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Abstract: In the option pricing literature, it is well known that (i) the decrease in the smile amplitude
is much slower than the standard stochastic volatility models and (ii) the term structure of the
at-the-money volatility skew is approximated by a power-law function with the exponent close to
zero. These stylized facts cannot be captured by standard models, and while (i) has been explained
by using a fractional volatility model with Hurst index H > 1/2, (ii) is proven to be satisfied by a
rough volatility model with H < 1/2 under a risk-neutral measure. This paper provides a solution to
this fractional puzzle in the implied volatility. Namely, we construct a two-factor fractional volatility
model and develop an approximation formula for European option prices. It is shown through
numerical examples that our model can resolve the fractional puzzle, when the correlations between
the underlying asset process and the factors of rough volatility and persistence belong to a certain
range. More specifically, depending on the three correlation values, the implied volatility surface is
classified into four types: (1) the roughness exists, but the persistence does not; (2) the persistence
exists, but the roughness does not; (3) both the roughness and the persistence exist; and (4) neither
the roughness nor the persistence exist.

Keywords: fractional Brownian motion; Hurst index; volatility skew; rough volatility; smile
amplitude; volatility persistence

1. Introduction

In the finance literature, there has been a general consensus that volatility is highly persistent.
There are numerous pieces of evidence that the price dynamics of financial products are consistent with
fractional Brownian motion (fBM) volatility models with Hurst index H > 1/2, which implies that
the volatility has a long memory. See, e.g., [1] for the existence of the long memory features in stock
market volatilities. However, inconsistent with this stylized fact, [2] recently find that the log-volatility
behaves essentially as an fBM with H close to zero at any reasonable time scale, by estimating the
volatility from high frequency data. This puzzle (the word “puzzle” is used in the context of using a
fractional volatility model in option pricing, but not used in the context of finance in general) has not
been resolved, although one possible explanation may be the smoothing effect by sampling intervals
of data. Recall that if H = 1/2, the fBM is the standard Brownian motion (BM), which is a Markov
process with short memory. Hence, the fact H < 1/2 implies that volatility is rough.

On the other hand, in the context of option pricing, there are also seemingly two inconsistent
stylized facts. Namely, (i) the decrease in the smile amplitude is much slower than the standard
stochastic volatility models; and (ii) the term structure of the at-the-money volatility skew is well
approximated by a power-law function with the exponent close to zero. It is well recognized that the
two phenomena cannot be captured by standard models. Nevertheless, in the option pricing literature,
these problems have been studied separately.
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The fact (i) seems a result of long memory feature of volatility and is indeed explained in [3,4] by
using the fractional volatility model with H > 1/2 under a risk-neutral measure Q. They start with a
fractional volatility model with H > 1/2 under the physical measure P, and assuming that the market
price of volatility risk is zero, they transform the model to that under Q. While [3] showed that, thanks
to the long memory feature of volatility with H > 1/2, the model can explain the slow decay of the
smile amplitude, [4] developed an approximation formula for option prices and confirm the result
numerically when H > 1/2.

The fact (ii) is also well-known from empirical observations and has been paid much attention
in the finance literature. While there have been several attempts to explain this stylized fact,
(see, e.g., [5–7] for possible models that explain this stylized fact), Alòs et al. [6] and Fukasawa [8]
proved that a fractional volatility model with H close to zero under Q can have this stylized fact for
small T. In other words, they show that the volatility is rough under the risk-neutral measure Q for
short maturity options.

The aim of this paper is to provide a solution to the time-scale fractional puzzle in the implied
volatility. To this end, we adopt the fractional volatility model considered in [4] and extend it by
introducing another fractional volatility factor with Hurst index H < 1/2. Following the same idea as
in [4], we develop an approximation formula for European option prices and confirm that our model
can incorporate both persistence and roughness in the volatility under the risk-neutral measure Q,
when the correlations between the underlying asset process and the factors of rough volatility and
persistence belong to a certain range.

An important finding in this paper is that, depending on the three correlation values, the implied
volatility surface is classified into four types: (1) the roughness exists, but the persistence does not;
(2) the persistence exists, but the roughness does not; (3) both the roughness and the persistence exist;
and (4) neither the roughness nor the persistence exist. Hence, the coexistence of the two stylized facts
requires the two-factor fractional volatilities of roughness and persistence in a non-trivial manner.

This paper is organized as follows. In the next section, we set up our two-factor fractional volatility
model. By using the technique developed in [4], we derive an approximation formula for option prices
in Section 3. Section 4 is devoted to numerical examples to investigate the impact of the two Hurst
indexes on option prices. Through our extensive numerical experiments, we confirm that our model
can resolve the implied volatility puzzle mentioned above. The definitions of the functions contained
in our approximation formula are given in Appendix A.

2. The Setup

Inspired by the model proposed in [4], we consider the following two-factor fractional volatility
model. Namely, the underlying asset price St and its volatility σt = σ(X1

t , X2
t ) are modeled by the

stochastic differential equations (SDEs):
dSt

St
= (µt − q)dt + σ(X1

t , X2
t )dwt,

dXi
t = (θi − κiXi

t)dt + γidwHi
t , i = 1, 2,

(1)

under the physical measure P, where µt is the instantaneous mean rate of return of the asset, q is the
(constant) dividend rate and σ(x, y) is some smooth function in x and y. Here, while wt is a standard
Brownian motion (BM), wHi

t denotes a fractional Brownian motion (fBM) with Hurst index Hi under P.
The volatility σt = σ(X1

t , X2
t ) is formulated by using the two fractional mean-reverting processes Xi

t.
Note that θi/κi represents the long-term average of Xi

t, κi is the speed of mean reversion and γi is the
volatility of Xi

t. Later, we specify H1 > 1/2 and H2 < 1/2, because we want to explain the persistent
volatility and rough volatility simultaneously.
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2.1. Integral Representation

The fBM wHi
t can be represented in terms of the stochastic integral with respect to another

standard BM. In this study, we find it useful for the development of our approximation to employ the
Mandelbrot–Van Ness representation of fBMs. Namely, we have:

wHi
t =

1
Γ(Hi +

1
2 )

{∫ 0

−∞
((t− s)Hi− 1

2 − (−s)Hi− 1
2 )dwi

s +
∫ t

0
(t− s)H− 1

2 dwi
s

}
, t > 0,

where Γ(a) =
∫ ∞

0 ta−1e−tdt denotes the gamma function and where wi
t is a standard BM with constant

correlations dw1
t dw2

t = ρ1,2dt and dwtdwi
t = ρidt, i = 1, 2. By defining:

λ
Hi
1 (t) =

1
Γ(Hi +

1
2 )

tHi− 1
2 , t > 0,

and:

gHi
t =

1
Γ(Hi +

1
2 )

∫ 0

−∞
((t− s)Hi− 1

2 − (−s)Hi− 1
2 )dwi

s, t > 0,

we then have the following representation:

wHi
t =

∫ t

0
λ

Hi
1 (t− s)dwi

s + gHi
t , t > 0. (2)

Note that, given wi
0, the future behavior of wi

t, t > 0, is independent of the past, because the BM
wi

t is a Markov process. Hence, supposing that the past wi
t, t ≤ 0 has been observed, the quantity gHi

t
is considered to be a deterministic function of time t ≥ 0 with gHi

0 = 0.
The fractional mean-reverting process Xi

t given in (1) can be solved as:

Xi
t = Li(t) + γi

∫ t

0
e−κi(t−s)dwHi

s , t ≥ 0,

where:

Li(t) = Xi
0e−κit + (1− e−κit)

θi
κi
− κiγi

∫ t

0
e−κi(t−s)gHi

s ds.

By applying the integration-by-parts formula and changing the order of integration, the volatility
can be rewritten as:

Xi
t = Li(t) +

∫ t

0
λ

Hi
2 (t− s)dwi

s, t ≥ 0, (3)

where:

λ
Hi
2 (t) =

γi

Γ(Hi +
1
2 )

(
tHi− 1

2 − κ
1
2−Hi
i e−κit

∫ κit

0
xHi− 1

2 exdx
)

. (4)

See [4] for the detailed derivation.
Now, we introduce the market prices of risks ηt and η̄i

t to define the standard BMs Wt and Wi
t

under a martingale measure Q. Namely, define:

dWt = dwt + ηtdt; dWi
t = dwi

t + η̄i
tdt, i = 1, 2; t ≥ 0,

respectively. It follows from (1) and the standard argument that the asset price St follows the SDE:

dSt

St
= (r− q)dt + σ(X1

t , X2
t )dWt, t ≥ 0, (5)

under Q, where r denotes the risk-free spot rate, which we assume to be constant for simplicity.
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By applying Ito’s formula, we obtain:

St = F(0, t) exp
(∫ t

0
σ(X1

s , X2
s )dWs −

1
2

∫ t

0
σ2(X1

s , X2
s )ds

)
, t ≥ 0, (6)

where F(0, t) = S0e(r−q)t is the forward price of the underlying asset with delivery date t. On the other
hand, the fractional mean-reverting process Xi

t is given by:

Xi
t = L̃i(t) +

∫ t

0
λ

Hi
2 (t− s)dWi

s, t ≥ 0,

where:

L̃i(t) = Li(t) +
∫ t

0
λ

Hi
2 (t− s)η̄i

sds.

Summarizing, our fractional volatility model is formulated as:
St = F(0, t) exp

{∫ t

0
σ(X1

t , X2
t )dWs −

1
2

∫ t

0
σ2(X1

t , X2
t )ds

}
,

Xi
t = L̃i(t) +

∫ t

0
λ

Hi
2 (t− s)dWi

s, i = 1, 2,
(7)

for t ≥ 0, where dW1
t dW2

t = ρ1,2dt and dWtdWi
t = ρidt, i = 1, 2.

2.2. Some Special Cases

Recall that we suppose the past wi
t, t ≤ 0 has been observed and the quantity gHi

t is a deterministic
function of time t ≥ 0 with gHi

0 = 0. However, it seems difficult to observe the whole past of wi
t in

the actual market, and so, we assume that gHi
t = 0 as in [3] in the rest of this paper. Furthermore,

following most of the previous research, we assume that the volatility risks are fully diversified, and so,
the market prices of risks η̄i

t are zero, i.e., η̄i
t = 0, for the sake of simplicity. Under these specifications,

the fractional mean-reverting process Xi
t is given by:

Xi
t = Xi

0e−κit +
θi
κi
(1− e−κit) +

∫ t

0
λ

Hi
2 (t− s)dWi

s, t ≥ 0, (8)

where λ
Hi
2 (t) is defined in (4). Given these processes Xi

t, the dynamics of the asset price St is determined
by the SDE (5).

We observe from (8) that the process Xi
t is a sum of a deterministic function hi(t) and a stochastic

convolution Ii(t), where:

hi(t) = Xi
0e−κit +

θi
κi
(1− e−κit), Ii(t) =

∫ t

0
λ

Hi
2 (t− s)dWi

s,

respectively. For the purpose of Monte Carlo simulation, we consider the discrete-time process
xi

n = Xi(n∆t), n = 1, 2, . . . , N, where T = N∆t is the option maturity for sufficiently small ∆t > 0.
The stochastic convolution Ii(t) can be approximated by a discrete convolution such as ∑n

k=1 ξ i
n−k∆Wi

k,

where ξ i
k = λ

Hi
2 (k∆t) and ∆Wi

k = Wi
(k+1)∆t −Wi

k∆t.
The discrete convolution can be represented by a matrix product, and so, the mean-reverting

process xi
n, n = 1, 2, . . . , N, in discrete time can be expressed compactly in matrix form as:


xi

1
xi

2
...

xi
N

 =


hi

1
hi

2
...

hi
N

+


ξ i

1 0 · · · 0
ξ i

2 ξ i
1 · · · 0

...
...

. . .
...

ξ i
N ξ i

N−1 · · · ξ i
1




∆Wi
0

∆Wi
1

...
∆Wi

N−1

. (9)
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In the following, thanks to the above specification, we adopt matrix Equation (9) for Monte Carlo
simulation (see, e.g., [9] for Monte Carlo simulation methods for general fBMs).

3. Approximation Formula

The call option price written on St with strike K and maturity T is given by:

C(K, T) = e−rTE
[
(ST − K)+

]
, (10)

where (x)+ = max{x, 0}, and the expectation is taken over ST under the martingale measure Q. In this
case, all we need to know is the distribution of asset price ST at the maturity T.

Let us define Xt =
St

F(0,t) − 1. From (10), the value of the European call option is given by:

C(K, T) = S0E
[(

XT + K̃
)+]

, K̃ = 1− K
F(0, T)

.

With the density function fT(x) of XT at hand, it follows that:

C(K, T) = S0

∫ ∞

−K̃
(x + K̃) fT(x)dx. (11)

In this section, we derive an approximation formula for option prices by applying the technique
used in [4] for the fractional volatility model (7). To this end, we expand the underlying asset into
a sum of iterative stochastic integrals with deterministic integrands. In the following, we denote
σ0(t) := σ(L1(0, t), L2(0, t)) and

σi
0(t) :=

∂

∂xi σ(x1, x2)
∣∣∣
x1=X1

0 ,x2=X2
0

, σ
i,j
0 (t) :=

∂2

∂xi∂xj σ(xi, xj)
∣∣∣
x1=X1

0 ,x2=X2
0

.

The proof of the next result is given in Appendix A.

Lemma 1. For Xt := St/F(0, t)− 1, we approximate it by:

Xt ≈ A1(t) + A2(t) + A3(t),

where:

A1(t) =
∫ t

0
p1(s)dWs,

with:

p1(s) = σ0(s) +
2

∑
i=1

σi
0(s)

(∫ s

0
ρiλ

Hi
2 (s, u)σ0(u)du

)
+

1
2

2

∑
i,j=1

σ
i,j
0 (s)

(∫ s

0
ρi,jλ

Hi
2 (s, u)λ

Hj
2 (s, u)du

)
,

A2(t) =
∫ t

0
σ0(s)

(∫ s

0
σ0(u)dWu

)
dWs +

2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs,

and A3(t) = ∑6
i=1 A3,i(t) with A3,i(t) being defined by:

A3,1(t) =
∫ t

0
σ0(s)

(∫ s

0
σ0(u)

(∫ u

0
σ0(r)dWr

)
dWu

)
dWs,

A3,2(t) =
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
λ

Hj
2 (s, r)dW j

r

)
dWi

u

)
dWs,

A3,3(t) =
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
λ

Hj
2 (s, u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dW j

u

)
dWs,
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A3,4(t) =
2

∑
i=1

∫ t

0
σ0(s)

(∫ s

0
σi

0(u)
(∫ u

0
λ

Hi
2 (u, r)dWi

r

)
dWu

)
dWs,

A3,5(t) =
2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
σ0(u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dWu

)
dWs,

A3,6(t) =
2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
σ0(r)dWr

)
dWi

u

)
dWs.

Following the idea given in [10], the density function fT(x) can be approximated by f̃T(x) given
in (A16) in Appendix B. By computing (11), the next result then follows. The proof is straightforward,
although messy, and omitted.

Proposition 1. The value of a European call option with maturity T and strike K under the fractional volatility
model (7) is approximated as:

C(K, T) ≈ S0n(K̃; 0, ΣT)

2
√

2Σ4
T

[√
2q3(T)(K̃4 − 6K̃2ΣT + 3Σ2

T)

+
√

2Σ2
T (q4(T) + 2q2(T))

(
K̃2 − ΣT

)
+ Σ3

T

{
−2
√

2q1(T)K̃ +
√

2q5(T)ΣT + 2
√

2Σ2
T

} ]
+ S0K̃

(
1−Φ(−K̃/

√
ΣT)

)
,

where n(x; µ, σ2) is the density function of the normal distribution with mean µ and variance σ2 and Φ(x)
denotes the cumulative probability function of the standard normal distribution.

The definitions of hn(x), qk(T) and ΣT are provided in Appendix B.

4. Numerical Examples

This section is devoted to numerical studies of our fractional volatility model by using the
approximation formula given in Proposition 1. (The accuracy of our approximation formula is
checked by the Monte Carlo simulation explained in Section 2.2. We note that our approximation gets
gradually worse for the high volatility, long maturity and deep in-the and out-of-the money cases.
For example, when the percentage volatility defined by η = (γ1 + γ2)/(X1

0 + X2
0) is bigger than 1.5,

our approximation seems not enough for practical uses. For such cases, higher order approximation
is required.) Throughout the numerical examples, we use the parameter values listed in Table 1 as
the base case. In particular, for the Hurst indexes H1 and H2, Bollerslev and Mikkelsen [1] observed
long memory features in stock market volatilities, and so, we set H1 = 0.9 as the persistent volatility.
On the other hand, Bayer et al. [11] claimed (they report a good fit of their rough volatility model with
H2 = 0.07 and the percentage volatility η = 1.9) that H2 is of order 0.1, and so, we set H2 = 0.1 as the
rough volatility. Finally, we assume that the volatility function is given by:

σt = σ(X1
t , X2

t ) = X1
t − X2

t

for the sake of simplicity.
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Table 1. Base case parameters.

(H1, H2) S0 r q X1
0 X2

0 θ1 θ2 κ1 κ2 γ1 γ2 ρ1,2 ρ1 ρ2

(0.9, 0.1) 100 0.0131 0.017 0.2 0.0 0.0 0.0 0.0 0.0 0.12 0.12 0.8 −0.05 0.1

In Figure 1, we depict the ATM (at the money) implied volatility (Figure 1a) and the ATM skew
(Figure 1b) with respect to the option maturity T. It is observed that the term structure of the ATM
volatility skew is a power-law function of time to maturity T. This is a typical feature of rough volatility,
which is observed in the S&P index options market reported by Bayer et al. [11]. The model ATM skew
is approximated by the power-law function with the order of −0.449.
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Figure 1. ATM implied volatility (a) and ATM skew (b) with respect to the option maturity. The model
parameters are listed in Table 1.

Next, based on our approximation formula, we investigate the effects of the model parameters on
option prices.

4.1. Effect of H2

In Figure 2, we plot the skew of the European options with respect to H2. It is explicitly
observed that, as H2 increases, the power-law index increases to be −0.449, −0.21, 0.044 and 0.353
for H2 = 0.1, 0.3, 0.5 and 0.8, respectively. According to [5], an empirical study shows that the index is
typically given by about −0.5, and so, our model is capable of capturing this stylized fact by setting
the rough volatility H2 close to zero.
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Figure 2. ATM skew with respect to H2, where H2 denotes the Hurst index of the rough volatility.
The model parameters are listed in Table 1.
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4.2. Effect of H1

We first check whether the Hurst index H1 of persistent volatility has the ability to capture the
power-law of the ATM skew or not. Figure 3 shows the ATM skew of the European options with
respect to H1. In contrast to the rough volatility index H2 given in Figure 2, the effect of H1 on the
ATM skew is very limited or almost has no effect. On the other hand, Figure 4 shows the volatility
smile with respect to the strike and maturity.
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Figure 3. ATM skew with respect to H1, the Hurst index of volatility persistence. The model parameters
are listed in Table 1.

Figure 4a–d show the volatility smile of T = 0.04, T = 0.08, T = 0.12 and T = 0.2, respectively.
From Figure 4, thanks to the long memory feature of the index H1, the case of H1 = 0.9 exhibits a
slower decrease of the volatility smile amplitude with respect to time to maturity T than the short
memory case H1 = 0.5 (the rough volatility case H1 = 0.4 shows a much faster decrease). This is a
preferable feature, because the observed smile amplitude decreases much more slowly with respect to
maturity than that explained by standard stochastic volatility models.
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Figure 4. Volatility smile with respect to strike and maturity. (a–d) show the volatility smile of T = 0.04,
T = 0.08, T = 0.12, and T = 0.2, respectively. The model parameters are listed in Table 1.
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Summarizing, an important observation at this point is that, by setting H1 > 0.5 and H2 < 0.5,
we can realize both the long memory feature and the roughness of volatility simultaneously by using
our model, which is the major contribution of this paper.

4.3. Effect of ρ1,2 and H1

We examine the impact of ρ1,2 on option prices. Recall that ρ1,2 is the correlation between the
persistent volatility X1

t and the rough volatility X2
t . Note that the ATM skew amplitude comes from

the roughness of σ(X1
t , X2

t ).
From Figure 5, it is observed that, as the correlation decreases, the decrease of the smile amplitude

is decelerated in the case of H1 ≤ 0.5. This means that the effect of the volatility persistence survives
only when the correlation ρ1,2 is negative.
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Figure 5. Volatility smile with respect to correlation ρ1,2. (a–c) show the volatility smile of ρ1,2 = 0.5, 0,
and −0.5, respectively. The maturity is T = 0.16 and the other parameters are listed in Table 1.

4.4. Effect of Correlations

Finally, we examine the effect of the correlations, (ρ1, ρ2, ρ1,2), on the implied volatility surface.
Figures 6a–c and 7a–c, respectively) show the volatility smile (the ATM skew) at T = 0.16 with
respect to ρ1, ρ2 and ρ1,2, respectively. The three correlations vary in the range of −0.5 ≤ ρ1 ≤ 0.6,
−0.6 ≤ ρ2 ≤ 0.5 and −0.9 ≤ ρ1,2 ≤ 0.9, where the resulting correlation matrix is positive definite. The
other parameters are set to be the same as the base case in Table 1.

As we can see form the figures, depending on the correlation values, the volatility surface is
classified into four types: (1) the roughness exists, but the persistence does not; (2) the persistence
exists, but the roughness does not; (3) both the roughness and the persistence exist; and (4) neither the
roughness nor the persistence exist.

Specifically, as ρ1 increases, it is observed from Figures 6a and 7a that the volatility smile is
preserved and the skew becomes greater, i.e., the power-law index of the ATM skew decreases,
respectively. Form Figures 6b and 7b, when the absolute value of ρ2 is small, say |ρ2| < 0.2, it is
observed that the volatility smile is preserved, but the ATM skew disappears, respectively. On the
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other hand, when the absolute value of ρ2 is high, say |ρ2| > 0.7, we can see that the volatility smile
gradually disappears, but the ATM skew becomes greater. Furthermore, from Figures 6c and 7c, as ρ1,2

increases, the ATM skew becomes greater, but the volatility smile disappears, respectively.
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Figure 6. Volatility smile with respect to the correlations. (a–c) show the volatility smile of ρ1, ρ2, and
ρ3, respectively. The maturity is T = 0.16 and the other parameters are listed in Table 1.
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Figure 7. ATM skew with respect to the correlations. (a–c) show the ATM skew of ρ1, ρ2, and ρ3,
respectively. The other parameters are listed in Table 1.
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5. Conclusions

In this study, we extend the fractional volatility model proposed in [4] by introducing another factor
of rough volatility. Through numerical experiments, we demonstrate that, when one of the Hurst
indexes in fractional volatility is larger than 1/2 (volatility persistence) and the other is smaller than
1/2 (rough volatility), our model can explain both the slower decay of the smile amplitude decline and
the term structure of the at-the-money volatility skew observed in the options market, simultaneously.
However, the coexistence of the two stylized facts seems non-trivial. Namely, depending on the
three correlation values between the underlying asset and the factors of rough volatility and volatility
persistence, the implied volatility surface is classified into four types: (1) the roughness exists, but the
persistence does not; (2) the persistence exists, but the roughness does not; (3) both the roughness and
the persistence exist; and (4) neither the roughness nor the persistence exist.

As future work, we plan to apply our model to actual markets. Namely, we develop a fast
algorithm to calibrate our model to the options market, because our model involves many parameters
itself. Furthermore, it is of interest to develop a model under the physical measure P to explain the
volatility persistence and the volatility roughness simultaneously. An asymmetric model between the
persistent volatility and the rough volatility may be of great importance.
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Appendix A. Proof of Lemma 1

For the proof of Lemma 1, we apply the chaos expansion approach proposed by [12]. Namely,
consider the solution (6), i.e.,

St = F(0, t) exp
(∫ t

0
σ(X1

s , X2
s )dWs −

1
2

∫ t

0
σ2(X1

s , X2
s )ds

)
, t ≥ 0. (A1)

Denoting Jt( f ) =
∫ t

0 σ(X1
s , X2

s )dWs and ‖ f ‖2
t =

∫ t
0 σ(X1

s , X2
s )

2dWs, by means of the Hermite
expansion, we have:

St

F(0, t)
− 1 =

∞

∑
n=1

‖σ‖n
t

n!
hn

(
Jt(σ)

‖σ‖t

)
,

where hn(x) denotes the Hermite polynomial of order n. See [12] for details.
Let σ0(t) = f (L1(0, t), L2(0, t)), and define:

S(1)
t = F(0, t) exp

(∫ t

0
σ0(s)dWs −

1
2

∫ t

0
σ2

0 (s)ds
)

, t ≥ 0. (A2)

It then follows that:

St − S(1)
t = F(0, t)

∞

∑
n=1

In(t), (A3)

where:

In(t) =
{
‖σ‖n

t
n!

hn

(
Jt(σ)

‖σ‖t

)
− ‖σ0‖n

t
n!

hn

(
Jt(σ0)

‖σ‖t

)}
.

Our approximation is to truncate the infinite sum at n ≤ 2. As we shall show later,
this approximation corresponds to neglecting a sum of iterated integrals:

I :=
∞

∑
n=1

∫ t

0

∫ tn

0
· · ·

∫ t2

0
σ1(t1)σ2(t2) · · · σn(tn)dWt1 · · ·dWtn
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at n = 3. If the volatilities σn(t) are deterministic functions and ‖σ̄‖t = maxn ‖σn‖t ∈ L2([0, t]) is
sufficiently small, then Proposition 2.2 of [12] assures that the sum of the iterated integrals converges
very quickly.

Before proceeding, since σ0(s) is the deterministic function of s, we can apply the Wiener–Ito
chaos expansion to S(1)

t to obtain

S(1)
t

F(0, t)
= 1 +

∞

∑
n=1

∫ t

0

∫ tn

0
· · ·

∫ t2

0
σ0(t1)σ0(t2) · · · σ0(tn)dWt1 · · ·dWtn .

Hence, we define:

S̃(1)
t = F(0, t)

[
1 +

∫ t

0
σ0(t1)dWt1 +

∫ t

0

∫ t2

0
σ0(t1)σ0(t2)dWt1dWt2

+
∫ t

0

∫ t3

0

∫ t2

0
σ0(t1)σ0(t2)σ0(t3)dWt1 dWt2dWt3

]
, (A4)

as an approximation for S(1)
t .

Summarizing, we approximate the quantity St by:

St = S̃(1)
t + F(0, t)(I1(t) + I2(t)), (A5)

where S̃(1)
t is given by (A4) and In(t) by (A3). In the following, we approximate each In(t) by an

iterated integral with deterministic volatilities.
In this paper, we employ Taylor’s expansion around S(1)

t for this purpose. Recall that
Jt(σ) =

∫ t
0 f (X1

u, X2
u)dWu. It follows that:

Jt(σ) ≈ Jt(σ0) +
2

∑
i=1

∫ t

0
σi

0(s){Xi
s − Li(0, s)}dWs

+
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s){Xi

s − Li(0, s)}{X j
s − Lj(0, s)}dWs (A6)

and

J2
t ( f ) ≈ J2

t (σ0) + 2Jt(σ0)
2

∑
i=1

∫ t

0
σi

0(s){Xi
s − Li(0, s)}dWs, (A7)

where we denote:

σi
0(t) :=

∂

∂xi σ(x1, x2)
∣∣∣
x1=X1

0 ,x2=X2
0

, σ
i,j
0 (t) :=

∂2

∂xi∂xj σ(xi, xj)
∣∣∣
x1=X1

0 ,x2=X2
0

for the sake of notational simplicity.
We next approximate each In(t) by using the approximations (A6) and (A7).

Since I1(t) = Jt( f )− Jt(σ0), from (A6) and (7), we get:

I1(t) ≈
2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs

+
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
λ

Hi
2 (s, u)dWi

u

)(∫ s

0
λ

Hj
2 (s, u)dW j

u

)
dWs. (A8)



Fractal Fract. 2017, 1, 14 13 of 17

Moreover, by applying Ito’s formula, the second term on the left-hand side of (A8) is written as:(∫ s

0
λ

Hi
2 (s, u)dWi

u

)(∫ s

0
λ

Hj
2 (s, u)dW j

u

)
=
∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
λ

Hj
2 (s, r)dW j

r

)
dWi

u

+
∫ s

0
λ

Hj
2 (s, u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dW j

u (A9)

+
∫ s

0
ρi,jλ

Hi
2 (s, u)λ

Hj
2 (s, u)du.

Hence, we have:

I1(t) ≈
2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs

+
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
ρi,jλ

Hi
2 (s, u)λ

Hj
2 (s, u)du

)
dWs

+
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
λ

Hj
2 (s, r)dW j

r

)
dWi

u

)
dWs (A10)

+
1
2

2

∑
i,j=1

∫ t

0
σ

i,j
0 (s)

(∫ s

0
λ

Hj
2 (s, u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dW j

u

)
dWs.

From the definition, we have:

I2(t) =
1
2

{
J2
t (σ)− J2

t (σ0)−
(
‖σ‖2

t − ‖σ‖2
0

)}
.

However, from (A7) and (7), we obtain:

I2(t) ≈
(∫ t

0
σ0(s)dWs

) 2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs −

1
2

{(
‖σ‖2

t − ‖σ‖2
0

)}
=

2

∑
i=1

∫ t

0
σ0(s)

(∫ s

0
σi

0(u)
(∫ u

0
λ

Hi
2 (u, r)dWi

r

)
dWu

)
dWs

+
2

∑
i=1

∫ t

0
σi

0(s)
(∫ s

0
σ0(u)dWu

)(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs (A11)

+
2

∑
i=1

∫ t

0
σi

0(s)σ0(s)
(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
ds− 1

2

{(
‖σ‖2

t − ‖σ‖2
0

)}
.

Note that, by Ito’s formula, the second and fourth terms in (A11) are written by:

∫ t

0
σi

0(s)
(∫ s

0
σ0(u)dWu

)(∫ s

0
λ

Hi
2 (s, u)dWi

u

)
dWs

=
∫ t

0
σi

0(s)
(∫ s

0
σ0(u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dWu

)
dWs

+
∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
σ0(r)dWr

)
dWi

u

)
dWs (A12)

+
∫ t

0
σi

0(s)
(∫ s

0
ρiλ

Hi
2 (s, u)σ0(u)du

)
dWs



Fractal Fract. 2017, 1, 14 14 of 17

and:

‖σ‖2
t − ‖σ‖2

0 ≈ 2
2

∑
i=1

∫ t

0
σ0(s)σi

0(s)
(

Xi
s − Li(0, s)

)
ds = 2

2

∑
i=1

∫ t

0
σi

0(s)σ0(s)
(∫ s

0
λHi

2 (s, u)dWi
u

)
ds, (A13)

respectively. Hence, inserting (A12) and (A13) into (A11), we get:

I2(t) ≈
2

∑
i=1

{∫ t

0
σ0(s)

(∫ s

0
σi

0(u)
(∫ u

0
λ

Hi
2 (u, r)dWi

r

)
dWu

)
dWs

+
∫ t

0
σi

0(s)
(∫ s

0
σ0(u)

(∫ u

0
λ

Hi
2 (s, r)dWi

r

)
dWu

)
dWs

+
∫ t

0
σi

0(s)
(∫ s

0
λ

Hi
2 (s, u)

(∫ u

0
σ0(r)dWr

)
dWi

u

)
dWs (A14)

+
∫ t

0
σi

0(s)
(∫ s

0
ρiλ

Hi
2 (s, u)σ0(u)du

)
dWs

}
.

Finally, inserting (A4), (A10) and (A14) into (A5), we obtain the desired result.

Appendix B. Derivation of the Approximated Density Function

In this Appendix, we obtain an approximation formula for the density function of Xt =
St

F(0,t) − 1.
To this end, note that (7) is a special case of Equation (2) in [10]. Hence, applying Proposition 3.2 in [10],
the following result can be obtained.

First, note that A1(t) in Lemma 1 follows a normal distribution with zero mean and variance
Σt =

∫ t
0 p2

1(s)ds. Then, by applying the following result, an approximation of the density function of
Xt can be obtained. The proof is found in [12] under a general setting.

Lemma A1. Let us denote the density function of Xt by fXt(x). Then, the probability density function of Xt is
approximated as:

fXt(x) = n (x; 0, Σt)−
∂

∂x
{E[a2(t)|a1(t) = x]n (x; 0, Σt)}

− ∂

∂x
{E[a3(t)|a1(t) = x]n (x; 0, Σt)} (A15)

+
1
2

∂2

∂x2

{
E[a2(t)2|a1(t) = x]n (x; 0, Σt)

}
+ · · · .

where n(x; a, b) denotes the normal density function with mean a and variance b.

The conditional expectations in Lemma A1 can be evaluated explicitly by using the formulas
provided in Appendix C. Namely, we obtain:

E[A2(T)|A1(T) = x] = q1(T)

(
x2

Σ2
T
− 1

ΣT

)
,

E[A3(T)|A1(T) = x] = q2(T)

(
x3

Σ3
T
− 3x

Σ2
T

)
,

E[A2
2(T)|A1(T) = x] = q3(T)

(
x4

Σ4
T
− 6x2

Σ3
T
+

3
Σ2

T

)
+ q4(T)

(
x2

Σ2
T
− 1

ΣT

)
+ q5(T),

where:

q1(T) =
∫ T

0
σ0(t)p1(t)

(∫ t

0
σ0(s)p1(s)ds

)
dt +

2

∑
i=1

∫ T

0
σi

0(t)p1(t)
(∫ t

0
ρiλ

Hi
2 (t, s)p1(s)ds

)
dt,
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q2(T) = ∑6
i=1 q2,i(T), q3(T) = q1(T)2, q4(T) = ∑3

i=1 q4,i(T) and q5(T) = ∑3
i=1 q5,i(T). Here, we define:

q2,1(T) =
∫ T

0
σ0(t)p1(t)

(∫ t

0
σ0(s)p1(s)

(∫ s

0
σ0(u)p1(u)du

)
ds
)

dt,

q2,2(T) =
1
2

2

∑
i,j=1

∫ T

0
σ

i,j
0 (t)p1(t)

(∫ t

0
ρiλ

Hi
2 (t, s)p1(s)

(∫ s

0
ρjλ

Hj
2 (t, u)p1(u)du

)
ds
)

dt,

q2,3(t) =
1
2

2

∑
i,j=1

∫ T

0
σ

i,j
0 (t)p1(t)

(∫ t

0
ρjλ

Hj
2 (t, s)p1(s)

(∫ s

0
ρiλ

Hi
2 (t, u)p1(u)du

)
ds
)

dt,

q2,4(T) =
2

∑
i=1

∫ T

0
σ0(t)p1(t)

(∫ t

0
σi

0(s)p1(s)
(∫ s

0
ρiλ

Hi
2 (s, u)p1(u)du

)
ds
)

dt,

q2,5(T) =
2

∑
i=1

∫ T

0
σi

0(t)p1(t)
(∫ t

0
σ0(s)p1(s)

(∫ s

0
ρiλ

Hi
2 (t, u)p1(u)du

)
ds
)

dt,

q2,6(T) =
2

∑
i=1

∫ T

0
σi

0(t)p1(t)
(∫ t

0
ρiλ

Hi
2 (t, s)p1(s)

(∫ s

0
σ0(u)p1(u)du

)
ds
)

dt,

q4,1(T) = 2
∫ T

0
σ0(t)p1(t)

(∫ t

0
σ0(s)p1(s)

(∫ s

0
f 2
0 (u)du

)
ds
)

dt

+ 2
∫ T

0
σ0(t)p1(t)

(∫ t

0
σ2

0 (s)
(∫ s

0
σ0(u)p1(u)du

)
ds
)

dt

+
∫ T

0
σ2

0 (t)
(∫ t

0
σ0(s)p1(s)ds

)2
dt,

q4,2(T) =
2

∑
i,j=1

{∫ T

0
σi

0(t)p1(t)
(∫ t

0
σ

j
0(s)p1(s)

(∫ s

0
ρi,jλ

Hj
2 (s, u)λHi

2 (t, u)du
)

ds
)

dt

+
∫ T

0
σ

j
0(t)p1(t)

(∫ t

0
p1(s)σi

0(s)
(∫ s

0
ρi,jλ

Hj
2 (t, u)λHi

2 (s, u)du
)

ds
)

dt

+
∫ T

0
σi

0(t)p1(t)
(∫ t

0
ρiλ

Hi
2 (t, s)σj

0(s)
(∫ s

0
ρjλ

Hj
2 (s, u)p1(u)du

)
ds
)

dt

+
∫ T

0
σ

j
0(t)p1(t)

(∫ t

0
ρjσ

i
0(s)λ

Hj
2 (t, s)

(∫ s

0
ρiλ

Hi
2 (s, u)p1(u)du

)
ds
)

dt

+
∫ T

0
σ

j
0(t)σ

i
0(t)

(∫ t

0
ρiλ

Hi
2 (t, s)p1(s)ds

)(∫ t

0
ρjλ

Hj
2 (t, s)p1(s)ds

)
dt
}

,

q4,3(T) = 2
2

∑
i=1

{∫ T

0
σ0(t)p1(t)

(∫ t

0
σi

0(s)p1(s)
(∫ s

0
ρiλ

Hi
2 (s, u)σ0(u)du

)
ds
)

dt

+
∫ T

0
σi

0(t)p1(t)
(∫ t

0
p1(s)σ0(s)

(∫ s

0
ρiλ

Hi
2 (t, u)σ0(u)du

)
ds
)

dt

+
∫ T

0
σ0(t)p1(t)

(∫ t

0
σ0(s)σi

0(s)
(∫ s

0
ρiλ

Hi
2 (s, u)p1(u)du

)
ds
)

dt

+
∫ T

0
σi

0(t)p1(t)
(∫ t

0
ρiσ0(s)λ

Hi
2 (t, s)

(∫ s

0
σ0(u)p1(u)du

)
ds
)

dt

+
∫ T

0
σi

0(t)σ0(t)
(∫ t

0
σ0(s)p1(s)ds

)(∫ t

0
ρiλ

Hi
2 (t, s)p1(s)ds

)
dt
}

,
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q5,1(T) =
∫ T

0
σ2

0 (t)
(∫ t

0
σ2

0 (u)du
)

dt,

q5,2(T) =
2

∑
i,j=1

∫ T

0
σ

j
0(t)σ

i
0(t)

(∫ t

0
ρi,jλ

Hj
2 (t, u)λHi

2 (t, u)du
)

dt,

and

q5,3(T) = 2
2

∑
i=1

∫ T

0
σi

0(t)σ0(t)
(∫ t

0
ρiλ

Hi
2 (t, u)σ0(u)du

)
dt.

By substituting the conditional expectations into (A15), the approximate density function,
denoted by f̃Xt(x), can be expressed as:

f̃Xt(x) =
1
2

n (x; 0, Σt)

[
q3(t)

Σ3
t

h6

(
x√
Σt

)
+

(2q2(t) + q4(t))
Σ2

t
h4

(
x√
Σt

)
(A16)

+
2q1(t)(√

Σt
)3 h3

(
x√
Σt

)
+

q5(t)
Σt

h2

(
x√
Σt

)
+ 2
]

,

where hn(x) denotes the Hermite polynomial of order n:

hn(x) = (−1)nex2/2 dn

dxn e−x2/2, n = 1, 2, . . . ,

with h0(x) = 1.

Appendix C. Formulas for Conditional Expectations

Let Wi
t , i = 1, . . . , 5, be the standard Brownian motions with correlation dWi

t dW j
t = ρi,jdt, and

let yi(x), i = 1, . . . , 5, be deterministic functions of time. Moreover, let Σ :=
∫ T

0 y2
1(t)dt, and denote

JT(y1) =
∫ T

0 y1(t)dW1
t . Then, the following formulas are well known: First,

E
[ ∫ T

0
y3(t)

(∫ t

0
y2(s)dW2

s

)
dW3

t

∣∣∣∣JT(y1) = x
]
= v1

(
x2

Σ2 −
1
Σ

)
,

where:

v1 =
∫ T

0
ρ1,3y3(t)y1(t)

(∫ t

0
ρ1,2y2(s)y1(s)ds

)
dt.

Next,

E
[ ∫ T

0
y4(t)

(∫ t

0
y3(s)

(∫ s

0
y2(u)dW2

u

)
dW3

s

)
dW4

t

∣∣∣∣JT(y1) = x
]
= v2

(
x3

Σ3 −
3x
Σ2

)
,

where:

v2 =
∫ T

0
ρ1,4y4(t)y1(t)

(∫ t

0
ρ1,3y3(s)y1(s)

(∫ s

0
ρ1,2y2(u)y1(u)du

)
ds
)

dt.

Finally,

E
[ (∫ T

0
y3(t)

(∫ t

0
y2(s)dW2

s

)
dW3

t

)(∫ T

0
y5(t)

(∫ t

0
y4(s)dW2

s

)
dW3

t

) ∣∣∣∣JT(y1) = x
]

= v3

(
x4

Σ4 −
6x2

Σ3 −
3

Σ2

)
+ v4

(
x2

Σ2 −
1
Σ

)
+ v5,
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where:

v3 =

(∫ T

0
ρ1,3y3(t)y1(t)

(∫ t

0
ρ1,2y2(t)y1(t)ds

)
dt
)(∫ T

0
ρ1,5y5(t)y1(t)

(∫ t

0
ρ1,4y4(t)y1(t)ds

)
dt
)

,

v4 =
∫ T

0
ρ1,3y3(t)y1(t)

(∫ t

0
ρ1,5y5(s)y1(s)

(∫ s

0
ρ2,4y4(u)y2(u)du

)
ds
)

dt

+
∫ T

0
ρ1,5y5(t)y1(t)

(∫ t

0
ρ1,3y1(s)y3(s)

(∫ s

0
ρ2,4y4(u)y2(u)du

)
ds
)

dt

+
∫ T

0
ρ1,3y3(t)y1(t)

(∫ t

0
ρ2,5y2(s)y5(s)

(∫ s

0
ρ1,4y4(u)y1(u)du

)
ds
)

dt

+
∫ T

0
ρ1,5y5(t)y1(t)

(∫ t

0
ρ3,4y3(s)y4(s)

(∫ s

0
ρ1,2y2(u)y1(u)du

)
ds
)

dt

+

{ ∫ T

0
ρ3,5y5(t)y3(t)

(∫ t

0
ρ1,2y2(s)y1(s)ds

)(∫ t

0
ρ1,4y4(s)y1(s)ds

)
dt
}

,

v5 =
∫ T

0
ρ3,5y5(t)y3(t)

(∫ t

0
ρ2,4y4(u)y2(u)du

)
dt.
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