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Abstract: The divergence or relative entropy between probability densities is examined. Solutions that
minimise the divergence between two distributions are usually “trivial” or unique. By using a
fractional-order formulation for the divergence with respect to the parameters, the distance between
probability densities can be minimised so that multiple non-trivial solutions can be obtained. As a
result, the fractional divergence approach reduces the divergence to zero even when this is not
possible via the conventional method. This allows replacement of a more complicated probability
density with one that has a simpler mathematical form for more general cases.
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1. Introduction

The divergence or relative entropy between two probability densities is a measure of dissimilarity
between them. The most well known divergence approach is due to Kullback and Leibler which will
be discussed in more detail below. Other divergence formulations include the version by Jeffrey which
is symmetric for large separations between densities [1]. While Jeffrey’s approach is a symmetric
f -divergence and is non-negative, it does not obey the triangle inequality. The Jensen–Shannon
divergence [2] is essentially a half times the sum of the two separate densities and their respective
divergence to their mean. The striking feature about the Jensen–Shannon divergence is that its square
root is a true distance metric. That is, it not only displays symmetry but also conforms to the triangle
inequality. Closely related to the divergence or relative entropy is entropy itself. Some of the definitions
are due to Renyi [3], a one-parameter generalisation of the Shannon entropy and the definition due to
Tsallis [4]. Tsallis entropy is in fact the underlying formulation for many other entropy definitions in
the literature.

There have been attempts to generalise the concepts of divergence and entropy using fractional
calculus. Fractional order mathematics has been applied to many classical areas associated with
probability, entropy and divergence. The entropy has been derived in fractional form in [5] and
subsequently in [6]. Divergence measures based on the Shannon entropy have been dealt with in [7].
An interpretation of fractional order differentiation in the context of probability has been given in [8].
The role of fractional calculus in probability has been discussed in [9]. In [10], the connection of
fractional derivatives and negative probability densities is discussed. One of the first attempts to
involve fractional calculus with probability theory is due to Jumarie [11]. The fractional probability
measure is discussed, in particular the uniform probability density of fractional order. Comparison
of the properties of fractional probabilities to the properties of classical probability theory have been
studied in [12–14]. These latter works extend the ideas of Jumarie and give definitions for fractional
probability space and fractional probability measure so that a fractional analogue of the classical
probability theory is obtained.

The underlying mathematical construct in all of these approaches is the dependence on probability
densities or distributions. In many areas of research, there is a requirement to model the statistical
behaviour of a physical process by using probability distributions in terms of the cumulative
distribution function (CDF) or the probability density function (PDF). Depending on the problem
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to be analysed, there is usually a particular distribution that is better suited for the description of
the physical process compared to other distributions. The problem is that most distributions contain
multiple parameters that must be estimated using such methods as the maximum likelihood approach
or method of moments. The estimation of these parameters introduces uncertainty, which translates to
performance loss for a particular distribution when used to model physical phenomena. For example,
in the detection of signals using the Constant False Alarm Rate (CFAR) approach [15–19], correct
estimation of parameters is critical. The estimation of these parameters is almost always not exact and,
as a consequence, the detection performance drops because of the loss in accuracy.

The basic requirement is to find a probability density that describes a physical process accurately
while possessing a smaller number of parameters. In other words, is there a simpler probability
density that can replace a more complicated two or more parameter version? This means that the
simpler expression must match the performance of the latter very well for a large solution set. The
use of a separation metric is required that will indicate how dissimilar they are. If the separation
between them is zero or very close to zero, then the more complicated density can be replaced by the
“simpler” density (or approximation). Much work has been done on this problem and two methods
have proven to be very useful. The first involves information geometry [20] where the separation is
given by the geodesic distance between two probability density-manifolds. The geodesic is obtained
via the Fisher–Rao information metric. The geodesic is a true metric because it is symmetric between
the densities and obeys the triangle inequality.

The other approach is to consider a class of divergence formulations called f -divergences of
which the Kullback–Leibler version belongs to. The Kullback–Leibler divergence is not symmetric for
large separations between densities and does not obey the triangle inequality. However, there are a
number of ways to make it symmetric for large separations between densities. It is worth noting that
there is a mathematical duality between the Kullback–Leibler divergence and the geodesic approach
of information geometry. In addition, the latter is more complicated to work with in the mathematical
sense because, in many cases, the geodesic must be obtained via the solution of partial differential
equations. On the other hand, an f -divergence formulation such as the Kullback–Leibler divergence is
relatively easier to implement, requiring the solutions to be obtained via integrals instead.

The Kullback–Leibler divergence has been used previously to find solutions that allow one density
or model to be replaced by another [21–29]. The problem is that the solution sets that give a divergence
of zero or close to zero are either unique or trivial in nature. That is, the divergence is not valid for a
large set of parameter values. Replacing one model (density) by another only for certain unique or
restricted values in their parameters is not very useful for modelling physical processes or systems.
Unfortunately, this is the inherent problem associated with the current form of any divergence method.
What is required is an approach that extends the solutions, where the divergence is close to zero
or zero, beyond the unique and trivial cases. It would then be possible to replace one model with
another since there would be a similarity between them for large parameter sets. This idea will
be pursued in this paper by making use of fractional calculus to obtain a fractional form for the
Kullback–Leibler divergence.

2. Divergence between Two Probability Densities

The divergence between two probability densities considered here is based on the
Kullback–Leibler formulation (K-L). This is a pseudo-metric for the distance between the densities
because it fails the triangle inequality. The main issue with the K-L formulation is that it is not
symmetric unless the metric separation between the densities is small, i.e., probability density qpx;~ξ2q

is very close in parameter space to density ppx;~ξ1q: qpx;~ξ2q « ppx,~ξ1 ` δ~ξ1q, where ~ξi is the parameter
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space of each density ~ξi “ pξ1, ξ2, ..., ξNq and N represents the total number of parameters. The K-L
divergence is defined as

Dpppx; ~ξ1q||qpx; ~ξ2qq “

ż

Ω
ppx; ~ξ1q log

˜

ppx; ~ξ1q

qpx; ~ξ2q

¸

dx (1)

for some region of integration Ω. It is possible to obtain a symmetric version of (1) that is valid
for larger separations and obeys the triangle inequality. One way to do this is using the Jeffrey’s
formulation as discussed previously:

Dpppx; ~ξ1q||qpx; ~ξ2qq “

ż

Ω

”

ppx; ~ξ1q ´ qpx; ~ξ2q
ı

log

˜

ppx; ~ξ1q

qpx; ~ξ2q

¸

dx. (2)

It will suffice to consider the divergence as given by (1) in what follows since the approach
discussed in this paper is easily applicable to the symmetric Jeffrey’s case or other similar formulations.
Either way, this does not matter much, since, for almost all cases of interest, small separations dominate.
The K–L divergence (1), hereby referred to as the divergence for brevity, is also known as the relative
entropy for the following reason. If (1) is re-written as

Dpppx; ~ξ1q||qpx; ~ξ2qq “

ż

Ω
ppx; ~ξ1q log

´

ppx; ~ξ1q
¯

dx´
ż

Ω
ppx; ~ξ1q log

´

qpx; ~ξ2q
¯

dx, (3)

then the negative of the first integral in (3) is the differential entropy H of the probability density
ppx; ~ξ1q. It was first used in statistical physics by Boltzmann and in information theory by Shannon.
Both considered the discreet form for a probability mass ppxi; ~ξ1q

Hpppxi; ~ξ1qq “ ´

N
ÿ

i“1

ppxi; ~ξ1q log
´

ppxi; ~ξ1q
¯

. (4)

The integral with a positive sign on the right of (3) is the cross-entropy between the densities
ppx; ~ξ1q and qpx; ~ξ2q. Hence, (1) and (3) are also referred to as the relative entropy between two densities.
The divergence or relative entropy between probability densities ppx; ~ξ1q and qpx; ~ξ2q are interpreted in
the following sense. Assume that a physical process or system is known to be accurately represented
and modelled by a probability density ppx; ~ξ1q. This density might also represent an ideal or theoretical
model. Is there another (perhaps simpler) model with density qpx; ~ξ2q that is asymptotically close
or exact with the former density (model)? If the two densities have a divergence that tends to
zero, then the more complicated model can be replaced by the simpler model (approximation) for
the given parameters that achieve zero or almost zero divergence. In another sense, the way to
understand this is to ask what information is lost if one used the model density qpx;~ξ2q compared to
the more accurate model density ppx;~ξ1q. As an example, use of divergence in signal processing is
very important—in particular, the detection of targets amongst background noise and clutter. This
requires determining if signals (targets) of a given probability density differ from another density
that represents the background noise and clutter. The degree of separation above a given threshold
determines whether targets are present or not (see Section 6). In fact, the concept of divergence is
used in many areas of physics, statistics/mathematics and engineering with a common goal. Ideally,
the requirement is to find solutions to (1) in terms of the parameter vectors ~ξ1 and ~ξ2 that make the
divergence equal to zero, i.e.,

ż

Ω
ppx; ~ξ1q log

˜

ppx; ~ξ1q

qpx; ~ξ2q

¸

dx “ 0, (5)
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or from (3) when the entropy term is equal to the cross entropy term. The problem is, since the two
densities are different and with different parameters, it is not possible to achieve zero divergence
between them except perhaps for particular or unique solutions such as solutions pertaining to their
intersections. In some cases, the solutions are trivial such as when the two densities are of the exact
mathematical form, which means a divergence of zero is possible since the parameters of one can be
made to take on the same values as those of the other. For example, for two Exponential densities with
parameters λ1 and λ2, it is trivial to show by inspection or by using the divergence (1) that

ppx; λ1q “ λ1e´λ1x and qpx; λ2q “ λ2e´λ2x (6)

have a divergence of zero everywhere only when λ1 ” λ2. In fact, forcing the divergence to be zero as
in (5) may not necessarily give solutions that achieve zero divergence. In such cases, it is also possible
that the solutions become complex, which does not make sense when applied to a real physical problem.
In what follows, it will be shown that it is possible to extend the domain of validity of solutions that
give zero divergence beyond the trivial or unique cases. This can be done via the transformation
of one or more of the parameters appearing in the divergence equations using fractional calculus.
The method will be applied to two important densities used in many fields of research: the Exponential
density and a well known power form, namely, the Pareto density. The first step is to obtain the
conventional and fractional divergences for the Exponential-Pareto case and then to do the same for
the Exponential–Exponential case.

3. Conventional Divergence of Exponential and Pareto Densities

The Exponential and Pareto distributions have been used to model a large number of problems.
For example, the Pareto distribution is critical in the analysis of radar clutter. For this reason, a
fractional-order Pareto distribution has been presented in [30] in order to more accurately model sea
clutter in microwave radar. Consider i.i.d. random variables belonging to the Exponential density
Xi „ Exppλq as well as the Pareto density Xi „ Papx0, βq. That is,

ppx; λq “ λe´λx, (7)

where the parameter space contains only one parameter, λ, which is usually related to the expectation
µ of the random variables by λ “ 1{µ. The Pareto density has parameter space ~ξ2 “ px0, βq where x0 is
the scale parameter and β is the shape parameter:

qpx; x0, βq “ βxβ
0 x´pβ`1q. (8)

The idea here is to replace the two parameter Pareto density with the one parameter and simpler
Exponential density. On this basis, this can only be true for certain solutions where the divergence
between them is zero or close to zero. For brevity, the densities will be written as ppxq and qpxq.
The divergence expression between the Exponential and Pareto densities is obtained from

Dpppxq||qpxqq “
ż

Ω
ppxq log

ˆ

ppxq
qpxq

˙

dx, (9)

where the log-function in the integrand is simplified to

log
ˆ

ppxq
qpxq

˙

“ log

˜

λ

βxβ
0

¸

´ λx` pβ` 1q logpxq. (10)
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Substituting into (9) and taking the integration domain to be the interval Ω “ r0,8q, the
divergence now becomes,

Dpppxq||qpxqq “
ż 8

0
λe´λx

«

log

˜

λ

βxβ
0

¸

´ λx` pβ` 1q logpxq

ff

dx. (11)

The first term in the integrand is trivial since the second axiom of probability states that the
integral of the density in the interval is unity:

ş8

0 ppxqdx “ 1. The other terms can be completed by
using integration by parts to finally arrive at the following expression for the divergence between the
two densities

Dpppxq||qpxqq “

ˇ

ˇ

ˇ

ˇ

ˇ

log

˜

λ

βxβ
0

¸

´ pβ` 1q logpλq ´ γpβ` 1q ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

, (12)

where the Euler-gamma has been introduced and its value is γ « 0.577216. The modulus is included
in (12) to enforce the fact that the divergence is greater or equal to zero. The idea now is to work
out for what values of β in (12) the divergence approaches zero. That is, what values of β make the
Pareto density qpxq be approximate to or become equal to the Exponential ppxq respectively? Let
the parameter space of all parameters be written as a vector ~ξ ” pξ1, ξ2, ξ3q “ pλ, x0, βq. Consider
the derivative as an operator L̂i “ B{Bξi. Taking the index i “ 3 gives the operator in terms of the
parameter β, i.e., L̂3. Using the operator on the left and right of (12) gives, (ignoring the modulus):

L̂3Dpppxq||qpxqq “ L̂3 log

˜

λ

βxβ
0

¸

´ L̂3pβ` 1q logpλq ´ L̂3γpβ` 1q ´ L̂3, (13)

where L̂3 “ B{Bξ3 “ B{Bβ. We enforce the need for the left-hand side to be equal to zero as required,
i.e., L̂3Dpppxq||qpxqq “ 0 so that

´
1
β
´ pγ` logpλx0qq “ 0, (14)

Solving for β:

β “ ´
1

γ` logpλx0q
. (15)

This means that the density qpxq has a divergence that is zero or close to zero with respect to ppxq,
the Exponential, whenever β is given by (15). Then, the Pareto density is modified to

qpxq “ ´
x
´ 1

γ`logpλx0q
0

γ` logpλx0q
x

1
γ`logpλx0q

´1
. (16)

The Pareto density (16) is now expressed in terms of the Exponential-density parameter λ. This
indicates where the divergence of ppxq from qpxq is approaching zero as a function of λ. When the
divergence is acceptably small or even zero, the Pareto model can be adequately described by the
simpler one-parameter Exponential model. Thus, substituting (15) into (12) means that the divergence
can be written as:

Dpppxq||qpxqq “
ˇ

ˇ

ˇ

ˇ

log
ˆ

´
λxω

0
ω

˙

` pω´ 1q logpλq ` γpω´ 1q ´ 1
ˇ

ˇ

ˇ

ˇ

, (17)

where ω “ pγ` logpλx0qq
´1. Equation (17) determines the value of the minimum-divergence between

the two densities. Figure 1 shows a plot of the divergence (17) as a function of the parameter λ
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at x0 “ 0.01. The conventional divergence (17) is zero for the unique value of λ « 9.458 in the
range considered. Multiple solutions that approach zero are not generally possible. In this case, the
divergence between the densities ppxq and qpxq is zero only for the particular value λ « 9.458 and
close to zero for small values of λ on either side.

In fact, for the general case, the conventional divergence given by the expression (12) can be
plotted as a function of the parameters pλ; x0, βq. Figure 2a shows the divergence between the two
densities as a function of the two parameters λ and β at a fixed Pareto scale parameter value of
x0 “ 0.01. For the range of λ and β values shown, the divergence is never zero or very close to zero.
In terms of Figure 1, the divergence is zero for λ « 9.458 and this occurs when β “ 0.561, which is
outside the range of values for β shown in Figure 2a. An exact divergence of zero at only one unique
point is not very useful or practical in the general sense anyway. What is required is an extension
of the solutions so that zero divergence (or very close to zero) is achieved over a wider parameter
range (see Figure 2b). This will require the use of fractional-order calculus and will be discussed in the
next section.

Figure 1. The divergence between the Exponential-density and the Pareto-density for a fixed Pareto
scale parameter, x0 “ 0.01.

(a) Conventional divergence (b) Fractional divergence

Figure 2. For x0 “ 0.01, the (a) conventional and (b) fractional divergence is shown, respectively.
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4. Fractional Divergence of Exponential and Pareto Densities

Fractional calculus has been around since the time of integer order calculus, which was developed
by Newton and Leibniz. The name “fractional” is a misnomer that has endured since around 1695
when l’ Hopital queried Leibniz on the meaning of a fractional order of one-half for the derivative
operator. It is to be understood that fractional really means “generalised”. Fractional-order derivatives
and integrals of functions have been studied for a very long time with various definitions appearing in
the literature. Among the well known are due to Caputo, Grunwald-Letnikov and Riemann–Liouville.
For a comprehensive review of the many versions that have been derived, see [31] and the references
therein. Research into fractional order mathematics has been prevalent in recent times in many fields of
science, mathematics and engineering [32–41]. In this paper, the interest is in the fractional derivative of
functions only and the Riemann–Liouville formulation for the fractional derivative will be considered:

aDα
t f ptq “

1
Γpν´ αq

dν

dtν

ż t

a
pt´ xqν´α´1 f pxqdx. (18)

The terminal a takes two values. The case a “ ´8 is due to Liouville while the case a “ 0 is due
to Riemann. The parameter ν represents values that are integer order, i.e., ν P Z`. The parameter α

is the fractional order that can be real or complex and is bounded by tαu ă α ď rαs. Here, t¨u is the
floor function and r¨s is the ceiling function, respectively. Consider the Riemann–Liouville fractional
derivative for ν “ 1 and terminal a “ 0. The following fractional operator can then be defined:

Λ̂ipx ÞÑ ξiq “
1

Γp1´ αq

d
dx

ż x

0
dξipx´ ξiq

´α. (19)

Applying the operator on the conventional divergence, i.e., Λ̂ipx ÞÑ ξiqDpppx;~ξ1q||qpx;~ξ2qq, gives
the fractional divergence Dpx ÞÑ ξi, ppx;~ξ1q||qpx;~ξ2qq such that the following holds:

Definition 1. The fractional divergence, which is a generalisation of the conventional divergence, is defined as

Dpx ÞÑ ξi, ppx;~ξ1q||qpx;~ξ2qq “

ˇ

ˇ

ˇ

ˇ

ˇ

1
Γp1´ αq

d
dx

ż x

0
px´ ξiq

´α
ż

Ω
ppx;~ξ1q log

˜

ppx;~ξ1q

qpx;~ξ2q

¸

dxdξi

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
Γp1´ αq

d
dx

ż x

0
px´ ξiq

´α

〈
log

˜

ppx;~ξ1q

qpx;~ξ2q

¸〉
ppx;~ξ1q

dξi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (20)

where ă ¨ ą is the expectation with respect to the density ppx;~ξ1q and the three axioms of probability theory
hold for both densities. The modulus | ¨ | is required because α P R and α P C. In addition, the definition:
ppxq logpppxq{qpxqq “ 0 whenever ppxq “ 0 is applicable.

Theorem 1. If the fractional divergence is a generalised form for the divergence between two densities, it must
produce the same solutions as the conventional divergence as a special limit. The latter is true when the fractional
order approaches α “ 1 in (20). Thus,

lim
αÑ1

Dpx ÞÑ ξi, ppx;~ξ1q||qpx;~ξ2qq “ LipξiqDpppx;~ξ1q||qpx;~ξ2qq (21)

or in operator form:

lim
αÑ1

D̂px ÞÑ ξiq “ L̂ipξiq. (22)

Proof. The proof involves showing that the fractional operator of order, α, reduces to the ν-th integer
order derivative in the limit α Ñ ν. The final stage requires setting ν “ 1 to complete the proof. Let
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ν P N be an arbitrary integer order of the conventional derivative. Let the fractional order operator be
written in terms of the integer order derivative ν,

lim
αÑν

D̂px ÞÑ ξiq “ lim
αÑν

1
Γpν´ αq

dν

dxν

ż x

0
px´ ξiq

ν´α´1dξi Ñ lim
αÑν

1
Γpν´ αq

dν

dxν

ż x

0
yν´α´1

i dyi, (23)

where the expression on the right is obtained by using the transformation yi “ x´ ξi. Then,

lim
αÑν

D̂px ÞÑ ξiq “ lim
αÑν

1
Γpν´ αq

dν

dxν

ż x

0
yν´α´1

i dyi

“ lim
αÑν

1
Γpν´ αq

dν

dxν

«

yν´α
i

ν´ α

ffx

0

“ lim
αÑν

dν

dxν

«

xν´α
i

Γpν` 1´ αq

ff

“
dν

dxν
. (24)

The conventional divergence corresponds to the integer order ν “ 1, hence

lim
αÑ1

D̂pξiq “
d

dξi

“ L̂ipξiq (25)

as required. Note that the mapping px ÞÑ ξiq has been applied in (25).

The divergence integral appearing in the integrand of (20), i.e., the expectation, has already been
calculated before (see (12)). The parameter vector space for both densities is ~ξ “ p~ξ1,~ξ2q “ pλ, x0, βq.
Re-arranging the divergence expression (12), the following form is obtained, (neglecting the modulus
until the end):

Dpppxq||qpxqq “ ´ logpβq ´ω´1β´ pγ` 1q, (26)

where ω´1 “ γ` logpλx0q and p~ξ1;~ξ2q have been omitted for brevity. The requirement now is to use
the operator and calculate the fractional divergence as follows:

Dpx ÞÑ ξi, ppx;~ξ1q||qpx;~ξ2qq “ ´Λ̂ipx ÞÑ ξiq logpβq ´ω´1Λ̂ipx ÞÑ ξiqβ´ pγ` 1qΛ̂ipx ÞÑ ξiq. (27)

The argument px ÞÑ ξiq implies that the variable x maps on to the variable ξi. This will be
elucidated further in what follows below. Recall that the parameter vector is given by ~ξ “ pλ, x0, βq

and as before, in Section 3, the interest is in the parameter β, i.e., i “ 3 so that ξ3 “ β. In addition, the
condition Dpx ÞÑ ξi, ppx;~ξ1q||qpx;~ξ2qq “ 0 is enforced so that (27) becomes

Λ̂3px ÞÑ βq logpβq `ω´1Λ̂3px ÞÑ βqβ` pγ` 1qΛ̂3px ÞÑ βq “ 0. (28)

Each term appearing in (28) will now be calculated. Before proceeding, it is important to re-visit
the meaning of the mapping px ÞÑ ξiq. Once the operator Λ̂i is used, the final result is a function of
the variable x, which must then be replaced by the variable ξi, i.e, Λ̂ipx ÞÑ ξiq Ñ Λ̂ipξiq. The first term
in (28) will be calculated last as it is more involved than the other two. In addition, the function logpzq,
for some argument z, always appears in these kinds of problems involving divergence or parameter
estimation, and, for this reason, it will be treated in full. The other two terms contain monomials
β1 and β0 “ 1. It can be shown, by using the Riemann–Liouville fractional formulation, that the
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fractional derivative of monomials with power n results in a form that is the exact version of Euler’s
generalisation of the integer derivatives of monomials:

dα

dβα
βn “

Γpn` 1q
Γpn` 1´ αq

βn´α (29)

for monomial powers n. To verify this, the second term is (leaving out the coefficient):

Λ̂3px ÞÑ βqβ “
1

Γp1´ αq

d
dx

ż x

0
px´ βq´αβdβ. (30)

Let the above integral be transformed to the form

Λ̂3px ÞÑ βqβ “
1

Γp1´ αq

d
dx

ż x

0
y´αpx´ yqdy

“
1

Γp1´ αq

d
dx

„

x2´α

p1´ αq
´

x2´α

p2´ αq



“
x1´α

p1´ αqΓp1´ αq
(31)

using the transformation y “ x´ β and dy “ ´dβ. The requirement now is to map the variable x such
that Λ̂3px ÞÑ βqβ Ñ Λ̂3pβqβ in (31) to obtain the final result

Λ̂3pβqβ “
β1´α

Γp2´ αq
(32)

since p1´ αqΓp1´ αq ” Γp2´ αq. As stated above, this result is equivalent to that obtained by using
Euler’s form (29) for n “ 1. In a similar way, the final term in (28) can be obtained as follows (leaving
out the coefficient again),

Λ̂3px ÞÑ βq “
1

Γp1´ αq

d
dx

ż x

0
px´ βq´αdβ

“
1

Γp1´ αq

d
dx

ż x

0
y´αdy

“
x´α

Γp1´ αq
, (33)

where the transformation y “ x´ β and dy “ ´dβ have been applied. The final result then becomes:

Λ̂3pβq “
β´α

Γp1´ αq
. (34)

Once again, this result can be obtained directly from the Euler Equation (29) for n “ 0. The first
term of (28) is now evaluated as follows:

Λ̂3px ÞÑ βq logpβq “
1

Γp1´ αq

d
dx

ż x

0
px´ βq´α logpβqdβ. (35)

To perform the integration in (35), let y “ x´ β so that dy “ ´dβ and this gives

ż x

0
y´α logpx´ yqdy “

ż x

0
y´α logpxqdy`

ż x

0
y´α logp1´ y{xqdy, (36)
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where logpx ´ yq ” logpxp1 ´ y{xqq “ logpxq ` logp1 ´ y{xq has been used in (36) to expand the
integrand. The first integral on the right of (36) is only dependent on the variable y so that it is trivial
to show that

ż x

0
y´α logpxqdy “

logpxq
1´ α

x1´α. (37)

The second integral in (36) can be solved if z “ y{x so that dz “ dy{x and the integral becomes,

ż x

0
y´α logp1´ y{xqdy “ x1´α

ż 1

0
z´α logp1´ zqdz

“
x1´α

α´ 1
H1´α. (38)

Here, H1´α is the harmonic-function that is related to the polygamma-function of the zeroth order
or digamma-function ψ0p¨q via H1´α “ γ`ψ0p2´ αq, where γ « 0.577216 is the Euler gamma constant.
The digamma-function ψ0p2´ αq can be simplified further by using the identity:

ψnpz` 1q “ ψnpzq ` p´1qn
n!

zn`1 . (39)

Setting z “ 1´ α and n “ 0 in the identity, one obtains ψ0p2´ αq “ ψ0p1´ αq ` 1
1´α . Hence, (38)

can be re-written as:
ż x

0
y´α logp1´ y{xqdy “

x1´α

α´ 1

„

γ` ψ0p1´ αq `
1

1´ α



. (40)

Substituting (40) and (37) into (36), (35) becomes:

Λ̂3px ÞÑ βq logpβq “
1

Γp1´ αq

d
dx

„

x1´α logpxq
1´ α

`
x1´α

α´ 1

ˆ

γ` ψ0p1´ αq `
1

1´ α

˙

. (41)

After performing the simple differentiation in (41) and noting that Λ̂3px ÞÑ βq logpβq Ñ
Λ̂3pβq logpβq, we have:

Λ̂3pβq logpβq “
β´α

Γp1´ αq
rlogpβq ´ ψ0p1´ αq ´ γs . (42)

It is now a matter of substituting (42), (34) and (32) into (28) to obtain the final result:

β´α rlogpβq ´ ψ0p1´ αq ´ γs `
ω´1β1´α

p1´ αq
` pγ` 1qβ´α “ 0. (43)

The problem now requires the solution of (43) in terms of the parameter β, which will be the
fractional analogue of the conventional version as discussed in Section 3. Unfortunately, due to the fact
that (43) is a transcendental equation in β, it means that solutions can only be obtained numerically.
However it is possible to rewrite (43) in such a way as to obtain closed form analytic solutions.
Equation (43) can be re-arranged to:

β “ ωpα´ 1q logpβq `ωp1´ αq rψ0p1´ αq ´ 1s . (44)

Define A and B as follows:

A “ ωpα´ 1q and B “ ωp1´ αq rψ0p1´ αq ´ 1s (45)
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so that (44) becomes:

β “ A logpβq ` B, (46)

which allows the solution in terms of β to be in closed form if it can be transformed to resemble the
Lambert W-function or product-log function. The W-function has the form

yey “ f pxq. (47)

That is, if any equation can be written so that the left-hand side resembles the left-hand side
of (47), then for any function on the right side, f pxq, the solution for y is given by: y “ Wnp f pxqq, where
n “ 0,´1 are the two branch cuts of the Lambert W-function. Equation (46) can now be solved via the
W-function if it is transposed as follows:

β “ exp
ˆ

β

A
´

B
A

˙

ðñ ´
β

A
e´

β
A “ ´

1
A

e´
B
A . (48)

Then, by (47), the solution for fractional β is obtained from the W-function as:

β “ ´AWn

ˆ

´
1
A

exp
ˆ

´
B
A

˙˙

. (49)

Substituting both A and B while noting that ω “ 1{pγ` logpλx0qq gives the fractional β as:

β “
p1´ αq

γ` logpλx0q
W0 pχq , (50)

where the argument of the W-function, χ is

χ “
γ` logpλx0q

p1´ αq
exp pψ0p1´ αq ´ 1q , (51)

and the n “ 0 branch cut is considered for the W-function. The fractional form for the Pareto shape
parameter, (50), can now be substituted into the conventional Pareto to obtain the fractional Pareto
density (PDF) that minimizes the divergence with respect to the Exponential-density:

qpxq “
p1´ αq

γ` logpλx0q
W0 pχq x

p1´αq
γ`logpλx0q

W0pχq

0 x
´

´

1` p1´αq
γ`logpλx0q

W0pχq
¯

. (52)

This is the fractional analogue of (16). Equation (50) can be substituted into the divergence
Equation (12) as was done for the conventional solution for β “ ´ω (see (15)). Thus, the fractional
divergence becomes:

Dpppxq||qpxqq “
ˇ

ˇ

ˇ

ˇ

log
ˆ

γ` logpλx0q

p1´ αqW0pχq

˙

` pα´ 1qW0pχq ´ pγ` 1q
ˇ

ˇ

ˇ

ˇ

. (53)

The modulus | ¨ | in (53) has been reinstated not only to ensure a divergence greater or equal to zero
but also because the fractional order can take, not just real, but also complex values. The interesting
aspect of the fractional order α appearing in (51) and (53) is that the fractional β now depends on α

(see (50)). There is no reason why the fractional order α cannot be replaced by the variable β. This
means of course that β takes on the same domain or range of values that α does so defining the correct
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range is critical. In this instance, using (51) and (53) is essentially the same as using the following
forms. Set α “ β to obtain:

χ “
γ` logpλx0q

p1´ βq
exp pψ0p1´ βq ´ 1q (54)

and

Dpppxq||qpxqq “
ˇ

ˇ

ˇ

ˇ

log
ˆ

γ` logpλx0q

p1´ βqW0pχq

˙

` pβ´ 1qW0pχq ´ pγ` 1q
ˇ

ˇ

ˇ

ˇ

. (55)

Thus, in keeping with the conventional divergence plot shown in Figure 2a, Figure 2b shows a
plot of the fractional divergence (55) (or (53)) for the parameters λ and β. As can be seen from the color
bars, the divergence is large for the conventional divergence. However, the fractional version shows
not only much smaller divergence separations for various values of λ and β, but a large region where
the divergence is everywhere equal to zero. It is worth noting that the minimum divergence achieved
by the conventional divergence is D « 0.75, which is still much greater than the maximum fractional
divergence of D « 0.16.

5. Manipulation of the Divergence between Two Exponential Densities via the Fractional Orders

The fractional divergence between two Exponential-densities will be investigated in this section
with the aim of showing that it gives non-trivial solutions and that it is possible to manipulate the
divergence via the fractional order(s). There is a good reason for analysing two Exponential-densities
as opposed to any other densities. Unlike the divergence solutions obtained for arbitrary densities,
which are not entirely known, there is absolute certainty as to the expected divergence profile for
the Exponential-densities. This is because, according to the conventional divergence, there is zero
divergence whenever their parameters are equal. There are no other solutions that minimise the
divergence for two Exponential-densities. Let

ppy; uq “ ue´uy and qpy; vq “ ve´vy (56)

be two Exponential-densities. The two Exponential-densities (56) have one parameter each so that
~ξ1 “ ξ1 “ u and ~ξ2 “ ξ2 “ v. This corresponds to i “ 1, 2 respectively. Omitting the modulus for now,
the expression for the fractional divergence becomes,

Dpx ÞÑ ξi, ppy;~ξ1q||qpy;~ξ2qq “
1

Γp1´ αq

d
dx

ż x

0

ż

Ω
px´ ξiq

´α ppy;~ξ1q log

˜

ppy;~ξ1q

qpy;~ξ2q

¸

dydξi (57)

The following two equations are obtained from (57):

Dpx ÞÑ u, ppy; uq||qpy; vqq “
1

Γp1´ αq

d
dx

ż x

0

ż 8

0
px´ uq´α ppy; uq log

ˆ

ppy; uq
qpy; vq

˙

dydu (58)

when i “ 1 and

Dpx ÞÑ v, ppy; uq||qpy; vqq “
1

Γp1´ αq

d
dx

ż x

0

ż 8

0
px´ vq´α ppy; uq log

ˆ

ppy; uq
qpy; vq

˙

dydv (59)
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when i “ 2. The domain of integration for the two densities is Ω P r0,8q. The conventional divergence
Dpppy; uq||qpy; vqqwhich is embedded in (58) and (59), is evaluated as follows:

Dpppy; uq||qpy; vqq “

ż 8

0
ppy; uq log

ˆ

ppy; uq
qpy; vq

˙

dy

“

ż 8

0
ue´uy

”

log
´u

v

¯

` log
´

epv´uqy
¯ı

dy (60)

The first terms in (60) is straightforward since the second axiom of probability applies,
while the second term requires integration by parts. The conventional divergence between two
Exponential-densities takes the form:

Dpppy; uq||qpy; vqq “ log
´u

v

¯

`
v
u
´ 1 (61)

Substituting (61) into (58) gives the following result:

Dpx ÞÑ u, ppy; uq||qpy; vqq “
1

Γp1´ αq

d
dx

ż x

0
px´ uq´α

”

log
´u

v

¯

`
v
u
´ 1

ı

du (62)

Using the operator form and enforcing the condition Dpx ÞÑ u, ppy; uq||qpy; vqq “ 0 means that the
fractional divergence with respect to parameter u becomes

Λ̂upx ÞÑ uq logpuq ´ Λ̂upx ÞÑ uq logpvq ` Λ̂upx ÞÑ uq
´ v

u

¯

´ Λ̂upx ÞÑ uq “ 0. (63)

Applying the fractional operator on the function logpuq has been addressed in the previous section.
The result here follows a similar process that gives:

Λ̂upx ÞÑ uq logpuq “
x´α

Γp1´ αq
rlogpxq ´ ψ0p1´ αq ´ γs Ñ

Λ̂upuq logpuq “
u´α

Γp1´ αq
rlogpuq ´ ψ0p1´ αq ´ γs . (64)

Once again, ψ0p1´ αq is the digamma function and γ is the Euler constant. The next term is
evaluated to give the result:

Λ̂upx ÞÑ uq rlogpvq ` 1s “
x´α

Γp1´ αq
rlogpvq ` 1s Ñ

Λ̂upuq rlogpvq ` 1s “
u´α

Γp1´ αq
rlogpvq ` 1s . (65)

The final requirement is to evaluate the ratio v{u. Application of the fractional operator on this
ratio gives the result:

Λ̂upx ÞÑ uq
´ v

u

¯

“ p´1qαvΓpα` 1qx´pα`1q Ñ

Λ̂upuq
´ v

u

¯

“ veiαπΓpα` 1qu´pα`1q. (66)

Substitution of the expressions (64)–(66) into (63) and rearranging results in the following:

u “ ´
e´iαπ

vΓpα` 1qΓp1´ αq
logpuq `

ψ0p1´ αq ` γ` logpvq ` 1
vΓpα` 1qΓp1´ αqeiαπ

. (67)
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Equation (67) can only be solved numerically for u in its present form. However, as shown in the
previous section, it can be transformed so that its solutions can be obtained analytically by using the
Lambert W-function. Setting

A “
e´iαπ

vΓpα` 1qΓp1´ αq

B “
ψ0p1´ αq ` γ` logpvq ` 1

vΓpα` 1qΓp1´ αqeiαπ
(68)

requires the solution of u using the form

u “ ´A logpuq ` B. (69)

Transforming this expression to a form that allows solution using the W-function finally gives
(see previous section):

u “ AW0

¨

˝

exp
´

B
A

¯

A

˛

‚. (70)

The solution (70) is a function of the fractional order α as well as other parameters. The fractional
order belonging to u will be distinguished from now on and will be defined as α “ α1. The same
will be done later for the solution v, which will be a function of its own fractional order α “ α2.
Hence, substituting (68) into (70), the final result becomes:

u “
e´iα1π

vΓpα1 ` 1qΓp1´ α1q
W0pχ1q, (71)

where the argument χ1 in the W-function is given by,

χ1 “ vΓpα1 ` 1qΓp1´ α1q exp piα1π` ψ0p1´ α1q ` γ` logpvq ` 1q . (72)

The next step is to complete a similar process for the parameter v. Substitution of the conventional
divergence (61) into (59) requires the solution of

Dpx ÞÑ v, ppy; uq||qpy; vqq “
1

Γp1´ αq

d
dx

ż x

0
px´ vq´α

”

log
´u

v

¯

`
v
u
´ 1

ı

dv. (73)

Using the operator formulation, and noting that Dpx ÞÑ v, ppy; uq||qpy; vqq “ 0, gives the expression:

Λ̂vpx ÞÑ vq rlogpuq ´ 1s ´ Λ̂vpx ÞÑ vq logpvq ` Λ̂vpx ÞÑ vq
´ v

u

¯

“ 0. (74)

Each term is now evaluated beginning with the first term:

Λ̂vpx ÞÑ vq rlogpuq ´ 1s “
x´α

Γp1´ αq
rlogpuq ´ 1s

Λ̂vpvq rlogpuq ´ 1s “
v´α

Γp1´ αq
rlogpuq ´ 1s . (75)
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The next term involves the log-function, which has been treated before in detail. Following the
same process gives:

Λ̂vpx ÞÑ vq logpvq “
x´α

Γp1´ αq
rlogpvq ´ ψ0p1´ αq ´ γs

Λ̂vpvq logpvq “
v´α

Γp1´ αq
rlogpvq ´ ψ0p1´ αq ´ γs , (76)

where once again ψ0p1´ αq is the digamma-function and γ is the Euler constant. The final term is
evaluated to be:

Λ̂vpx ÞÑ vq
´ v

u

¯

“
x1´α

uΓp2´ αq

Λ̂vpvq
´ v

u

¯

“
v1´α

uΓp2´ αq
. (77)

It is now a matter of substituting (75)–(77) into (74). Rearranging the expression gives the
following form:

v “ up1´ αq logpvq ´ up1´ αq rψ0p1´ αq ` γ` logpuq ´ 1s . (78)

In order to solve this equation using the W-function, set

A “ up1´ αq

B “ up1´ αq rψ0p1´ αq ` γ` logpuq ´ 1s . (79)

The required equation takes the form

v “ A logpvq ´ B. (80)

Rearranging this equation into the form that allows a solution by the W-function finally gives

v “ ´AW0

ˆ

´
exppB{Aq

A

˙

. (81)

As was done for the u-solution, the fractional order of v will be set to α “ α2 to distinguish it
from α1 belonging to the parameter u. With this in mind and substituting the definitions for A and B,
namely (79), gives

v “ upα2 ´ 1qW0pχ2q, (82)

where

χ2 “
1

upα2 ´ 1q
exp pψ0p1´ α2q ` γ` logpuq ´ 1q . (83)

The conventional divergence can now be transformed to the fractional divergence between two
Exponential-densities by substituting the fractional solutions (71)–(72) for u and (82)–(83) for v into (61)
to obtain the final form:

Dpppy; uq||qpy; vqq “
ˇ

ˇ

ˇ

ˇ

log
ˆ

W0pχ1qe´iα1π

uvpα2 ´ 1qΓpα1 ` 1qΓp1´ α1qW0pχ2q

˙

` uvpα2 ´ 1qΓpα1 ` 1qΓp1´ α1qeiα1π W0pχ2q

W0pχ1q
´ 1

ˇ

ˇ

ˇ

ˇ

, (84)
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where the arguments χ1 and χ2 are given by:

χ1 “ vΓpα1 ` 1qΓp1´ α1q exp piα1π` ψ0p1´ α1q ` γ` logpvq ` 1q ,

χ2 “
1

upα2 ´ 1q
exp pψ0p1´ α2q ` γ` logpuq ´ 1q . (85)

The modulus is used because α1,2 P R as well as α1,2 P C as can be seen from (84) and (85).
In Figure 3, the conventional divergence, which is exact with the fractional divergence when α “ 1 in
the latter, is shown as a divergence manifold (top-left) with the line u “ v running down the middle
where the divergence is zero.

Figure 3. Variation of the (fractional) divergence manifold between two Exponential-densities in terms
of the fractional orders α1 and α2. The case α “ 1 corresponds to the conventional divergence.

The conventional divergence is also shown on the right as an image map where the red region
indicates small divergence on either side of the u “ v line (not shown). According to the conventional
divergence between two Exponential-densities, the only solutions which give zero are those where
u “ v. However, as the middle two and last two plots indicate, the fractional divergence can make the
divergence between them zero or close to zero for regions (solutions) where the conventional version
fails. The middle two figures show manipulation of the divergence manifold for α1 “ 10.0001 and α2 “ 190.9
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in which the divergence manifold has been minimised perpendicular to the conventional version
(α “ 1). The image map on the right also contains iteration lines with each point being an iteration
step in the process of finding the global minimum of the divergence using a differential-evolution
numerical algorithm. This minimum occurs when u “ 2.32623 and v “ 5.45556 and at those parametric
coordinates the fractional divergence is D “ 10´8. The bottom two plots show further manipulation of
the divergence manifold for α2 “ 40.9, giving a fractional divergence of 10´8 for a global minimum
in this case given by u “ 8.88506 and v “ 6.73169. The last four plots confirm that the fractional
divergence approach can give essentially zero divergence for parameter values pu, vq, which are not
equal, unlike the expected results from the conventional divergence approach.

Further evidence of this can be seen in Figure 4. The manipulation of the divergence manifold is
not only possible via α1,2 P R but also when α1 and α2 are complex (bottom-right plot). The fractional
divergence has a global minimum for the complex solution of D “ 10´14 at pu, vq “ p5.77781, 1.01829q.
There are numerous other non-trivial solutions with divergence of the order of 10´22 or less which
have been omitted for brevity reasons. The results shown in Figures 3 and 4 indicate that the fractional
divergence formulation makes it possible to find parameter values pu, vq that achieve zero divergence
even when the conventional approach does not. When the fractional order is α “ 1, the fractional
divergence recovers the same ‘trivial’ solutions as the conventional method, hence the former is a
generalisation of the latter. Note that one can set α1 ‰ α2 or α1 “ α2 “ α or any combination, where
αi P R and αi P C.

Figure 4. Further manipulation of the (fractional) divergence manifold between two Exponential-densities
via the fractional orders α1 and α2.

Finally, it is worth discussing the α “ 1 or conventional divergence image map on the right of
Figure 3. At first glance it appears that the divergence is also very small on either side of the u “ v
solutions which would indicate that there must be other solutions apart from those given by u “ v.
However this is misleading. As the pu, vq parameters of the Exponential-densities increase in value,
(u Ñ8 and v Ñ8), the Exponential-densities decay very quickly to zero. As this happens to both of
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them simultaneously, the densities tend to have the same asymptotic behaviour whenever pu, vq are
large, giving the impression that the divergence is zero between them. In other words,

Dpppy; uq||qpy; vqq “ lim
u,vÑ8

ż

Ω
ppy; uq log

ˆ

ppy; uq
qpy; vq

˙

dy “
ż

Ω
p„ 0q log

ˆ

„ 0
„ 0

˙

dy “ 0, (86)

where the last term on the right is valid by the Definition found in the previous section and „ 0
means that the densities asymptotically approach zero (rapidly) for large pu, vq. Caution must be used
when interpreting the divergence solutions for the conventional case on either side of the u “ v line.
These solutions are trivial and are due to the decay process of the densities and not because there
are alternative solutions in addition to the ones given by u “ v. This explains the 2V2-shape that is
diagonal to the u´ v axes.

6. An Application of the Fractional Divergence to Detection Theory

In this section, it will be shown how the fractional divergence can be used to solve an important
problem in the field of signal processing. The problem consists of detecting signals embedded in
background noise or clutter. Suppose that a hypothesis test is constructed. Set H0 to be the null
hypothesis which describes only the noise/clutter. Let H1 be the alternative hypothesis that there is a
signal of interest that has to be detected in the noise/clutter. That is,

H0 : noise{clutter.

H1 : signal ` noise{clutter. (87)

It is usually the case where the density that describes the noise/clutter is known, e.g., Gaussian
or Normal. Let q0pxq be a density that represents this situation. Let the alternative hypothesis be
represented by the density q1pxq, i.e., that there is a signal of interest embedded inside the noise/clutter.
It is possible to construct a detector that can discriminate in some optimal fashion whether there is
a signal present or not when sampling observed data. Let ppxq be a density that is constructed by
observing/measuring i.i.d. random variables. What is required is a metric which determines how
close the observed data ppxq is to either q0pxq and q1pxq. If ppxq is closer to q0pxq, then it is more
likely that it is not a signal of interest but rather what is being detected is merely noise/clutter. If the
separation of ppxq is closer to q1pxq instead, then it is highly probable that a signal is present, so a
detection is declared. It should be clear that a minimum divergence detector can be constructed, which
can differentiate if there is a signal present or not by calculating the divergence between the observed
density and that of the the null and the alternative densities.

According to the Neyman–Pearson theorem that optimises the detection probability for a given
false alarm rate, the log-likelihood ratio for the hypothesis test is:

θ1 “
N
ź

i“1

q1pxiq

q0pxiq
, (88)

where the total number of samples observed is N. Taking the log-likelihood of (88) and normalising by
N gives:

θ ”
1
N

logpθ1q “
1
N

N
ÿ

i“1

log
ˆ

q1pxiq

q0pxiq

˙

. (89)

The log-likelihood θ is essentially a random variable. It is an average of N i.i.d. random variables
θi “ logpq1pxiq{q0pxiqq. Accordingly, from the law of large numbers, for large N,

θ Ñ 〈θi〉 , (90)
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whereă ¨ ą is the expectation and i “ 1, 2, ..., N. By the expectation (90) for the continuous case, one has

〈θ〉 “

ż

ppxq log
ˆ

q1pxq
q0pxq

˙

dx

“

ż

ppxq log
ˆ

q1pxqppxq
q0pxqppxq

˙

dx

“

ż

ppxq log
ˆ

ppxq
q0pxq

˙

dx´
ż

ppxq log
ˆ

ppxq
q1pxq

˙

dx

“ Dpppxq||q0pxqq ´Dpppxq||q1pxqq. (91)

Hence, the divergence is related to the expectation of the log-likelihood ratio. For large N and by
the Neyman–Pearson theorem:

〈θ〉
H1
ąă
H0

τ1, (92)

where τ1 is the un-normalised threshold. The minimum distance detector based on the divergence is
given by:

Dpppxq||q0pxqq ´Dpppxq||q1pxqq
H1
ąă
H0

1
N

τ1 ” τ, (93)

with τ being the normalised by N threshold. For a threshold τ “ 0, the detection scheme becomes

Dpppxq||q0pxqq
H1
ąă
H0

Dpppxq||q1pxqq. (94)

If the divergence indicates that the distance of ppxq to the null hypothesis q0pxq is greater than
the distance to the alternative hypothesis q1pxq, then H1 is true, which means that a signal of interest
is detected and vice versa. The main problem is that the detection scheme (93) or (94) requires the
estimation of parameters for each density, i.e., ppx;~ξ1q, ppx;~ξ2q and ppx;~ξ3q. The critical issue that
arises is that the parameters p~ξ1,~ξ2,~ξ3q are estimated from the observed data. Unfortunately, in order to
obtain accurate estimates for these parameters, the number of samples N must be very large. In reality,
however, this is never the case. There are only a small number of samples n that can be used for
estimation purposes, i.e., n P N : n ăă N. This introduces error in the estimation of p~ξ1,~ξ2,~ξ3q and, as
a consequence, the divergence detector does not perform optimally.

Using the fractional divergence approach means that the parameters depend on the fractional
order, p~ξ1pαq,~ξ2pαq,~ξ3pαqq. Thus, even if the parameters are estimated using only a small sample n in
each case, the fractional order can be changed in order to compensate for this by varying the divergences
to obtain the optimal solution as if the sampling was very large to begin with. The fractional-order(s)
‘fine-tunes’ the performance of the detector by acting as a correction factor to the loss experienced in
the estimation process for the parameters because of poor or small sampling.

7. Conclusions

It has been shown that the divergence between different probability densities can be studied
using the Kullback–Leibler approach. It is possible to find solutions that indicate where two competing
density models approach each other asymptotically, but the solutions are generally unique or trivial
in nature. The fractional divergence employs fractional calculus to improve on the conventional
divergence results beyond the trivial or unique cases. Apart from the improved overall performance,
fractional solutions open up the possibility of giving further insights into problems requiring this type
of analysis.
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