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Abstract: In this paper, we use concepts of q-calculus to introduce a certain type of q-difference
operator, and using it define some subclasses of analytic functions. Inclusion relations, coefficient
result, and some other interesting properties of these classes are studied.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc E = {z : |z| < 1}
and are of the form

f (z) = z +
∞

∑
m=2

amzm, (z ∈ E). (1)

One-to-one analytic functions in this class are usually called univalent. A function f ∈ A is said
to be starlike of order α(0 ≤ α < 1) in E if it satisfies the condition

<
{

z f ′(z)
f (z)

}
> α, (z ∈ E).

We denote this class by S∗(α). In particular, for α = 0, we have S∗(0) = S∗, the well-known class
of starlike functions. The class C(α), (0 ≤ α < 1) consisting of convex functions of order α can be
defined by the relation

f ∈ C(α), if and only if, z f ′ ∈ S∗(α).

Let f1, f2 ∈ A. If there exists a Schwartz function φ(z) analytic in E with φ(0) = 0 such that
|φ(z)| < 1 for all z ∈ E such that f1(z) = f2(φ(z)), then we say that f1(z) is subordinate to f2(z)
and write

f1(z) ≺ f2(z),

where ≺ denotes subordination.
Let f and g be analytic in E with f (z) = ∑∞

m=0 amzm and g(z) = ∑∞
m=0 bmzm. Then, the convolution

∗ (or Hadamard product) of f and g is defined as

( f ∗ g)(z) =
∞

∑
m=0

ambmzm.

For n ∈ N◦ = {0, 1, 2, 3, ...}, let

Dn f (z) =
z

(1− z)n+1 ∗ f (z)
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so that

Dn f (z) =
z(zn−1 f (z))(n)

n!
.

The operator Dn is called the Ruscheweyh derivative of order n, see Reference [1]. For the
applications of the Ruscheweyh differential operator in geometric function theory, see References [2–4].

In this paper, we generalize the operator Dn by using q-calculus concepts. Recently, q-calculus
has attracted the attention of many researchers in the field of geometric function theory. q-Derivatives
and q-integrals play an important and significant role in the study of quantum groups and q-deformed
super-algebras, the study of fractal and multi-fractal measures, and in chaotic dynamical systems. The
name q-calculus also appears in other contexts; see References [5–13]. The most sophisticated tool that
derives functions in non-integer order is the well-known fractional calculus; see References [1,12–16].
One can find numerous applications of the q-operator in real-world problems as well as in problems
defined on complex plains.

Ismail et al. [15] generalized the class S∗ with the concept of q-derivative and called it S∗q of
q-starlike functions. Here, we give some basic definitions and results of q-calculus which we shall use
in our results. For more details, see References [12,13,17–22].

If q ∈ (0, 1) is fixed, then a subset B of C is called q-geometric, if qz ∈ B whenever z ∈ B and B
contains all geometric sequences {zqm}∞

0 , zq ∈ B. Jackson [9,10] defined q-derivative and q-integral of
f on the set B as follows:

∂q f (z) =
f (z)− f (zq)

z(1− q)
, (z 6= 0, z ∈ (0, 1)), (2)

and ∫ z

0
f (t)∂qt = z(1− q)

∞

∑
m=0

qm f (zqm),

provided that the series converges.
It can easily be seen that for m ∈ N = {1, 2, 3, ...} and z ∈ E

∂q

{ ∞

∑
m=1

amzm
}

=
∞

∑
m=1

[m, q]amzm−1,

where

[m, q] =
1− qm

1− q
= 1 +

m−1

∑
i=1

qi, [0, q] = 0. (3)

For any non-negative integer m, the q-number shift factorial is defined by

[m, q]! =

{
1, m = 0
[1,q][2,q][3,q]...[m,q], m ∈ N.

Furthermore, the q-generalized Pochhamer symbol for x > 0 is given as

[m, q]m =

{
1, m = 0
[x,q][x+1,q]...[x+m-1,q], m ∈ N.
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Let the function F be defined as

Fn+1,q(z) = z +
∞

∑
m=2

[n + 1, q]m−1

[m− 1, q]!
zm, (4)

where the series is absolutely convergent in E.
The q-Ruscheweyh differential operator Dn

q : A→ A of order n ∈ N◦, q ∈ (0, 1) and for f given
by (1) is defined as

Dn
q f (z) = Fn+1,q(z) ∗ f (z)

= z +
∞

∑
m=2

[n + 1, q]m−1

[m− 1, q]!
amzm, see Reference [2]. (5)

In addition,

D0
q f (z) = f (z) and D1

q f (z) = z∂q f (z).

Equation (5) can be written as

Dn
q f (z) =

z∂n
q (zn−1 f (z))
[n, q]!

, n ∈ N.

Since limq→1− Fn+1,q(z) = z
(1−z)n+1 , it follows that

lim
q→1

Dn
q f (z) =

z
(1− z)n+1 ∗ f (z) = Dn f (z).

Throughout this paper, it is assumed that q ∈ (0, 1) and z ∈ E, unless otherwise stated.

2. Main Results

In this section, some new classes of analytic functions involving the q-Ruscheweyh derivative are
introduced and some new results are derived.

Definition 1. Let f ∈ A. Then, f is said to belong to the class STq, if∣∣∣∣ z
f (z)

(∂q f )(z)− q
1− q2

∣∣∣∣ ≤ q
1− q2 , ∀z ∈ E, (6)

where ∂q f (z) is defined by (2) on the set B, q ∈ (0, 1).

Remark 1. We note that as q → 1−, the disc |w− q
1−q2 | ≤

q
1−q2 becomes the right half plane <{w} > α,

α ∈ ( 1
2 , 1) and the class STq reduces to S∗( 1

2 ).

Following the similar method used in Reference [17], we note from (6) that f ∈ STq, if and only if

z∂q f (z)
f (z)

≺ 1
1− qz

. (7)

It can be seen from (7) that the transformation 1
1−qz maps |z| = r onto the circle with center

C(r) = qr2

1−q2r2 and the radius σ(r) = qr
1−q2r2 , which can be written as
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1− qr + qr2

(1− qr)(1 + qr)
≤
{
<

z∂q f (z)
f (z)

}
≤ 1 + qr + qr2

(1− qr)(1 + qr)
. (8)

Now, with ∂q(log f (z)) = ∂q f (z)
f (z) , < ∂q f (z)

f (z) = r ∂q log | f (z)|
dr and some computation, (8) yields

1
r
+

q
1 + qr

≤
∂q log | f (z)|

dr
≤ 1

r
+

q
1− qr

. (9)

Taking the q-integral on both sides of (9) together with some simplifications, we obtain the
following result for the class STq.

Theorem 1. Let f ∈ STq. Then,

1
(1 + qr)qq1

≤
∣∣∣∣ f (z)

z

∣∣∣∣ ≤ 1
(1− qr)qq1

, q1 =
1− q

log q−1 . (10)

Since limq→1−{
1−q

log q−1 } = 1, we obtain the well known distortion result for f ∈ S∗( 1
2 ) as

r
1 + r

≤ | f (z)| ≤ r
1− r

.

Definition 2. Let f ∈ A. Then, f is said to belong to the class S∗q (n, α), if and only if

<
{ z∂q(Dn

q f (z))
Dn

q f (z)

}
> α, 0 ≤ α < 1, z ∈ E (11)

and Dn
q f is defined by (5).

As a special case, we have f ∈ S∗q (n, α), α = 1
1+q , if and only if Dn

q ∈ STq, z ∈ E.

The following identity can easily be obtained from (5).

z∂q(Dn
q f (z)) =

(
1 +

[n, q]
qn

)
Dn+1

q f (z)− [n, q]
qn Dn

q f (z). (12)

If q→ 1−, then

z(Dn f (z)) = (n + 1)Dn+1 f (z)− nDn f (z),

which is the well known identity of the Ruscheweyeh derivative operator Dn.

Remark 2. ∩∞
n=0S∗q (n, α) = {id}, where id is the identity function. Then, it follows trivially that z ∈ S∗q (n, α)

for n ∈ N◦. On the contrary, assume f ∈ ∩∞
n=0S∗q (n, α) with f (z) given by (1). Then, from (5), we deduce that

f (z) = z.

With a similar argument used in Reference [23], it can easily be shown that

∩0<q<1S∗q (n, α) = S∗(n, α).

Theorem 2. S∗q (n + 1, α) ⊂ S∗q (n, α), α = 1
1+q , n ∈ N◦.
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Proof. Let f ∈ S∗q (n + 1, α), α = 1
1+q .

Set

z∂q(Dn
q f (z))

Dn
q f (z)

= p(z), (13)

where p(z) is analytic in E with p(0) = 1.
We can show that

p(z) ≺ 1
1− qz

, z ∈ E.

Differentiating (13) q-logarithmically and using identity (12), we have

z∂q(Dn+1
q f (z))

Dn+1
q f (z)

= p(z) +
z∂q p(z)

p(z) + Nq
, Nq =

[n, q]
qn . (14)

Let

p(z) =
1

1− qφ(z)
. (15)

Clearly, φ(z) is analytic in E and φ(0) = 0. We can show S|φ(z)| < 1, ∀z ∈ E.
Suppose on the contrary that there exists a z0 ∈ E such that |φ(z0)| = 1. Since f ∈ S∗q (n + 1, 1

1+q ),

<{p(z) + z∂q p(z)
p(z)+Nq

} > 1
1+q , for z ∈ E and Nq = [n,q]

qn .
Now, from (15), it follows that

p(z) +
z∂q p(z)

p(z) + Nq
=

1
1− qφ(z)

+
qz∂qφ(z)

(1− qφ(z))[(Nq + 1)− Nqqφ(z)]
.

At z = z0, we have

<
{

p(z) +
z∂q p(z)

p(z) + Nq

}
z=z0

= <
{

1
1− qφ(z0)

+
qz0∂qφ(z0)

(1− qφ(z0))[(1 + Nq)− qNqφ(z0)]
. (16)

If φ(z0) = eiθ , then

1
1− qφ(z0)

=
1

1− qeiθ =
1− q cos θ + iq sin θ

(1− 2q cos θ + q2)
,

and

< 1
1− qφ(z0)

=
1− q cos θ

1− 2q cos θ + q2 . (17)

Using q-Jacks’s Lemma given in Reference [23], we have

z0∂qφ(z0) = kφ(z0), k ≥ 1. (18)

Now, with θ = π, we have from (16) and (18)

<
{

qz0∂qφ(z0)

(1− qφ(z0))((1 + Nq)− Nqqφ(z0))

}
θ=π

=
−k(q + 1)(1 + (1 + q)Nq)

(1 + q)2(1 + (1 + q)Nq)2

< 0. (19)
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Hence, from (17) and (19), it follows that there exists z0 ∈ E such that

<
{ z∂q(Dn+1

q f (z))

Dn+1
q f (z)

− 1
1 + q

}
< 0,

which is a contradiction to the given hypothesis. Thus, |φ(z)| < 1 for all z ∈ E and p(z) ≺ 1
1−qz , which

proves f ∈ S∗q (n, α), α = 1
1+q .

Theorem 3. Let f ∈ S∗q (n, α) and let In,q f : A→ A be defined as

In,q f (z) =
[n + 1, q]

zn

∫ z

0
tn−1 f (t)dqt, n ∈ N◦. (20)

Then, In f ∈ S∗q (n + 1, α). For q→ 1−, (20) represents Bernardi operator, see Reference [24].

The proof is straightforward, when we note from (12) and (20) that

Dn
q f = Dn+1

q (In,q f ).

Lemma 1. Let f ∈ STq and let f (z) be given by (1). Then,

|am| ≤
C(q) ·mqq1

[m, q]
, q1 =

1− q
log q−1 , qq1 >

1
2

,

and C(q) is a constant depending only on q.

Proof. By Cauchy theorem, for z = reiθ and Cauchy–Schwartz inequality, we have

[m, q]|am| ≤
1

2πrm

∫ 2π

0
| f (z)p(z)|dθ, p(z) ≺ 1

1− qz
,

≤ 1
rm

(
1

2π

∫ 2π

0
| f (z)|2dθ

) 1
2
(

1
2π

∫ 2π

0
|p(z)|2dθ

) 1
2

. (21)

If p(z) ≺ 1
1−qz and p(z) = 1 + ∑∞

m=1 cmzm, then |cm| ≤ q and

∫ 2π

0
|p(z)|2dθ ≤ 1 + (4q2 − 1)r2

1− r2 . (22)

Using Theorem 1 and the subordination principle, we obtain

∫ 2π

0
| f (z)|2dθ ≤

∫ 2π

0

r2dθ

|1− qreiθ |2qq1
≤ c1(q)

(
1

1− qr

)2qq1−1

, (23)

where c1 is a constant.

From (21)–(23), it follows that

[m, q]|am| ≤ C(q) ·mqq1 , qq1 >
1
2

.

This completes the proof.

As a special case, if q→ 1−, then f ∈ S∗( 1
2 ) and am = O(1).
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Theorem 4. Let

F(z) = Dn
q f (z) = z +

∞

∑
m=2

Amzm,

where Dn
q f (z) is given by (5) and f ∈ S∗q (n, α), α = 1

1+q . Then,

am = O(1)
(

[m− 1, q]!
[m, q][n + 1, q]m−1

)
·mqq1 , qq1 >

1
2

,

where O(1) is a constant which depends only on q.

The proof follows easily by using Lemma 1 and the definition that Dn
q f ∈ STq.

As a special case, we observe that D0
q f = f and we have

am =
O(1) ·mqq1

[m, q]
.

For q→ 1−, it yields the result am = O(1).

3. Conclusions

In this paper, we have used q-calculus to define and study some new sub-classes of analytic
functions involving the Ruscheweyh derivative.. Some interesting inclusion and subordination
properties of these new classes have been derived. Some special cases have been discussed as
applications of our main results. Applications of the q-Ruscheweyh differential operator in the
real world will be an interesting and encouraging future study for researchers.
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