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Abstract:



In this work, we propose a fractional complex permittivity model of dielectric media with memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients, is replaced with the corresponding differential equation by applying Caputo’s fractional derivative. We observe how fractional order depends on the frequency band of excitation energy in accordance with the 2nd Principle of Thermodynamics. The model obtained is validated with respect to the measurements made on the biological tissues and in particular on the human aorta.
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1. Introduction


The frequency domain response function of a media dielectric, well-known how complex permittivity, [image: there is no content], one obtains from spectral measurement of electrical displacement field [image: there is no content] respect to applied electric field [image: there is no content]:


[image: there is no content]



(1)




with [image: there is no content], [image: there is no content], and f being frequency.



The polarization does not follow instantaneous changes of the applied electric field, so the dielectric material is in a state of non-equilibrium. Dielectric relaxation is a process through which dielectric media reach the state of equilibrium, with one or more time constants in relation to corresponding polarization phenomena. In biological tissues, there are five independent polarization mechanisms corresponding to five dispersion spectrum [1]. Debye [2] has proposed the following complex permittivity to take into account dielectric relaxation corresponding to a linear differential equation of the first order, with constant time [image: there is no content]:


[image: there is no content]



(2)




where [image: there is no content] is the initial permittivity (high frequency), and [image: there is no content] is the static permittivity. Several complex permittivity models have been proposed, which approximate the experimental values sufficiently with respect to a given frequency band and for particular dielectrics. In the following order, the Cole–Cole model [3,4], the Cole–Davidson model [5], and the Havriliak–Negami model [6] are presented:


[image: there is no content]



(3)




with [image: there is no content]


[image: there is no content]



(4)




with [image: there is no content]


[image: there is no content]



(5)







With reference to the measures of complex permittivity, carried out in [7,8,9,10] on the biological tissues, the Cole–Cole model has been proposed to four dispersion spectrum from 10 to 20 GHz:


[image: there is no content]



(6)




where [image: there is no content] is electric permittivity of free space, [image: there is no content] are time constants and [image: there is no content] is conductivity in direct current. In these models (3)–(6), the fractional nature of complex permittivity, due to the presence of the [image: there is no content] parameter how power the time’s constant [image: there is no content], is evident. From the thermodynamic point of view, the dielectric relaxation phenomenon has been extensively treated [11,12,13,14]. In these works, the use of internal variables called phenomenological coefficients led to Debye’s generalized equation with two constants of time:


[image: there is no content]



(7)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], are algebraic functions of the phenomenological coefficients. Putting [image: there is no content] in (7), one obtains Debye’s equation. The purpose of this paper is to apply fractional calculus to the phenomenological Equation (7) by obtaining a model of complex permittivity in accordance with experimental values. There are different definitions of fractional derivatives whose application depends on the physical meaning that they represent [15,16,17,18,19,20]. In [21], Caputo and Fabrizio proposed a direct model of complex permittivity that generalizes the above-mentioned models (3)–(6), using Caputo’s fractional derivative. In the fractional model proposed here, it is shown that the possible values of the fractional order [image: there is no content] must be in agreement with those that can assume the phenomenological coefficients in accordance with the 2nd principle of thermodynamics. Compared to [21], the fractional model here obtained derives from Debye’s generalized Equation (7). In Section 2, Caputo’s fractional derivative is applied to Debye’s generalized phenomenological equation. In Section 3, by applying the fractional transformation of Laplace, the fractional model of complex permittivity is obtained. In Section 4, it is shown that the solution obtained by solving a system of four nonlinear equations, whose unknowns are the phenomenological coefficients, conforms with the 2nd principle of thermodynamics, and the fractional model proposed here is valid in accordance with the experimental results.




2. Fractional Generalized Debye’s Equation


In [11,14], dielectric and magnetic relaxation phenomena are discussed with the aid of the general theory of non-equilibrium thermodynamics. It was shown that a vectorial internal variable, which influences the polarization, gives rise to dielectric relaxation phenomena. If one makes linear this theory and if one neglects cross effects due to electric conduction, heat conduction and viscosity on electric relaxation, the following relaxation equation may be derived:


[image: there is no content]



(8)




where


[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)






[image: there is no content]



(12)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are the phenomenological coefficients and [image: there is no content], [image: there is no content] are scalar constants.



Replacing the constitutive equation of P:


[image: there is no content]



(13)




in Equation (8), with [image: there is no content], we obtain:


[image: there is no content]



(14)







Putting


[image: there is no content]



(15)






[image: there is no content]



(16)






[image: there is no content]



(17)






[image: there is no content]



(18)






[image: there is no content]



(19)




one obtains Equation (7) in the form:


[image: there is no content]



(20)




where


 A0=χED(0)ϵ0χ(2),A1=χED(1)ϵ0χ(2),



(21)






C0=χDE(0)χ(2),C1=χDE(1)χ(2).



(22)







By applying Caputo’s fractional derivative, one obtains:


ϵ0cDt(α)cDt(α)Et+A1cDt(α)Et+A0Et=cDt(α)cDt(α)Dt+C1cDt(α)Dt+C0Dt.



(23)







Caputo’s fractional derivative of order [image: there is no content] (here [image: there is no content] has a signified different from than indicated in Equations (3)–(6)) is:


cDt(α)ϕt=MαΓ1−α∫0tϕ˙tt−ταdτ,



(24)




where [image: there is no content] is


[image: there is no content]



(25)




with [image: there is no content] for [image: there is no content]. Equation (23) is the fractional equation corresponding to Debye’s generalized equation (14). Caputo’s fractional derivative coincides, at less than one multiplicative factor [image: there is no content], with the convolution operator:


[image: there is no content]



(26)







This property is utilized to determine the Laplace’s transform of the fractional derivative:


[image: there is no content]



(27)




where


[image: there is no content]



(28)




and, assuming [image: there is no content],


[image: there is no content]



(29)




with [image: there is no content] and [image: there is no content]. If [image: there is no content], then [image: there is no content] is coincident with the Fourier’s transform [image: there is no content].



From Equation (29), Equation (27) becomes:


[image: there is no content]



(30)







From Equations (24) and (30), Laplace’s transform of Caputo’s fractional derivative is


LTcDt(α)ϕt=MαΓ1−αLTΦν=MαsαLTϕt.



(31)







It can be demonstrated similarly that


LTcDt(α)cDt(α)ϕt=M2αs2αLTϕt.



(32)




[image: there is no content] will be placed at 1 subsequently.




3. The Fractional Model


By applying the Laplace’s transform to both members of (23), one obtains from (31) and (32):


[image: there is no content]



(33)







Putting [image: there is no content], we have that (33) becomes:


[image: there is no content]



(34)




i.e., from (1)


cϵαiω=ϵ0iω2α+A1iωα+A0iω2α+C1iωα+C0.



(35)




Equation (35) can be rewritten as


cϵαiω=ϵ01+F1iωα+F0iω2α+C1iωα+C0,



(36)




with


[image: there is no content]



(37)







Observing that: [image: there is no content] and place cϵ(α)(iω)=cϵ″(α)(ω)−icϵ″(α)(ω), Equation (36) can be rewritten in two real components:


cϵ′α(ω)=ϵ01+ψ3ω3α+ψ2ω2α+ψ1ωα+ψ0ω4α+ξ3ω3α+ξ2ω2α+ξ1ωα+ξ0,



(38)






cϵ″α(ω)=ϵ0φ3ω3α+φ2ω2α+φ1ωαω4α+ξ3ω3α+ξ2ω2α+ξ1ωα+ξ0,



(39)




with


ψ3=F1cosπα2,ψ2=F1C1+F0cosπα,ψ1=F0C1+F1C0cosπα2,ψ0=F0C0,



(40)






φ3=F1sinπα2,φ2=−F0sinπα,φ1=F0C1−F1C0sinπα2,



(41)






ξ3=2C1cosπα2,ξ2=C12+2C0cosπα,ξ1=2C1C0cosπα2,ξ0=C02.



(42)







For [image: there is no content], one obtains a Ciancio–Kluitenberg model of the complex permittivity:


limα→1cϵ′α(ω)=ϵ′(ω)=ϵ01+F1C1−F0ω2+F0C0ω4+C12−2C0ω2+C02,



(43)






limα→1cϵ′′α(ω)=ϵ′′(ω)=ϵ0F1ω3+F0C1−F1C0ωω4+C12−2C0ω2+C02,



(44)




with [image: there is no content] = [rad/s]2, [image: there is no content] = [rad/s]2, [image: there is no content] = [rad/s], [image: there is no content] = [rad/s].




4. Numerical Results


The fractional model of the complex permittivity (36) is determined uniquely from the possible values of the parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] that satisfaction (36) with [image: there is no content], [image: there is no content]; this is in accordance with the fact that entropy variation is positive, reference [11], for the 2nd principle of the thermodynamics. The fractional order [image: there is no content] depends on the frequency and parameters by means of undefined function. In [3], the Debye’s ordinary model is in accordance with experimental measures at low frequencies. We can formulate the problem in this way:



Let [image: there is no content], [image: there is no content] and let [image: there is no content] be the solutions set of the system nonlinear equations:


ϵmin′(ωmin)=ζ1x;ωmin,α^,ϵmin″(ωmin)=ζ2x;ωmin,α^,ϵmax′(ωmax)=ζ3x;ωmax,α^,ϵmax″(ωmax)=ζ4x;ωmax,α^,



(45)




with [image: there is no content] unknown and ϵmin′, ϵmin″, ϵmax′, ϵmax″, known experimental, while [image: there is no content] is value of [image: there is no content] such that solution of system (45) indicated with [image: there is no content] satisfaction (36), and it provides the best predictive model of complex permittivity.



In other words, if [image: there is no content], where [image: there is no content] is unknown function of [image: there is no content], denoting with [image: there is no content], we have that [image: there is no content] is:


α^=min[x ∈ Σ,ω ∈ B]g(x,ω),



(46)




with [image: there is no content].



We propose the following algorithm (Figure 1) to determine the abovementioned parameters of (36).


Figure 1. Flow-chart.



[image: Fractalfract 01 00004 g001]






	Step 1

	
one chooses a frequency range ([image: there is no content]) and a test value for [image: there is no content];



one read the correspondent permittivity experimental values:



ϵ′(α)(ωmin), ϵ″(α)(ωmin), ϵ′(α)(ωmax), ϵ″(α)(ωmax);



one initializes [image: there is no content] and [image: there is no content].




	Step 2

	
one resolves the system at frequencies [image: there is no content] and [image: there is no content].




	Step 3

	
If there is a real and positive solution, then if m is not null go to end; otherwise, one puts:



[image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content];



it reduces [image: there is no content] = [image: there is no content] - 0.001 and go back to step 2.




	Step 4

	
If n is null, one puts [image: there is no content] and [image: there is no content] = [image: there is no content] + 0.001 and go back to step 2; otherwise, one puts [image: there is no content], [image: there is no content] and goes back to step 2.




	End

	
The solution so determined is compared with the predictive permittivity model in [10], at a temperature of 37 °C with reference to the human aorta. This method is equally applicable to biological tissues. From Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 (horizontal axis rad/s), we observe that a predictive fractional model of the complex permittivity is in accordance with experimental data with good approximation. The experimental data are those relating to measure campaign published in [10]. In particular from Figure 9, we see that percentage error relative permittivity and conductivity to experimental data is, respectively, almost always lower and thorough than that of the Ciancio–Kluitenberg model and Cole–Cole extended model [7,8,9,10]. In the frequency range 2.5 × 103 @ 9.29 × 1010, the maximum relative error to experimental data of permittivity fractional model is −21% at 1.58 × 105 rad/s; of Ciancio–Kluitenberg’s model is +25% at 1.58 × 107 rad/s and extended of Cole–Cole’s model is +35% at 1.58 × 107 rad/s; in the same frequency range, the maximum relative error to experimental data of conductivity fractional model is +15% at 1.95 × 1010 rad/s; of Ciancio–Kluitenberg’s model is +41% at 1.95 × 1010 rad/s and extended of Cole–Cole’s model is −37% at 2.5 × 103 rad/s. In Figure 10, we show the trend of fractional order with respect to the frequency.


Figure 2. (a) Permittivity and (b) conductivity at frequencies 100 Hz @ 1 KHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g002]





Figure 3. (a) Permittivity and (b) conductivity at frequencies 1 KHz @ 9 KHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g003]





Figure 4. (a) Permittivity and (b) conductivity at frequencies 9 KHz @ 224 KHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g004]





Figure 5. (a) Permittivity and (b) conductivity at frequencies [image: there is no content]. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g005]





Figure 6. (a) Permittivity and (b) conductivity at frequencies 1 MHz @ 10 MHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g006]





Figure 7. (a) Permittivity and (b) conductivity at frequencies 10 MHz @ 100 MHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g007]





Figure 8. (a) Permittivity and (b) conductivity 100 MHz @ 20 GHz. Line dot-dashed fractional model [image: there is no content], line continue ordinary model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g008]





Figure 9. Relative percentage error (a) permittivity and (b) conductivity. Line dot-dashed fractional model, line continue Ciancio–Kluitenberg model, line dotted extensive Cole–Cole’s model, points experimental data.



[image: Fractalfract 01 00004 g009]





Figure 10. Trend fractional order respect to frequency.



[image: Fractalfract 01 00004 g010]











5. Conclusions


It is emphasized that this fractional model derives from a physical theory that justifies the phenomenon of polarization on biological tissues. In particular, the Ciancio–Kluitenberg model has shown how the two time constants are related to strain and rotation of the cells that constitute the polarized biological tissue. Models like that of extended Cole–Cole are characterized by parameters whose values are empirically obtained i.e., without a justification of a physical nature. The transition to the fractional calculation was possible by replacing the ordinary derivative with Caputo’s fractional derivative to write the corresponding phenomenological equation of media with dielectric relaxation. From the complex permittivity model obtained, it has been seen (Figure 10) how the topology of the memory operator has fractional dimension frequency dependency and also that this tends to a minimum value in accordance with the 2nd Principle of Thermodynamics. The fractional model of the complex permittivity is in accordance with experimental data with good approximation. The reason why permittivity and conductivity deviates from experimental data at a given frequency ranges is not known, but this probably depends on the type of fractional derivative considered. A possible development of the proposed method is to determine the fixed fractional operator, the optimal fractional order functional with respect to frequency that minimizes the relative percentage error.
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