
fractal and fractional

Article

Fractional Definite Integral

Manuel Ortigueira 1,2,* and José Machado 3

1 UNINOVA and DEE of Faculdade de Ciências e Tecnologia da UNL, Campus da FCT da UNL,
Quinta da Torre, 2829–516 Caparica, Portugal

2 INESC-ID, Rua Alves Redol, 9, 1000–029 Lisboa, Portugal
3 Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, R. Dr. António

Bernardino de Almeida, 431, 4249–015 Porto, Portugal; jtm@isep.ipp.pt
* Correspondence: mdo@fct.unl.pt; Tel.: +351-938610658

Received: 14 June 2017; Accepted: 30 June 2017; Published: 2 July 2017

Abstract: This paper proposes the definition of fractional definite integral and analyses the
corresponding fundamental theorem of fractional calculus. In this context, we studied the relevant
properties of the fractional derivatives that lead to such a definition. Finally, integrals on R2 and R3

are also proposed.
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1. Introduction

Fractional Calculus has evolved considerably during the last 30 years and has become popular
in many scientific and technical areas [1–4]. The progress in applications vis-a-vis theoretical
developments motivated the re-evaluation of past formulations. The concepts of fractional derivative
(FD) and fractional integral (FI) assume various forms not always equivalent and also not compatible
with each other. Notwithstanding this development a singular situation exists, since there is no
definition of “fractional definite integral” [5,6]. Even more strangely, it seems that no-one has the goal
to propose such a adefinition [7,8]. In fact, the term FI is used for an indefinite integral, which, as we
will see, stands for a primitivation operation.

A review of the literature reveals two indirect attempts to formulate the “fractional generalization
of the fundamental theorem of calculus” [9,10]. However, in [9] several formulations of the theorem
were described, one for each derivative; the approach followed in [10] was more directed into
application but also did not address the definite integral definition. None of those formulations
introduced the notion of a definite integral that will be the topic of this paper. Starting from a revision
of classic results, an approach based on a generalisation of the Barrow formula is used to propose the
“definite fractional integral” and, from it, to formulate the “fractional fundamental theorem of calculus”.
These developments allowed the definition of double and triple integrals on rectangular spaces.

The paper is organised as follows. In Section 2, we introduce the “definite fractional integral”
and the corresponding “fractional fundamental theorem of calculus”. For this purpose we study the
admissibility of fractional derivatives and we find those that are suitable for achieving the proposed
integral. In Section 3 the definite integrals on R, R2, and R3 are presented. Finally, in Section 4 the
conclusions are drawn.
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2. The Definite Fractional Integrals

2.1. On the One-Sided Integer Order Derivatives and Their Inverses

Let f be a function defined on a closed interval [c, d] ∈ R where f is continuous. Then, f is said to
have a lefthand derivative at any point of the closed interval if

f ′l (x) = Dl f (x) = lim
h→0+

f (x)− f (x− h)
h

(1)

exists as a finite value or ±∞. The righthand derivative is defined similarly by the expression

f ′r(x) = Dr f (x) = lim
h→0+

f (x + h)− f (x)
h

. (2)

If both derivatives exist at x = x0 and are equal, then we say that f is differentiable at that point. In the
following we work preferably with the left derivative and will omit the subscript “l” unless it is needed
to clarify the formulae.

Proceeding as in [11] it is possible to obtain an operator, J, that is the inverse of the derivative:

J f (x) = lim
h→0+

h
b(x−c)/hc

∑
n=0

f (x− nh), (3)

where b(x− c)/hc is the integer part of (x− c)/h. The summation in (3) is the so-called Riemann sum.
Using (1) in (3) and vice-versa it is straightforward to show that

JD f (x) = DJ f (x). (4)

This means that J is simultaneously the left and right inverse of D.
As the derivative of a constant is zero, there are many right inverses, P, of the derivative having

the form P f (x) = D−1 f (x) + C, C ∈ R. In fact, DP f (x) = f (x), but PD f (x) = C. These inverses are
called primitives of f (x). The particular primitive P = J = D−1 can be called “proper primitive” [12].
Here, it will be named anti-derivative and when needed a subscript will be inserted to indicate that it
is a left operator Dl .

On the other hand, if we represent J by D−1, the Formulaes (2) and (3) can be joined in one:

f (±1)(x) = D±1 f (x) = lim
h→0

b(x−c)/hc
∑

n=0
(−1)n (∓)n

n! f (x− nh)

h±1 , (5)

where (a)n = a(a + 1)(a + 2) · · · (a + n− 1), n ∈ N, with (a)0 = 1, is the Pochhammer symbol for the
rising factorial. In a similar way, the right hand derivative and inverse can be formulated as

f (±1)
r (x) = D±1

r f (x) = − lim
h→0

b(d−x)/hc
∑

n=0
(−1)n (∓1)n

n! f (x + nh)

h±1 . (6)

This unified formulation opens a new perspective into the generalisation for fractional derivatives.

2.2. Order 1 Integral

There are several equivalent definitions of integral of a function in [a, b], a ≥ c, b ≤ d (in particular
c can be −∞ and d can be +∞), but there is no doubt about the meaning of

∫ b
a f (x)dx and its

computation. Moreover,
∫ b

a f (x)dx enjoys relevant properties such as follows.
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Let f (x) as above and F(x) be a function defined, for all x ∈ [a, b], by

F(x) =
∫ x

a
f (t)dt. (7)

Then, F(x) is continuous on [a, b], differentiable on the open interval (a, b), and

F′(x) = DF(x) = f (x), (8)

for all x ∈ (a, b). This constitutes the fundamental theorem of integral calculus and has as important
consequence the well-known Barrow formula

∫ b

a
f (x)dx = F(b)− F(a). (9)

These results show that the function F(x) is the anti-derivative and can be expressed by (4) giving

∫ b

a
f (x)dx = f (−1)(b)− f (−1)(a). (10)

If the upper limit is variable relation (10) gives∫ x

a
f (x)dx = f (−1)(x)− f (−1)(a), (11)

establishing the connection and simultaneously the difference between the anti-derivative and
the integral.

Also, for any c ∈ [a, b], we have

∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx = f (−1)(c)− f (−1)(a) + f (−1)(b)− f (−1)(c). (12)

These expressions were presented in terms of the left derivative and anti-derivative. The corresponding
right operators are readily obtained. However, in an integer order formulation, they give the same
result in all the points where f (x) is a continuous function.

2.3. Definite Fractional Integral

According to the above discussion, it is not clear how to obtain a generalisation of the
definite integral. However, expression (10) suggests a shortcut for the solution: introduce it using
a generalization of the Barrow formula.

Let f (x), x ∈ R, such that exist their left and right derivatives of any order. Denote the left and
right anti-derivatives by f (−α)

lr (x) with α > 0.

Definition 1. We define α-order fractional integral (FI) of f (x) over the interval (a, b) through the fractional
Barrow formula

Iα
lr f (a, b) = −

∫ b

a
f (x)dxα = f (−α)

lr (b)− f (−α)
lr (a), (13)

In coherence with the integer order result, this FI must lead to a fractional formulation of the
fundamental theorem of integral calculus. Making variable the upper limit, b = x ∈ R, and putting
f (x) = Dα

lrg(x) in (13) it comes

Iα
lrDα

lrg(a, x) = −
∫ x

a
Dα

lrg(t)dtα = D−α
lr Dα

lrg(x)− D−α
lr Dα

lrg(a),
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but it is expected to obtain

Iα
lrDα

lrg(a, x) = −
∫ x

a
Dα

lrg(t)dtα = g(x)− g(a). (14)

This means that we should have

D−α
lr Dα

lrg(x) = g(x). (15)

On the other hand, according to (8), the right hand side in the equation,

Dα
lr f [Iα

lr f (a, x)] = Dα
lr

[
f (−α)
lr (x)− f (−α)

lr (a)
]

, (16)

should be equal to f (x). This implies that

Dα
lr

[
f (−α)
lr (x)

]
= f (x) (17)

and that the derivative of a constant is zero

Dα
lr

[
f (−α)
lr (a)

]
= 0. (18)

These results show that not all the FD can be used to generalise the notion of FI. For now, let us
assume that the derivatives to be adopted verify (15), (17), and (18).

In this case, (12) can be readily generalised to

−
∫ b

a
f (x)dxα = −

∫ c

a
f (x)dxα +−

∫ b

c
f (x)dxα = f (−α)(c)− f (−α)(a) + f (−α)(b)− f (−α)(c). (19)

This definite integral makes sense if suitable FD are used. Therefore, the admissible derivatives
have to agree with relations (15) to (19). In the next section, the most important derivatives are analysed
to establish their admissibility.

2.4. Which Fractional Derivative?

In a previous paper we answered to the question “What is a fractional derivative?” [13] using
two criteria as guidelines for deciding if a given operator is a FD. The wide sense criterion is as follows.

An operator is considered as a FD under 1P criterion if it enjoys the properties:

1P1 Linearity
1P2 Identity
1P3 Backward compatibility
1P4 The index law holds for negative orders
1P5 Generalised Leibniz rule

The index law property can be modified to include positive orders. This led to the strict sense
criterion. Therefore, criterion 2P keeps four conditions and 1P4 is modified to:

2P4 The index law
DαDβ f (x) = Dα+β f (x) (20)

holds for any real α and β. The difference between the two criteria lies in the validity of the index law
for positive values only, or for any real order.

Let us consider relation (20) again and the case α > 0 with β = −α. We conclude that for each
derivative operator, Dα, there is an anti-derivative, D−α. As in the classic framework we can say that,
given a function, it can have an infinite number of primitives, but only one of them does not depend
on arbitrary constants.
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2.5. The Riemann-Liouville and Caputo Derivatives

For the RL and C derivatives the negative order operator is given by the Riemann-Liouville fractional
integral (RL-FI) that can be introduced as follows. Let [a, b] (−∞ < a < b < ∞) be an interval on the
real axis R. The left-sided RL-FI, Iα

a+ f , of order α ∈ R+ is given by [6]

RLIα
a+ f (x) =

1
Γ(α)

∫ x

a

f (t)dt
(x− t)1−α

, x > a, α > 0. (21)

The left Riemann-Liouville fractional derivative (RL-FD), Dα
a+ f , of order α ∈ R+

0 is defined as

RLDα
a+ f (x) =

(
d
dt

)n
In−α
a+ f (x)

=
1

Γ(n− α)

(
d

dx

)n ∫ x

a

f (t)dt
(x− t)α−n+1 , n = bαc+ 1, x > a. (22)

The C-FD, CDα
a+ f (x), of order α ∈ R+ on [a, b] is introduced via the above RL-FD as [5]:

CDα
a+ f (x) := RLDα

a+

[
y(x)−

n−1

∑
k=0

f (k)(a)
k!

(x− a)k

]
. (23)

With the RL-FI formula above introduced, we verify [5,13] that:

• The RL-FD is an inverse operator of the left RL-FI

RLDα
a+

RLIα
a+ f (x) = f (x) (24)

• The C-FD is also an inverse operator of the left RL-FI

CDα
a+

RLIα
a+ f (x) = f (x). (25)

Therefore, the RL-FI is the right inverse of the RL and C derivatives. The RL-FI is not a left inverse,
because we have [5]:

• If f (x) ∈ L1(a, b) and fn−α(x) = In−α
a+ f (x) ∈ ACn[a, b], then

RLIα
a+

RLDα
a+ f (x) = f (x)−

n

∑
j=1

f (α−j)(a)
Γ(α− j + 1)

(x− a)α−j (26)

• If f (x) ∈ Cn[a, b] or f (x) ∈ ACn[a, b], then

RLIα
a+

CDα
a+ f (x) = f (x)−

n−1

∑
k=0

f (k)(a)
k!

(x− a)k (27)

In order to study the admissiblity of RL and C derivatives we compare their properties with those
required in the previous sub-section, namely conditions (15) to (18).

The RL derivative is not acceptable because it does not give the result zero for the derivative of a
constant. On the other hand, (26) is not suitable also since it introduces terms that do not verify (19).
Concerning the C derivative, it is acceptable from the point of view of (25) and gives zero for the
derivative of a constant, but (27) is only acceptable if α ≤ 1. Also, it creates difficulties when trying to
use (19), since we must have

RLIα
a+

CDα
a+ f (b) = RLIα

a+
CDα

a+ f (c) + RLIα
c+

CDα
c+ f (b),
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that is true if, and only if the following equation is valid

f (b)−
n−1

∑
k=0

f (k)(a)
k!

(b− a)k =

f (c)−
n−1

∑
k=0

f (k)(a)
k!

(c− a)k + f (b)−
n−1

∑
k=0

f (k)(c)
k!

(b− c)k.

However, in general, this relation is not valid.

2.6. Grünwald-Letnikov Derivatives

In a recent paper [14], we considered the problem of selecting derivatives suitable for generalizing
standard laws of physics and results while maintaining fully compatibility with them. It was shown
that the Grünwald-Letnikov (GL) derivative verifies the above strict sense criterion and is fully
compatible with the classic laws and tools of Physics. Here it is important to study the GL derivative
from the point of view of the fractional integral introduced in Section 2.3.

Let f (x) be a function defined on R. We introduce the left (forward) FD by means of the fractional
incremental ratio

Dα
l f (x) = lim

h→0

∞
∑

n=0
(−1)n (−α)n

n! f (x− nh)

hα
, (28)

where h > 0. Relation (28) expresses the called left GL-FD [6,15,16]. Without intending to explore
existence problems (see [16]) we can say that f (x) must decrease to zero as x goes to −∞. It is
interesting to remark that (28) generalises (5) and this corresponds to making α = ±1.

The GL derivative enjoys relevant characteristics, namely the index law (20) [15,16]. This means
that given an FD of order α > 0, there is an FD, of negative order, that we will call “anti-derivative”
and verifying

DαD−α f (x) = D−αDα f (x) = f (x). (29)

It can be shown [14] that the FD of the constant function is identically null. The corresponding
righthand (backward) GL derivative is defined by

Dα
r f (x) = e−iπα lim

h→0

∞
∑

n=0
(−1)n (−α)n

n! f (x + nh)

hα
. (30)

Contrarily to the above situation, here a suitable function, f (x), must decrease to zero when x → +∞.
When dealing with space derivative we do not need to impose causality, because we can move in all
the directions in the 3D space. Therefore, the factor e−iπα can be removed. This allows us to write a
unified formula joining the lefthand and righthand derivatives

Dα
lr f (x) := lim

h→0

∞
∑

n=0
(−1)n (−α)n

n! f (x± nh)

hα
. (31)

Attending to (29) and to the fact that the GL derivative of a constant is zero, we arrive to
the conclusion that the GL derivative is suitable for computing the definite integral introduced in
Section 2.3.

2.7. Liouville Derivatives

The name “Liouville derivative” is frequently attached to the RL derivative when the integration
domain is R [6]. This derivative has the inconvenience of being divergent when the function is constant.
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Another alternative is given by the so called Liouville-Caputo derivative [1,17,18] that is also similar to
the C derivative but is also defined on R. This derivative poses strong requirements to the integrand
function, since this must have the nth order derivative with n ≥ α. A third alternative was proposed by
Liouville in the 19th century and can be obtained from the system interpretation of the GL derivative.
Let h(x), x ∈ R be the impulse response of the GL derivative [15]

h(x) = δ(α)(x) =
x−α−1

Γ(−α)
u(x), (32)

where u(x) is the Heaviside unit step. In a linear system perspective, when the input is a given
function, f (x), the output is a α-order derivative

Dα
l f (x) =

1
Γ(−α)

∫ ∞

0
f (x− τ)τ−α−1dτ, (33)

that generalises the well known result f ′(x) =
∫ ∞
−∞ f (x − y)δ′(y)dy,and represents an integral

formulation of the left side FD. For α > 0, the above integral is singular. However, it can be regularised,
leading to what we will call the left Liouville (L) derivative, defined as follows:

Definition 2. Liouville derivative

Dα
l f (x) =

1
Γ(−α)

∫ ∞

0

[
f (x− τ)− u(α)

N

∑
n=0

(−1)n f (n)(x)
n!

τm

]
τ−α−1dτ, (34)

where N is the integer part of α, so that α− 1 < N ≤ α, N ∈ N0.

This derivative verifies also relations (29). The equivalence of GL and L derivatives is valid for at
least functions with Laplace transform, although we can assume it for a broader class of functions and
use them interchangeably.
Joining the left and right Liouville derivatives, it becomes

Dα
lr f (x) =

1
Γ(−α)

∫ ∞

0

[
f (x± τ)− u(α)

N

∑
n=0

(−1)n f (n)(x)
n!

τm

]
τ−α−1dτ. (35)

3. Definite Fractional Integrals

Using the Liouville anti-derivative expression we can write

Iα
lr f (a, b) =

1
Γ(α)

∫ ∞

0
[ f (b± x)− f (a± x)] dxα. (36)

From the standard (integer order) Barrow formula
∫ b

a f ′(x)dx = f (b) − f (a) we obtain
the expression

Iα
lr f (a, b) =

1
Γ(α)

∫ ∞

0

∫ b

a
f ′(y± x)dydxα. (37)

Using (37) it comes

Iα
lr f (a, b) =

∫ b

a
f (−α+1)
lr (x)dx. (38)

because the GL and Liouville derivatives yield the result 0 for the derivative of the constant function.
This formula reduces the α-order integral to one integer order.
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3.1. Integrals in R2 and R3

The above result can be enlarged for double and triple integrals. This will be done next for
rectangular domains, meaning that in R2 the domain is obtained by joining rectangles so that
the limiting line is made of segments parallel to one of the coordinated axes. Similarly in R3 the
domain is made of parallelepipeds with a boundary constituted by rectangles parallel to one of the
coordinated planes.

Let us assume that the function f is dependent of a variable, x1, and a parameter, x2, that is kept
fixed, f (x1, x2). Consider the parametric integral

Iα
lr f (a1, b1, x2) = −

∫ b1

a1

f (x1, x2)dxα1
1 = f (−α1)

lr (b1, x2)− f (−α1)
lr (a1, x2), (39)

and similarly, fixing x1, another one

Iα
lr f (x1, a2, b2) = −

∫ b2

a2

f (x1, x2)dxα2
2 = f (−α2)

lr (x1, b2)− f (−α2)
lr (x1, a2). (40)

This leads to the following definition

Definition 3. The FI on a rectangular region (a1, b1)× (a2, b2) is given by

Iα
lr f (a1, b1, a2, b2) = −

∫ b1

a1

−
∫ b2

a2

f (x1, x2)dxα1
1 dxα2

2 , (41)

where each integration is performed by the fractional Barrow formula.

If the orders of the FD are equal (i.e., α1 = α2 = α) we put xα
1 xα

2 = Sα to get then

Iα
lr f (a1, b1, a2, b2) = −

∫ ∫
S

f (x1, x2)dSα, (42)

The integral in R3 is obtained in a similar way.

Definition 4. The FI in R3 is defined by

Iα
lr f (a1, b1, a2, b2, a3, b3) = −

∫ b1

a1

−
∫ b2

a2

−
∫ b3

a3

f (x1, x2, x3)dxα1
1 dxα2

2 dxα3
3 , (43)

where each integration is performed by means of the fractional Barrow formula.

If the derivative orders are equal (i.e., α1 = α2 = α3 = α), then we get

Iα
lr f (a1, b1, a2, b2, a3, b3) = −

∫
V

f (x1, x2, x3)dVα, (44)

where we adopt the notation Vα = xα
1 xα

2 xα
3 .

4. Conclusions

In this paper, a definition of fractional definite integral was introduced and the corresponding
fundamental theorem of fractional calculus formulated. For this purpose, the mostly used fractional
derivatives were studied and a compatibility with the definite fractional integral was saught. It was
shown that the Grünwald-Letnikov and Liouville derivatives were suitable for such a definition.
Finally, integrals on R2 and R3 were also proposed.
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