic
Sign Language) using a combination of ontologies and CNNs [21] and a proposed network
architecture for translating signs (from Bangladeshi Sign Language) [22]. Additionally,
there are other implementations oriented to French Sign Language (Belgian SL, BSL) using
deep learning methods [23].

There is also a system based on sensors captured by a device through which data
is collected to perform the translation (of Italian Sign Language signs) using automatic
learning algorithms [24]. Three (3) classifiers were used, of which the one focused on
artificial neural networks (ANN) had the best performance compared to those of support
vector machines and K-nearest neighbors.

The research obviously extends beyond ASL to encompass diverse sign languages
like Arabic, Australian, Indian, and Chinese. The variations in signing grammar, vocabu-
lary, and cultural influences pose challenges. Deep learning can adapt well but requires
language-specific training data and careful consideration of cultural nuances [25–27].

2.4. SLR with Varying Capturing Methods

SLR shares common ground with image captioning, object recognition, and object
tracking. Deep learning techniques developed in these domains readily apply to SLR,
particularly in areas like hand pose estimation and sign segmentation [28,29].

Conversely, advancements in SLR can benefit these related fields by providing novel
approaches to gesture recognition and action understanding in video data [30].

2.5. Development in Panamanian Sign Languages

In the specific case of Panamanian Sign Language, a number of projects are worth
mentioning. There exists a compilation book for supporting the PSL learning process [31],
a website for a similar purpose [32], a robotic hand as an alternative way to achieve
inclusion through acquisition of PSL [33], and a mobile application with documentation
and vocabulary from PSL [34]. Furthermore, the authors have worked on the EnSenias
web platform with a series of translations of concepts in Spanish to their equivalent in
PSL [35–37]. This tool is geared to mitigate the communicative problem between the
hearing impaired and the rest of the population, with over 1250 signs.

In addition, Bodmer [38] presented a CNN-based system capable of translating signs
corresponding to vowels in PSL with a high level of precision. Finally, our group recently
presented a work geared to educational settings, in which a hand gesture recognizer is
trained to be able to identify signs and numbers in arithmetic operations [39].
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3. Methods

The proposed solution in this project is based on the Mediapipe platform. Specifi-
cally, on the Mediapipe Holistic [40] platform. The topologies selected for our task were
hands [41], face [42] and pose [43], mostly due to the need to consider the semantic loaded
parts of the body, along with important supporting factors, in addition to the main elements.

These topologies consist of several models working together. For instance, the hand
tracking solution has a palm detector, a hand landmark model and a gesture recognizer that
identify key-points, track them through time, and detect the gesture [44]. The face detection
and mesh is achieved with augmented reality (AR) overlaying digital information (the
landmarks) on top of the face [45]. The (human) body pose tracking accurately localizes
landmarks of the body from a single frame [46]. All of these independent solutions perform
in real-time, as the one presented, and are used to detect signs from the PSL.

The overall methodology used for T=the translation of sign-to-PSL is shown in
Figure 1.

Optimization

Figure 1. Methodology Diagram based on Action Detection for Sign Language Recognition.

First, the project, including all the topologies from Mediapipe, was selected. Then, an
action detector was constructed. Next, a dynamic sign model is established and developed.
Finally, the sign made and detected via this methodology was translated. There is also an
optimization step, in which the process of translation is optimized; that is, the system is
trained via feedback to be able to detect the sign with an acceptable accuracy.

3.1. Image Collection and Preprocessing

The image collection procedure was automated via a built-in webcam. Images and
videos were collected one at a time, naming the files in a way that represents the sign or
sign phrases captured.

For creating this data set, a Python script using OpenCV was written. The amount of
data to be collected is directly related to the number of classes to be considered according
to the experiment and responds to statistical heuristic strategy for a simplified decision
regarding the sample size. The chosen method is the factor of the number of classes, which
proposes an x number of elements for each class. This x should be a power of 10; in this
case, it was 102 = 100.

3.2. Development of the Dynamic Sign Module

For the development of the dynamic sign module, 4 key Python modules were used:
(1) OpenCV was used to access the integrated camera and extract the keypoints, as well as
for image processing; (2) Mediapipe (MP) was used to extract the points (keypoints) from
the face, hands, and body; First, for training, and subsequently in execution for predictions,
(3) Sklearn was used to calculate the evaluation metrics for the separation of the data in
the training and testing sets and in stages for which the code is presented; and finally,
Matplotlib was used for the visualization of the images.

3.2.1. Keypoint/Landmark Detection Using Mediapipe Holistic

First, the visualization of the reference points and their connections is configured;
that is, checking if there are changes in the format parameters. Colors were established
that easily differentiate the elements and that are compatible with a good number of
backgrounds; the thickness of the lines and the size of the points respond to the convenience
of presenting each component. It is noteworthy that different colors were configured to
their hands to identify them more easily in the training, testing, and execution processes,
since sometimes they are treated with normal visualizations and in others in mirror mode.
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3.2.2. Capturing and Processing Images and Keypoints

An Opencv element of the video capture type was created and set to either 0 or 1 to
capture via smartphone or via built-in camera, respectively. The minimum confidence
values for detection and monitoring were set to 0.5 (50%). This value is vital to determine
the specificity of the model. The capture, detection, and layout of the points and lines of the
landmarks are carried out iteratively. All collected images are concatenated into a Numpy
array. It will have “0” values if there is no input. These results are later analyzed to extract
keypoint values.

3.2.3. Keypoint Value Collection for Training and Testing

Once all the images are collected, the resulting videos are created in order. That is, the
first image of the first video is the first sign, then the following is the second, and so on
for all signs. A slack time of two (2) seconds between video and video was programmed,
which also has an effect between one sign and another, that is, the last video captured of a
sign and first video to capture the next one.

3.2.4. Sequence Preprocessing and Creation of Labels and Features

The “Train Test Split” function of scikit-Learn (Sklearn) was called to make data
partitions according to 90% for training and 10% for testing. The classes are assigned using
the “to categorical” function from Keras. In general terms, this function turns a class vector
into a binary class matrix. A dictionary labeling map is created to represent each of the
signs (“Actions” for action detection). This map is used when the set of labels is created
according to the sign.

All the collected keypoints, which can be seen now as sequences of keypoints), are
structured into 90 arrays with 30 frames each and 1662 values representing the keypoints.
This structure is later introduced into the RNN model.

Images and keypoints captured in this collection and described in this subsection were
made publicly available and can be found in [47].

3.3. Model Definition

The LSTM recurrent network model was defined to have a 30 × 1662 input, followed
by three LSTM layers of 64, 128, and 64 neurons, respectively. It was followed by two
dense layers of 64 and 32 neurons, respectively. The ReLU activation function was used for
every layer that required it, except for the output layer, which used the softmax activation
function. The total number of parameters used by this network is 596,741 parameters.

The main idea is that a model is trained to be able to identify signs. Since the signs
are identified according to the pre-established labels, the translation is achieved simply
by presenting the text (the name of the class or label; in this case, a sign) through a
visual output.

The construction of the sign recognition model started by using an action detector.
Mediapipe Holistic was used for this purpose, having the different physical components
assessed. This included identifying the points of interest and tracking them through time
so an action was determined. These actions represent a sign in PSL. This detector was
designed to be trained end-to-end, that is, from scratch.

3.4. Experimental Setting

The ready-to-use model would typically receive, as input, images where signs were
made by the people in them, these signs being the objects to be detected in continuous
capture. An overall view of the functioning of the system is depicted in Figure 2.
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Figure 2. Overall View of the Proposed Recognition System.

The developed model is trained and works with PSL sign images, either in continuous
capture (continuous shots) or when bringing a single image as an input. The system, once
executed, begins to extract the keypoints of the person captured by the camera over time.
With this, the sign translation is made when the model identifies one of the known signs.

The process used to achieve the task of translation involves the stages contemplated
on the right side of Figure 2, with the model as the core of the system.

The results are obtained via a prediction of the model. The Numpy function argmax()
is used to return the maximum values of the given axis; that is, the class it infers is more
likely to correspond to the input.

The translation takes place as follows: the system captures frames one after the other
with a very low delay. For each capture, the image inference process is carried out (it
is expected that a person appears making a sign) from which percentages are obtained
for each class; the label calculated as most probable is presented on the screen only if
the reliability value (threshold) of 80% is reached. In other words, the sign of the PSL is
translated in continuous capture into Spanish text.

3.5. Experiment Overview

Two experiments were devised to test the proposed system:

• Experiment #1: the objective of this experiment was to train a model that was able
to translate dynamic signs with the deep neural network model. For this task,
5 signs were tested (Hola—Hello, Buenos días—Good morning, Estoy Bien—I am fine,
Gracias—Thanks, ¿Cómo estás?—How are you?).
For this experiment, a data set consisting of 625 videos (30 frames for each one)
corresponding to the 5 classes (signs) were collected. Each sign was then captured
125 times, of which 20% (around 25 images per class) were used for validation.
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• Experiment #2: the objective was to be able to assess the performance with a lesser
number of classes. For this task, 3 signs were tested (Hola—Hello, Estoy Bien—I am
fine, Gracias—Thanks).
For this experiment, a reduced data set was considered. This data set consists of
375 videos (30 frames for each one) corresponding to the 3 classes (signs) remaining.
Each sign was then captured 125 times, of which 15 images per class (12%) were used
for validation.
The hypothesis behind this experiment is that the model could have a much better
performance in execution if the number of options to be considered is shortened, given
that there is a shared probability between all the elements (possible options). Given
this hypothesis, we aimed to improve performance by considering fewer classes.

Evaluation Metrics

This stage was completed using a quantitative analysis method common within
machine learning: the confusion matrix. The metrics to be used for the evaluation of these
models were the four (4) measurements that make up the confusion matrix: true positive
(TP), false negative (FN), false positive (FP), and true negative (TN). A visual description of
the confusion matrix can be seen in Table 1.

Table 1. Confusion matrix of Experiment #1’s best scenario.

Predicted Class

True False

Observed Class
Positive TP FN

Negative FP TN

Furthermore, the accuracy (Equation (1)), precision (Equation (2)), recall (Equation (3)),
and F1 score (Equation (4)) of the models were calculated, using the following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

This was intended to validate the performance of the developed model to confirm
both that the results were reliable and that they were going to be executed.

Confusion matrices were created for each model and for each class in
Experiment #1 and #2, using sklearn [48], calling the multi-label version, thus
returning confusion matrices for each class.

Moreover, the accuracy and loss of the models were calculated with the intention of val-
idating the performance of the developed model, as well as to confirm both that the results
were reliable and that there was the possibility of using the models in different settings.

4. Results
4.1. Image Acquisition

Figures 3 and 4 illustrate the process of the capture of each action (video of a sign). For
instance, in Figure 3, the “hello” sign is shown. Figure 4 shows the captured ”I’m fine” sign.
Finally, Figure 5 shows the “Thanks” sign. Each sign was captured 125 times, of which 20%
(25 images per class) were used for validation.



Big Data Cogn. Comput. 2024, 8, 25 8 of 17

Figure 3. Sequence of the sign “Hello”.

Figure 4. Sequence of the sign “I’m fine!”.

Figure 5. Sequence of the sign “Thank you”.

4.2. Detection Experiments

As can be seen in Table 2, both experiments provided appropriate results. Experiment
#1 had a training time of 196.6 s, a loss of 0.222, and a categorical accuracy of 0.958,
achieved in 160 epochs. In general, Experiment #2 performed faster than Experiment #1,
with comparable results. The training time for Experiment #2 was 52.03 s, with a loss of
0.9948, and its categorical accuracy was 0.9879, achieved in 46 epochs.
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Table 2. Resulting Values for the Experiments

Metric Experiment #1 Experiment #2

Accuracy (global) 0.958 0.988
Accuracy (best class) 1.00 1.00

Accuracy (worst class) 0.96 1.00
Final Loss 0.222 0.995

Epochs 160 46
Training time (s) 196.6 38.88

4.3. Individual Class Performances for Experiment #1

This experiment was geared toward developing a model able to translate dynamic
signs via a deep neural network model. For this task, five (5) signs were tested (Hello—Hola,
Buenos dias—Good morning, Estoy Bien—I am fine, Gracias—Thanks, ¿Como estas?—How
are you?).

Table 3 shows the resulting confusion matrix for the best predicted sign. One can see
that the “Hello” sign has a higher TP value of 88%. It also shows perfect scores of 1.00
(100%) for all the metrics evaluated: precision, accuracy, and F1-score.

Table 3. Confusion matrix of Experiment #1’s best scenario (with the number of elements and the
percentage they represent).

Predicted

True False

Class “Hello”
Positive 22–88% 0–0%

Negative 0–0% 3–12%

Table 4 shows the resulting confusion matrix for class “Good Morning” as the worst
predicted sign, showing 96% in total for TP and TN. The precision was approximately 0.9524,
accuracy was 0.9600, and F1 score had a value of 0.9756; therefore, over 95% in general.

Table 4. Confusion matrix of Experiment #1’s worst scenario.

Predicted

True False

Class “Good morning”
Positive 20–80% 1–4%

Negative 0–0% 4–16%

4.4. Individual Class Performances for Experiment #2

For this experiment, the goal was to create a similar model in Experiment #2 but with
fewer categories. For this task, three (3) signs were tested (Hello—Hola, Estoy Bien—I
am fine, Gracias—Thanks). Table 5 shows the resulting confusion matrix for each one of
the “Hello” signs, the best class on Experiment #1, which had a precision, accuracy, and
F1-score of 1.00 (100%).

Table 5. Confusion matrix of Experiment #2’s best scenario.

Predicted

True False

Class “Hello”
Positive 7–46.67% 0–0%

Negative 0–0% 8–53.33%
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When looking at the performance per epoch, for accuracy per epoch (Figure 6A), one
can see that there was a slow increase in value until 20 or so epochs were reached, until
the best value was achieved in the reported 46 epochs. For the loss (Figure 6B), it seems to
behave appropriately from the beginning, lowering in value until reaching a minimum in
the final epoch.

A

B

Figure 6. Accuracy per epoch (A), and Loss per epoch (B) for the Model in Experiment #2.
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4.5. Real-Time Execution

When it comes to live recognition, it can be said that Experiment #2 was able to
smoothly detect the signs for which it was trained. Figure 7 shows the model qualification
of the gesture for the sign “Hello”, while Figure 8 shows the continuation of the same
execution, with the response “I’m fine!”. The hypothesis behind Experiment #2 was correct.
The model does have a good performance with fewer classes. This fact also proves the
applicability and usefulness of the technology within SLR.

A

B

C

Figure 7. Recognition of the sign for “Hello”. Panel (A) shows the start state with no sign, Panel
(B) shows the start of the construction of the sign, Panel (C) shows the end of the sign for “Hello",
more importantly the software is capable of showing the resulting recognised sign in the blue text
box on the top of the picture.
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A

B

C

Figure 8. Recognition of the sign for “I’m fine!”. Panel (A) shows the start of the sign, Panel (B) shows
the middle of the sign, Panel (C) shows the end of the sign for “I’m fine", Notice that for Panels
(A,B) the blue text box, still is showing the previous result shown in Figure 7. while in Panel (C) it
changes to the correct sign, capture in continuos mode.

5. Discussion

The original idea behind the project was leveraging deep learning beyond CNNs to
develop a sign language recognition (SLR) module that could translate motion signs. The
use of recurrent neural networks (RNN) seemed natural, given that they excels in sequence
data processing. The approach presented fundamental features for it to be considered
in the future, such as a significantly low training time. When comparing Experiment #1
and Experiment #2, one can say that there is an overall performance improvement in the
running model with fewer classes. The detection speed can be considered real-time, and
the accuracy is high.
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An important lesson from the experiments, either in Experiment #1 or Experiment #2,
was learned when testing the recognition capacities when providing inputs captured at a
different distance from the training set. The distances were doubled, reaching from 0.5 m
(1.64 ft) to one meter (3.28 ft). This provided a clear limitation, although it was able to
return correct results after some attempts. When training half a meter away, there was a
noticeable difference between the values with which it was trained and those with which it
was being tested. It is important to notice that these networks work by learning position
values inside an image or frames. Moreover, a second reason points to the possibility that
the architectures on which the solution is based may not be able to identify correctly the
points of interest.

Another important lesson was learned when capturing sequences without noise. That
is, an idle position is of utmost importance within video data, for instance, when starting
the sign or after completing the gesture. This would mean having frames with similar
positions for different classes, increasing the probability of a bad inference.

To understand the limits of detection of the system, two further variations of the
experiments were designed. The first variation was implemented to study the relationship
between the execution performance and varying the distance from 0.5 m to one (1) meter.
It was found that the system is clearly limited by distance. The model being trained from
0.5 m does not generalize well. This could be attributed to the distance between the values
with which it was trained and those with which it was being tested. A second reason
indicates that there is the possibility that the topologies of the solution are not able to
identify correctly the points of interest.

The second variation experiment included taking images in low lighting. For this case,
the model was able to identify the signs (after translating them immediately) without major
problems. However, if in any collection, a variation in distance and low light is combined,
the performance is poor.

Looking forward, the developed model could be the base of a module for recognizing
dynamic signs. While another model would focus on static sign recognition, a system with
two independent modules might deal better with simultaneous translation of both types,
because it will handle the data in which they are specialized. Furthermore, it can be the
basis to make a text-to-speech/audio conversion module, making the system give an audio
output in addition to the text one already shown.

The proposed system was built for the recognition of a few classes and with a small
number of samples per class (25 and 15 in the testing class for each experiment, respectively).
Experiment #2 used only three classes to train the final version of the model. Despite this, it
had a great accuracy in recognition and a smooth execution process. Generative adversarial
networks could be used for generating artificial sequences for training, basically creating
frames and later sequences, as a data augmentation strategy [49,50].

The system described here presents a clear applicability to different use cases, for
example, ASL–English. It is clear that there will have to be noticeably more classes to be
recognized by the model. It is also evident that it is easily adaptable and it would require
training with the actions corresponding to the signing in another sign language, along with
labeling in a different language.

Moreover, this system can be extended by providing visual output to signs in another
sign language, known as gesture-to-gesture systems [51], or even spoken output, as a sign
language translator (SLT) [52]. This would make possible the communication between sign
language users that do not know each other’s SL system, for example, PSL–ASL.

Finally, the action detector could be adjusted to a separate task (not SLR), like detecting
an indication from a vehicle traffic director hand signal. A differently-trained version of
the model could be leveraged for sport analysis, gesture control, and so on.

6. Conclusions

Undoubtedly, machine learning has proven to be a means of solving countless prob-
lems of a considerable variety. In particular, deep learning has made its way to be a top
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discipline in artificial intelligence, having represented changes in the state of the art of
different processes, techniques, and areas. This subfield of ML has increased its relevance
by having conceived DNN structures with interesting capabilities; and the support of ele-
ments, such as the availability of tools and resources provided by the scientific community,
are the basis of new ones. Computer vision tasks, including SLR, have benefited from the
growth of DL.

CNNs have continued to prove themselves useful for computer vision for several
years due to their ability to perform well in tasks regarding visual data processing. Despite
the superlative position of CNN structures in object detection, there are novel architectures
such as U-nets and others that have proven to be valuable [53]. An object detector can be
adapted to become the core of a sign-to-text translation system, but developed systems of
this kind have presented an enormous challenge: the limitation of identifying only static
signs, that is, only hand poses. This is where other structures can participate, and RNNs
were the ones used this time, based on the need to process a sequence of images and not
unrelated static images.

Dynamic signs are indeed actions. Gesturing in this type of sign implies motion, so
it can be seen as different hand poses through time. Instead of a still image, like static
signs, dynamic signs are studied like sequences of frames. Processing a sequence of frames,
hence, an action, can be achieved with a combination of two DNNs: RNNs for sequence
processing and CNNs for image processing.

From the above, a parallel can be seen between object detection and action detection.
In action detection, RNNs bring the “memory” component, but how it is implemented
may vary. When considering just the positional values of the hands of a person making
the signs, a fairly good recognition could be achieved. While the hand component is
the most important one in this use case, the consideration of other components might
be convenient when developing a richer solution. The other components used, namely,
pose and face, enhance the translation system through Holism. The pose component is
advantageous when there are hands overlapping, since the model determines elements
like wrists, then “understands” there are two hands. The face component is valuable
because facial expressions are a relevant part of sign language, expressing emotions but
also linguistic information.

This holistic approach proved itself useful when it came to SLR, especially for translat-
ing signs with motion, which has been a complicated problem in the area. In Experiment
#2, the developed model had great results in validation and when being tested in execution.
On the one hand, this means it is worth applying this technology to the sign recognition
task. On the other hand, it means that the limitation regarding the number of classes that
can be considered is yet to be overcome.

As pointed out previously, the limitations of this study are various. First, the envi-
ronment is quite straightforward, the data are collected without noise or the intervention
of other persons, and it basically is not for multiple signers at the same time. Next, itera-
tions have more variations in brightness, number of persons, hand gestures (extension of
the vocabulary), movements, facials, and backgrounds, all of which are challenges in the
SLR community.

In terms of noise or variability, all the signs were collected with one experienced signer,
and the model does not account for PSL students, and it does not provide corrections for
poorly described signs. We understand that optimization in two aspects, (1) idle positions
between signs and (2) quantifying the noise input data, is crucial.

Along with SLR, other tasks within computer vision could be exploited by RNN
structures. Further research on SLR is worth doing with the holistic approach. Beneficial
implementations can be made with non-typical combinations of DL structures (e.g., atten-
tion mechanism, (Bi-)LSTM, (Bi-)LSTM-SVM, (Bi-)RNN) [10,54,55]. Solutions to improve
quality of life have inestimable value on society, and it is expected that this work will
directly impact the hearing impaired population using PSL on a daily basis in the Republic
of Panama.
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